citra/src/core/memory.cpp

539 lines
18 KiB
C++
Raw Normal View History

// Copyright 2015 Citra Emulator Project
2014-12-17 05:38:14 +00:00
// Licensed under GPLv2 or any later version
2014-04-09 00:15:46 +01:00
// Refer to the license.txt file included.
2013-09-19 04:52:51 +01:00
#include <array>
2015-09-10 04:23:44 +01:00
#include <cstring>
#include "common/assert.h"
2015-05-06 08:06:12 +01:00
#include "common/common_types.h"
#include "common/logging/log.h"
#include "common/swap.h"
2013-09-19 04:52:51 +01:00
#include "core/hle/kernel/process.h"
#include "core/memory.h"
#include "core/memory_setup.h"
2016-01-30 18:41:04 +00:00
#include "core/mmio.h"
2013-09-19 04:52:51 +01:00
2016-04-16 23:57:57 +01:00
#include "video_core/renderer_base.h"
#include "video_core/video_core.h"
2013-09-19 04:52:51 +01:00
namespace Memory {
enum class PageType {
/// Page is unmapped and should cause an access error.
Unmapped,
/// Page is mapped to regular memory. This is the only type you can get pointers to.
Memory,
2016-04-16 23:57:57 +01:00
/// Page is mapped to regular memory, but also needs to check for rasterizer cache flushing and invalidation
RasterizerCachedMemory,
/// Page is mapped to a I/O region. Writing and reading to this page is handled by functions.
Special,
2016-04-16 23:57:57 +01:00
/// Page is mapped to a I/O region, but also needs to check for rasterizer cache flushing and invalidation
RasterizerCachedSpecial,
};
2016-01-30 18:41:04 +00:00
struct SpecialRegion {
VAddr base;
u32 size;
MMIORegionPointer handler;
};
/**
2015-10-09 22:09:52 +01:00
* A (reasonably) fast way of allowing switchable and remappable process address spaces. It loosely
* mimics the way a real CPU page table works, but instead is optimized for minimal decoding and
2015-10-09 22:09:52 +01:00
* fetching requirements when accessing. In the usual case of an access to regular memory, it only
* requires an indexed fetch and a check for NULL.
*/
struct PageTable {
static const size_t NUM_ENTRIES = 1 << (32 - PAGE_BITS);
/**
* Array of memory pointers backing each page. An entry can only be non-null if the
* corresponding entry in the `attributes` array is of type `Memory`.
*/
std::array<u8*, NUM_ENTRIES> pointers;
2016-01-30 18:41:04 +00:00
/**
* Contains MMIO handlers that back memory regions whose entries in the `attribute` array is of type `Special`.
*/
std::vector<SpecialRegion> special_regions;
/**
* Array of fine grained page attributes. If it is set to any value other than `Memory`, then
2016-01-30 18:41:04 +00:00
* the corresponding entry in `pointers` MUST be set to null.
*/
std::array<PageType, NUM_ENTRIES> attributes;
2016-04-16 23:57:57 +01:00
/**
* Indicates the number of externally cached resources touching a page that should be
* flushed before the memory is accessed
*/
std::array<u8, NUM_ENTRIES> cached_res_count;
};
/// Singular page table used for the singleton process
static PageTable main_page_table;
/// Currently active page table
static PageTable* current_page_table = &main_page_table;
static void MapPages(u32 base, u32 size, u8* memory, PageType type) {
LOG_DEBUG(HW_Memory, "Mapping %p onto %08X-%08X", memory, base * PAGE_SIZE, (base + size) * PAGE_SIZE);
u32 end = base + size;
while (base != end) {
ASSERT_MSG(base < PageTable::NUM_ENTRIES, "out of range mapping at %08X", base);
2016-04-16 23:57:57 +01:00
// Since pages are unmapped on shutdown after video core is shutdown, the renderer may be null here
if (current_page_table->attributes[base] == PageType::RasterizerCachedMemory ||
current_page_table->attributes[base] == PageType::RasterizerCachedSpecial) {
RasterizerFlushAndInvalidateRegion(VirtualToPhysicalAddress(base << PAGE_BITS), PAGE_SIZE);
}
current_page_table->attributes[base] = type;
current_page_table->pointers[base] = memory;
2016-04-16 23:57:57 +01:00
current_page_table->cached_res_count[base] = 0;
base += 1;
2015-07-10 02:47:27 +01:00
if (memory != nullptr)
memory += PAGE_SIZE;
}
2013-09-19 04:52:51 +01:00
}
void InitMemoryMap() {
main_page_table.pointers.fill(nullptr);
main_page_table.attributes.fill(PageType::Unmapped);
2016-04-16 23:57:57 +01:00
main_page_table.cached_res_count.fill(0);
}
void MapMemoryRegion(VAddr base, u32 size, u8* target) {
ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: %08X", size);
ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: %08X", base);
MapPages(base / PAGE_SIZE, size / PAGE_SIZE, target, PageType::Memory);
}
2014-04-26 06:27:25 +01:00
2016-01-30 18:41:04 +00:00
void MapIoRegion(VAddr base, u32 size, MMIORegionPointer mmio_handler) {
ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: %08X", size);
ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: %08X", base);
MapPages(base / PAGE_SIZE, size / PAGE_SIZE, nullptr, PageType::Special);
2016-01-30 18:41:04 +00:00
current_page_table->special_regions.emplace_back(SpecialRegion{base, size, mmio_handler});
}
void UnmapRegion(VAddr base, u32 size) {
ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: %08X", size);
ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: %08X", base);
MapPages(base / PAGE_SIZE, size / PAGE_SIZE, nullptr, PageType::Unmapped);
}
2016-04-16 23:57:57 +01:00
/**
* Gets a pointer to the exact memory at the virtual address (i.e. not page aligned)
* using a VMA from the current process
*/
static u8* GetPointerFromVMA(VAddr vaddr) {
u8* direct_pointer = nullptr;
auto& vma = Kernel::g_current_process->vm_manager.FindVMA(vaddr)->second;
switch (vma.type) {
case Kernel::VMAType::AllocatedMemoryBlock:
direct_pointer = vma.backing_block->data() + vma.offset;
break;
case Kernel::VMAType::BackingMemory:
direct_pointer = vma.backing_memory;
break;
default:
UNREACHABLE();
}
return direct_pointer + (vaddr - vma.base);
}
2016-01-30 18:41:04 +00:00
/**
* This function should only be called for virtual addreses with attribute `PageType::Special`.
*/
static MMIORegionPointer GetMMIOHandler(VAddr vaddr) {
for (const auto& region : current_page_table->special_regions) {
if (vaddr >= region.base && vaddr < (region.base + region.size)) {
return region.handler;
}
}
ASSERT_MSG(false, "Mapped IO page without a handler @ %08X", vaddr);
return nullptr; // Should never happen
}
template<typename T>
T ReadMMIO(MMIORegionPointer mmio_handler, VAddr addr);
template <typename T>
T Read(const VAddr vaddr) {
const u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS];
if (page_pointer) {
2016-04-16 23:57:57 +01:00
// NOTE: Avoid adding any extra logic to this fast-path block
2015-09-10 04:23:44 +01:00
T value;
std::memcpy(&value, &page_pointer[vaddr & PAGE_MASK], sizeof(T));
return value;
}
PageType type = current_page_table->attributes[vaddr >> PAGE_BITS];
switch (type) {
case PageType::Unmapped:
LOG_ERROR(HW_Memory, "unmapped Read%lu @ 0x%08X", sizeof(T) * 8, vaddr);
return 0;
case PageType::Memory:
ASSERT_MSG(false, "Mapped memory page without a pointer @ %08X", vaddr);
2016-01-30 18:41:04 +00:00
break;
2016-04-16 23:57:57 +01:00
case PageType::RasterizerCachedMemory:
{
RasterizerFlushRegion(VirtualToPhysicalAddress(vaddr), sizeof(T));
T value;
std::memcpy(&value, GetPointerFromVMA(vaddr), sizeof(T));
return value;
}
case PageType::Special:
2016-01-30 18:41:04 +00:00
return ReadMMIO<T>(GetMMIOHandler(vaddr), vaddr);
2016-04-16 23:57:57 +01:00
case PageType::RasterizerCachedSpecial:
{
RasterizerFlushRegion(VirtualToPhysicalAddress(vaddr), sizeof(T));
return ReadMMIO<T>(GetMMIOHandler(vaddr), vaddr);
}
default:
UNREACHABLE();
}
2013-09-19 04:52:51 +01:00
}
2016-01-30 18:41:04 +00:00
template<typename T>
void WriteMMIO(MMIORegionPointer mmio_handler, VAddr addr, const T data);
template <typename T>
void Write(const VAddr vaddr, const T data) {
u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS];
if (page_pointer) {
2016-04-16 23:57:57 +01:00
// NOTE: Avoid adding any extra logic to this fast-path block
2015-09-10 04:23:44 +01:00
std::memcpy(&page_pointer[vaddr & PAGE_MASK], &data, sizeof(T));
return;
}
PageType type = current_page_table->attributes[vaddr >> PAGE_BITS];
switch (type) {
case PageType::Unmapped:
LOG_ERROR(HW_Memory, "unmapped Write%lu 0x%08X @ 0x%08X", sizeof(data) * 8, (u32) data, vaddr);
return;
case PageType::Memory:
ASSERT_MSG(false, "Mapped memory page without a pointer @ %08X", vaddr);
2016-01-30 18:41:04 +00:00
break;
2016-04-16 23:57:57 +01:00
case PageType::RasterizerCachedMemory:
{
RasterizerFlushAndInvalidateRegion(VirtualToPhysicalAddress(vaddr), sizeof(T));
std::memcpy(GetPointerFromVMA(vaddr), &data, sizeof(T));
break;
}
case PageType::Special:
2016-01-30 18:41:04 +00:00
WriteMMIO<T>(GetMMIOHandler(vaddr), vaddr, data);
break;
2016-04-16 23:57:57 +01:00
case PageType::RasterizerCachedSpecial:
{
RasterizerFlushAndInvalidateRegion(VirtualToPhysicalAddress(vaddr), sizeof(T));
WriteMMIO<T>(GetMMIOHandler(vaddr), vaddr, data);
break;
}
default:
UNREACHABLE();
}
}
2014-04-26 06:27:25 +01:00
bool IsValidVirtualAddress(const VAddr vaddr) {
const u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS];
if (page_pointer)
return true;
if (current_page_table->attributes[vaddr >> PAGE_BITS] != PageType::Special)
return false;
MMIORegionPointer mmio_region = GetMMIOHandler(vaddr);
if (mmio_region) {
return mmio_region->IsValidAddress(vaddr);
}
return false;
}
bool IsValidPhysicalAddress(const PAddr paddr) {
return IsValidVirtualAddress(PhysicalToVirtualAddress(paddr));
}
u8* GetPointer(const VAddr vaddr) {
u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS];
if (page_pointer) {
return page_pointer + (vaddr & PAGE_MASK);
}
2016-04-16 23:57:57 +01:00
if (current_page_table->attributes[vaddr >> PAGE_BITS] == PageType::RasterizerCachedMemory) {
return GetPointerFromVMA(vaddr);
}
LOG_ERROR(HW_Memory, "unknown GetPointer @ 0x%08x", vaddr);
return nullptr;
}
u8* GetPhysicalPointer(PAddr address) {
// TODO(Subv): This call should not go through the application's memory mapping.
return GetPointer(PhysicalToVirtualAddress(address));
2015-04-28 02:59:06 +01:00
}
2016-04-16 23:57:57 +01:00
void RasterizerMarkRegionCached(PAddr start, u32 size, int count_delta) {
if (start == 0) {
return;
}
u32 num_pages = ((start + size - 1) >> PAGE_BITS) - (start >> PAGE_BITS) + 1;
PAddr paddr = start;
for (unsigned i = 0; i < num_pages; ++i) {
VAddr vaddr = PhysicalToVirtualAddress(paddr);
u8& res_count = current_page_table->cached_res_count[vaddr >> PAGE_BITS];
ASSERT_MSG(count_delta <= UINT8_MAX - res_count, "Rasterizer resource cache counter overflow!");
ASSERT_MSG(count_delta >= -res_count, "Rasterizer resource cache counter underflow!");
// Switch page type to cached if now cached
if (res_count == 0) {
PageType& page_type = current_page_table->attributes[vaddr >> PAGE_BITS];
switch (page_type) {
case PageType::Memory:
page_type = PageType::RasterizerCachedMemory;
current_page_table->pointers[vaddr >> PAGE_BITS] = nullptr;
break;
case PageType::Special:
page_type = PageType::RasterizerCachedSpecial;
break;
default:
UNREACHABLE();
}
}
res_count += count_delta;
// Switch page type to uncached if now uncached
if (res_count == 0) {
PageType& page_type = current_page_table->attributes[vaddr >> PAGE_BITS];
switch (page_type) {
case PageType::RasterizerCachedMemory:
page_type = PageType::Memory;
current_page_table->pointers[vaddr >> PAGE_BITS] = GetPointerFromVMA(vaddr & ~PAGE_MASK);
break;
case PageType::RasterizerCachedSpecial:
page_type = PageType::Special;
break;
default:
UNREACHABLE();
}
}
paddr += PAGE_SIZE;
}
}
void RasterizerFlushRegion(PAddr start, u32 size) {
if (VideoCore::g_renderer != nullptr) {
VideoCore::g_renderer->Rasterizer()->FlushRegion(start, size);
}
}
void RasterizerFlushAndInvalidateRegion(PAddr start, u32 size) {
if (VideoCore::g_renderer != nullptr) {
VideoCore::g_renderer->Rasterizer()->FlushAndInvalidateRegion(start, size);
}
}
u8 Read8(const VAddr addr) {
return Read<u8>(addr);
2013-09-19 04:52:51 +01:00
}
u16 Read16(const VAddr addr) {
return Read<u16_le>(addr);
2013-09-19 04:52:51 +01:00
}
u32 Read32(const VAddr addr) {
return Read<u32_le>(addr);
2013-09-19 04:52:51 +01:00
}
u64 Read64(const VAddr addr) {
return Read<u64_le>(addr);
2013-09-19 04:52:51 +01:00
}
2016-04-16 09:14:18 +01:00
void ReadBlock(const VAddr src_addr, u8* dest_buffer, const size_t size) {
size_t remaining_size = size;
size_t page_index = src_addr >> PAGE_BITS;
size_t page_offset = src_addr & PAGE_MASK;
while (remaining_size > 0) {
const size_t copy_amount = std::min(PAGE_SIZE - page_offset, remaining_size);
const VAddr current_vaddr = (page_index << PAGE_BITS) + page_offset;
switch (current_page_table->attributes[page_index]) {
case PageType::Unmapped: {
LOG_ERROR(HW_Memory, "unmapped ReadBlock @ 0x%08X (start address = 0x%08X, size = %zu)", current_vaddr, src_addr, size);
std::memset(dest_buffer, 0, copy_amount);
break;
}
case PageType::Memory: {
DEBUG_ASSERT(current_page_table->pointers[page_index]);
const u8* src_ptr = current_page_table->pointers[page_index] + page_offset;
std::memcpy(dest_buffer, src_ptr, copy_amount);
break;
}
case PageType::Special: {
DEBUG_ASSERT(GetMMIOHandler(current_vaddr));
GetMMIOHandler(current_vaddr)->ReadBlock(current_vaddr, dest_buffer, copy_amount);
break;
}
default:
UNREACHABLE();
}
page_index++;
page_offset = 0;
dest_buffer += copy_amount;
remaining_size -= copy_amount;
}
}
void Write8(const VAddr addr, const u8 data) {
Write<u8>(addr, data);
2013-09-19 04:52:51 +01:00
}
void Write16(const VAddr addr, const u16 data) {
Write<u16_le>(addr, data);
2013-09-19 04:52:51 +01:00
}
void Write32(const VAddr addr, const u32 data) {
Write<u32_le>(addr, data);
2013-09-19 04:52:51 +01:00
}
void Write64(const VAddr addr, const u64 data) {
Write<u64_le>(addr, data);
2013-09-19 04:52:51 +01:00
}
2016-04-16 09:14:18 +01:00
void WriteBlock(const VAddr dest_addr, const u8* src_buffer, const size_t size) {
size_t remaining_size = size;
size_t page_index = dest_addr >> PAGE_BITS;
size_t page_offset = dest_addr & PAGE_MASK;
while (remaining_size > 0) {
const size_t copy_amount = std::min(PAGE_SIZE - page_offset, remaining_size);
const VAddr current_vaddr = (page_index << PAGE_BITS) + page_offset;
switch (current_page_table->attributes[page_index]) {
case PageType::Unmapped: {
LOG_ERROR(HW_Memory, "unmapped WriteBlock @ 0x%08X (start address = 0x%08X, size = %zu)", current_vaddr, dest_addr, size);
break;
}
case PageType::Memory: {
DEBUG_ASSERT(current_page_table->pointers[page_index]);
u8* dest_ptr = current_page_table->pointers[page_index] + page_offset;
std::memcpy(dest_ptr, src_buffer, copy_amount);
break;
}
case PageType::Special: {
DEBUG_ASSERT(GetMMIOHandler(current_vaddr));
GetMMIOHandler(current_vaddr)->WriteBlock(current_vaddr, src_buffer, copy_amount);
break;
}
default:
UNREACHABLE();
}
page_index++;
page_offset = 0;
src_buffer += copy_amount;
remaining_size -= copy_amount;
2015-09-10 04:23:44 +01:00
}
}
2016-01-30 18:41:04 +00:00
template<>
u8 ReadMMIO<u8>(MMIORegionPointer mmio_handler, VAddr addr) {
return mmio_handler->Read8(addr);
}
template<>
u16 ReadMMIO<u16>(MMIORegionPointer mmio_handler, VAddr addr) {
return mmio_handler->Read16(addr);
}
template<>
u32 ReadMMIO<u32>(MMIORegionPointer mmio_handler, VAddr addr) {
return mmio_handler->Read32(addr);
}
template<>
u64 ReadMMIO<u64>(MMIORegionPointer mmio_handler, VAddr addr) {
return mmio_handler->Read64(addr);
}
template<>
void WriteMMIO<u8>(MMIORegionPointer mmio_handler, VAddr addr, const u8 data) {
mmio_handler->Write8(addr, data);
}
template<>
void WriteMMIO<u16>(MMIORegionPointer mmio_handler, VAddr addr, const u16 data) {
mmio_handler->Write16(addr, data);
}
template<>
void WriteMMIO<u32>(MMIORegionPointer mmio_handler, VAddr addr, const u32 data) {
mmio_handler->Write32(addr, data);
}
template<>
void WriteMMIO<u64>(MMIORegionPointer mmio_handler, VAddr addr, const u64 data) {
mmio_handler->Write64(addr, data);
}
PAddr VirtualToPhysicalAddress(const VAddr addr) {
if (addr == 0) {
return 0;
} else if (addr >= VRAM_VADDR && addr < VRAM_VADDR_END) {
return addr - VRAM_VADDR + VRAM_PADDR;
} else if (addr >= LINEAR_HEAP_VADDR && addr < LINEAR_HEAP_VADDR_END) {
return addr - LINEAR_HEAP_VADDR + FCRAM_PADDR;
} else if (addr >= DSP_RAM_VADDR && addr < DSP_RAM_VADDR_END) {
return addr - DSP_RAM_VADDR + DSP_RAM_PADDR;
} else if (addr >= IO_AREA_VADDR && addr < IO_AREA_VADDR_END) {
return addr - IO_AREA_VADDR + IO_AREA_PADDR;
} else if (addr >= NEW_LINEAR_HEAP_VADDR && addr < NEW_LINEAR_HEAP_VADDR_END) {
return addr - NEW_LINEAR_HEAP_VADDR + FCRAM_PADDR;
}
LOG_ERROR(HW_Memory, "Unknown virtual address @ 0x%08X", addr);
// To help with debugging, set bit on address so that it's obviously invalid.
return addr | 0x80000000;
}
VAddr PhysicalToVirtualAddress(const PAddr addr) {
if (addr == 0) {
return 0;
} else if (addr >= VRAM_PADDR && addr < VRAM_PADDR_END) {
return addr - VRAM_PADDR + VRAM_VADDR;
} else if (addr >= FCRAM_PADDR && addr < FCRAM_PADDR_END) {
return addr - FCRAM_PADDR + Kernel::g_current_process->GetLinearHeapAreaAddress();
} else if (addr >= DSP_RAM_PADDR && addr < DSP_RAM_PADDR_END) {
return addr - DSP_RAM_PADDR + DSP_RAM_VADDR;
} else if (addr >= IO_AREA_PADDR && addr < IO_AREA_PADDR_END) {
return addr - IO_AREA_PADDR + IO_AREA_VADDR;
}
LOG_ERROR(HW_Memory, "Unknown physical address @ 0x%08X", addr);
// To help with debugging, set bit on address so that it's obviously invalid.
return addr | 0x80000000;
}
2013-09-19 04:52:51 +01:00
} // namespace