citra/src/core/mem_map_funcs.cpp

302 lines
9.9 KiB
C++
Raw Normal View History

2014-04-09 00:15:46 +01:00
// Copyright 2014 Citra Emulator Project
2014-12-17 05:38:14 +00:00
// Licensed under GPLv2 or any later version
2014-04-09 00:15:46 +01:00
// Refer to the license.txt file included.
2013-09-19 04:52:51 +01:00
2014-04-18 04:05:31 +01:00
#include <map>
#include "common/common.h"
2013-09-19 04:52:51 +01:00
#include "core/mem_map.h"
#include "core/hw/hw.h"
2014-05-07 04:32:04 +01:00
#include "hle/config_mem.h"
2013-09-19 04:52:51 +01:00
namespace Memory {
2014-11-18 13:48:11 +00:00
static std::map<u32, MemoryBlock> heap_map;
static std::map<u32, MemoryBlock> heap_linear_map;
2014-11-18 13:48:11 +00:00
static std::map<u32, MemoryBlock> shared_map;
2014-04-18 04:05:31 +01:00
/// Convert a physical address to virtual address
VAddr PhysicalToVirtualAddress(const PAddr addr) {
// Our memory interface read/write functions assume virtual addresses. Put any physical address
// to virtual address translations here. This is quite hacky, but necessary until we implement
// proper MMU emulation.
// TODO: Screw it, I'll let bunnei figure out how to do this properly.
if ((addr >= VRAM_PADDR) && (addr < VRAM_PADDR_END)) {
return addr - VRAM_PADDR + VRAM_VADDR;
}else if ((addr >= FCRAM_PADDR) && (addr < FCRAM_PADDR_END)) {
return addr - FCRAM_PADDR + FCRAM_VADDR;
}
LOG_ERROR(HW_Memory, "Unknown physical address @ 0x%08x", addr);
return addr;
}
/// Convert a physical address to virtual address
PAddr VirtualToPhysicalAddress(const VAddr addr) {
// Our memory interface read/write functions assume virtual addresses. Put any physical address
// to virtual address translations here. This is quite hacky, but necessary until we implement
// proper MMU emulation.
// TODO: Screw it, I'll let bunnei figure out how to do this properly.
if ((addr >= VRAM_VADDR) && (addr < VRAM_VADDR_END)) {
return addr - 0x07000000;
} else if ((addr >= FCRAM_VADDR) && (addr < FCRAM_VADDR_END)) {
return addr - FCRAM_VADDR + FCRAM_PADDR;
}
LOG_ERROR(HW_Memory, "Unknown virtual address @ 0x%08x", addr);
return addr;
}
2013-09-19 04:52:51 +01:00
template <typename T>
inline void Read(T &var, const VAddr vaddr) {
// TODO: Figure out the fastest order of tests for both read and write (they are probably different).
// TODO: Make sure this represents the mirrors in a correct way.
// Could just do a base-relative read, too.... TODO
2013-09-19 04:52:51 +01:00
// Kernel memory command buffer
if (vaddr >= KERNEL_MEMORY_VADDR && vaddr < KERNEL_MEMORY_VADDR_END) {
var = *((const T*)&g_kernel_mem[vaddr - KERNEL_MEMORY_VADDR]);
// ExeFS:/.code is loaded here
} else if ((vaddr >= EXEFS_CODE_VADDR) && (vaddr < EXEFS_CODE_VADDR_END)) {
var = *((const T*)&g_exefs_code[vaddr - EXEFS_CODE_VADDR]);
// FCRAM - linear heap
} else if ((vaddr >= HEAP_LINEAR_VADDR) && (vaddr < HEAP_LINEAR_VADDR_END)) {
var = *((const T*)&g_heap_linear[vaddr - HEAP_LINEAR_VADDR]);
2014-04-18 02:15:40 +01:00
// FCRAM - application heap
} else if ((vaddr >= HEAP_VADDR) && (vaddr < HEAP_VADDR_END)) {
var = *((const T*)&g_heap[vaddr - HEAP_VADDR]);
// Shared memory
} else if ((vaddr >= SHARED_MEMORY_VADDR) && (vaddr < SHARED_MEMORY_VADDR_END)) {
var = *((const T*)&g_shared_mem[vaddr - SHARED_MEMORY_VADDR]);
// System memory
} else if ((vaddr >= SYSTEM_MEMORY_VADDR) && (vaddr < SYSTEM_MEMORY_VADDR_END)) {
var = *((const T*)&g_system_mem[vaddr - SYSTEM_MEMORY_VADDR]);
2014-05-07 04:32:04 +01:00
// Config memory
} else if ((vaddr >= CONFIG_MEMORY_VADDR) && (vaddr < CONFIG_MEMORY_VADDR_END)) {
ConfigMem::Read<T>(var, vaddr);
// DSP memory
} else if ((vaddr >= DSP_MEMORY_VADDR) && (vaddr < DSP_MEMORY_VADDR_END)) {
var = *((const T*)&g_dsp_mem[vaddr - DSP_MEMORY_VADDR]);
2014-04-26 06:27:25 +01:00
// VRAM
} else if ((vaddr >= VRAM_VADDR) && (vaddr < VRAM_VADDR_END)) {
var = *((const T*)&g_vram[vaddr - VRAM_VADDR]);
2014-04-26 06:27:25 +01:00
} else {
LOG_ERROR(HW_Memory, "unknown Read%lu @ 0x%08X", sizeof(var) * 8, vaddr);
}
2013-09-19 04:52:51 +01:00
}
template <typename T>
inline void Write(const VAddr vaddr, const T data) {
// Kernel memory command buffer
if (vaddr >= KERNEL_MEMORY_VADDR && vaddr < KERNEL_MEMORY_VADDR_END) {
*(T*)&g_kernel_mem[vaddr - KERNEL_MEMORY_VADDR] = data;
// ExeFS:/.code is loaded here
} else if ((vaddr >= EXEFS_CODE_VADDR) && (vaddr < EXEFS_CODE_VADDR_END)) {
*(T*)&g_exefs_code[vaddr - EXEFS_CODE_VADDR] = data;
// FCRAM - linear heap
} else if ((vaddr >= HEAP_LINEAR_VADDR) && (vaddr < HEAP_LINEAR_VADDR_END)) {
*(T*)&g_heap_linear[vaddr - HEAP_LINEAR_VADDR] = data;
// FCRAM - application heap
} else if ((vaddr >= HEAP_VADDR) && (vaddr < HEAP_VADDR_END)) {
*(T*)&g_heap[vaddr - HEAP_VADDR] = data;
// Shared memory
} else if ((vaddr >= SHARED_MEMORY_VADDR) && (vaddr < SHARED_MEMORY_VADDR_END)) {
*(T*)&g_shared_mem[vaddr - SHARED_MEMORY_VADDR] = data;
// System memory
} else if ((vaddr >= SYSTEM_MEMORY_VADDR) && (vaddr < SYSTEM_MEMORY_VADDR_END)) {
*(T*)&g_system_mem[vaddr - SYSTEM_MEMORY_VADDR] = data;
2014-04-26 06:27:25 +01:00
// VRAM
} else if ((vaddr >= VRAM_VADDR) && (vaddr < VRAM_VADDR_END)) {
*(T*)&g_vram[vaddr - VRAM_VADDR] = data;
2014-04-26 06:27:25 +01:00
// DSP memory
} else if ((vaddr >= DSP_MEMORY_VADDR) && (vaddr < DSP_MEMORY_VADDR_END)) {
*(T*)&g_dsp_mem[vaddr - DSP_MEMORY_VADDR] = data;
2014-05-07 04:32:04 +01:00
//} else if ((vaddr & 0xFFFF0000) == 0x1FF80000) {
// _assert_msg_(MEMMAP, false, "umimplemented write to Configuration Memory");
//} else if ((vaddr & 0xFFFFF000) == 0x1FF81000) {
// _assert_msg_(MEMMAP, false, "umimplemented write to shared page");
// Error out...
} else {
LOG_ERROR(HW_Memory, "unknown Write%lu 0x%08X @ 0x%08X", sizeof(data) * 8, (u32)data, vaddr);
}
2013-09-19 04:52:51 +01:00
}
u8 *GetPointer(const VAddr vaddr) {
// Kernel memory command buffer
if (vaddr >= KERNEL_MEMORY_VADDR && vaddr < KERNEL_MEMORY_VADDR_END) {
return g_kernel_mem + (vaddr - KERNEL_MEMORY_VADDR);
// ExeFS:/.code is loaded here
} else if ((vaddr >= EXEFS_CODE_VADDR) && (vaddr < EXEFS_CODE_VADDR_END)) {
return g_exefs_code + (vaddr - EXEFS_CODE_VADDR);
// FCRAM - linear heap
} else if ((vaddr >= HEAP_LINEAR_VADDR) && (vaddr < HEAP_LINEAR_VADDR_END)) {
return g_heap_linear + (vaddr - HEAP_LINEAR_VADDR);
2014-04-18 02:15:40 +01:00
// FCRAM - application heap
2014-04-18 02:40:42 +01:00
} else if ((vaddr >= HEAP_VADDR) && (vaddr < HEAP_VADDR_END)) {
return g_heap + (vaddr - HEAP_VADDR);
// Shared memory
} else if ((vaddr >= SHARED_MEMORY_VADDR) && (vaddr < SHARED_MEMORY_VADDR_END)) {
return g_shared_mem + (vaddr - SHARED_MEMORY_VADDR);
// System memory
} else if ((vaddr >= SYSTEM_MEMORY_VADDR) && (vaddr < SYSTEM_MEMORY_VADDR_END)) {
return g_system_mem + (vaddr - SYSTEM_MEMORY_VADDR);
2014-04-26 06:27:25 +01:00
// VRAM
} else if ((vaddr >= VRAM_VADDR) && (vaddr < VRAM_VADDR_END)) {
return g_vram + (vaddr - VRAM_VADDR);
2014-04-26 06:27:25 +01:00
} else {
LOG_ERROR(HW_Memory, "unknown GetPointer @ 0x%08x", vaddr);
return 0;
}
}
/**
* Maps a block of memory on the heap
* @param size Size of block in bytes
* @param operation Memory map operation type
* @param flags Memory allocation flags
*/
u32 MapBlock_Heap(u32 size, u32 operation, u32 permissions) {
MemoryBlock block;
block.base_address = HEAP_VADDR;
block.size = size;
block.operation = operation;
block.permissions = permissions;
2014-11-18 13:48:11 +00:00
if (heap_map.size() > 0) {
const MemoryBlock last_block = heap_map.rbegin()->second;
block.address = last_block.address + last_block.size;
}
2014-11-18 13:48:11 +00:00
heap_map[block.GetVirtualAddress()] = block;
return block.GetVirtualAddress();
}
2014-04-18 04:05:31 +01:00
/**
* Maps a block of memory on the linear heap
2014-04-18 04:05:31 +01:00
* @param size Size of block in bytes
* @param operation Memory map operation type
2014-04-18 04:05:31 +01:00
* @param flags Memory allocation flags
*/
u32 MapBlock_HeapLinear(u32 size, u32 operation, u32 permissions) {
MemoryBlock block;
block.base_address = HEAP_LINEAR_VADDR;
2014-04-18 04:05:31 +01:00
block.size = size;
block.operation = operation;
block.permissions = permissions;
if (heap_linear_map.size() > 0) {
const MemoryBlock last_block = heap_linear_map.rbegin()->second;
2014-04-18 04:05:31 +01:00
block.address = last_block.address + last_block.size;
}
heap_linear_map[block.GetVirtualAddress()] = block;
2014-04-18 04:05:31 +01:00
return block.GetVirtualAddress();
}
u8 Read8(const VAddr addr) {
u8 data = 0;
Read<u8>(data, addr);
return data;
2013-09-19 04:52:51 +01:00
}
u16 Read16(const VAddr addr) {
u16_le data = 0;
Read<u16_le>(data, addr);
// Check for 16-bit unaligned memory reads...
if (addr & 1) {
// TODO(bunnei): Implement 16-bit unaligned memory reads
LOG_ERROR(HW_Memory, "16-bit unaligned memory reads are not implemented!");
}
return (u16)data;
2013-09-19 04:52:51 +01:00
}
u32 Read32(const VAddr addr) {
u32_le data = 0;
Read<u32_le>(data, addr);
// Check for 32-bit unaligned memory reads...
if (addr & 3) {
// ARM allows for unaligned memory reads, however older ARM architectures read out memory
// from unaligned addresses in a shifted way. Our ARM CPU core (SkyEye) corrects for this,
// so therefore expects the memory to be read out in this manner.
// TODO(bunnei): Determine if this is necessary - perhaps it is OK to remove this from both
// SkyEye and here?
int shift = (addr & 3) * 8;
data = (data << shift) | (data >> (32 - shift));
}
return (u32)data;
2013-09-19 04:52:51 +01:00
}
u32 Read8_ZX(const VAddr addr) {
return (u32)Read8(addr);
2013-09-19 04:52:51 +01:00
}
u32 Read16_ZX(const VAddr addr) {
return (u32)Read16(addr);
2013-09-19 04:52:51 +01:00
}
void Write8(const VAddr addr, const u8 data) {
Write<u8>(addr, data);
2013-09-19 04:52:51 +01:00
}
void Write16(const VAddr addr, const u16 data) {
Write<u16_le>(addr, data);
2013-09-19 04:52:51 +01:00
}
void Write32(const VAddr addr, const u32 data) {
Write<u32_le>(addr, data);
2013-09-19 04:52:51 +01:00
}
void Write64(const VAddr addr, const u64 data) {
Write<u64_le>(addr, data);
2013-09-19 04:52:51 +01:00
}
void WriteBlock(const VAddr addr, const u8* data, const size_t size) {
2014-09-28 16:30:29 +01:00
u32 offset = 0;
while (offset < (size & ~3)) {
Write32(addr + offset, *(u32*)&data[offset]);
offset += 4;
}
if (size & 2) {
Write16(addr + offset, *(u16*)&data[offset]);
offset += 2;
}
if (size & 1)
Write8(addr + offset, data[offset]);
}
2013-09-19 04:52:51 +01:00
} // namespace