dynarmic/src/backend_x64/block_of_code.cpp

292 lines
9.1 KiB
C++
Raw Normal View History

2016-07-01 14:01:06 +01:00
/* This file is part of the dynarmic project.
* Copyright (c) 2016 MerryMage
* This software may be used and distributed according to the terms of the GNU
* General Public License version 2 or any later version.
*/
#include <cstring>
2016-07-01 14:01:06 +01:00
#include <limits>
2016-08-24 20:07:08 +01:00
#include <xbyak.h>
2018-01-01 22:49:17 +00:00
#include "backend_x64/a32_jitstate.h"
2016-08-24 20:07:08 +01:00
#include "backend_x64/abi.h"
#include "backend_x64/block_of_code.h"
2016-08-24 20:07:08 +01:00
#include "common/assert.h"
#include "dynarmic/callbacks.h"
2016-07-01 14:01:06 +01:00
namespace Dynarmic {
namespace BackendX64 {
#ifdef _WIN32
const Xbyak::Reg64 BlockOfCode::ABI_RETURN = Xbyak::util::rax;
const Xbyak::Reg64 BlockOfCode::ABI_PARAM1 = Xbyak::util::rcx;
const Xbyak::Reg64 BlockOfCode::ABI_PARAM2 = Xbyak::util::rdx;
const Xbyak::Reg64 BlockOfCode::ABI_PARAM3 = Xbyak::util::r8;
const Xbyak::Reg64 BlockOfCode::ABI_PARAM4 = Xbyak::util::r9;
#else
const Xbyak::Reg64 BlockOfCode::ABI_RETURN = Xbyak::util::rax;
const Xbyak::Reg64 BlockOfCode::ABI_PARAM1 = Xbyak::util::rdi;
const Xbyak::Reg64 BlockOfCode::ABI_PARAM2 = Xbyak::util::rsi;
const Xbyak::Reg64 BlockOfCode::ABI_PARAM3 = Xbyak::util::rdx;
const Xbyak::Reg64 BlockOfCode::ABI_PARAM4 = Xbyak::util::rcx;
#endif
2017-04-19 18:58:36 +01:00
constexpr size_t TOTAL_CODE_SIZE = 128 * 1024 * 1024;
constexpr size_t FAR_CODE_OFFSET = 100 * 1024 * 1024;
2017-04-07 10:52:44 +01:00
BlockOfCode::BlockOfCode(UserCallbacks cb, LookupBlockCallback lookup_block, void* lookup_block_arg)
2017-04-19 18:58:36 +01:00
: Xbyak::CodeGenerator(TOTAL_CODE_SIZE)
2017-04-07 10:52:44 +01:00
, cb(cb)
, lookup_block(lookup_block)
, lookup_block_arg(lookup_block_arg)
, constant_pool(this, 256)
{
2016-07-01 14:01:06 +01:00
GenRunCode();
GenMemoryAccessors();
exception_handler.Register(this);
2017-04-19 18:58:36 +01:00
near_code_begin = getCurr();
far_code_begin = getCurr() + FAR_CODE_OFFSET;
ClearCache();
}
void BlockOfCode::ClearCache() {
2017-04-19 18:58:36 +01:00
in_far_code = false;
near_code_ptr = near_code_begin;
far_code_ptr = far_code_begin;
SetCodePtr(near_code_begin);
2016-07-01 14:01:06 +01:00
}
size_t BlockOfCode::SpaceRemaining() const {
// This function provides an underestimate of near-code-size but that's okay.
// (Why? The maximum size of near code should be measured from near_code_begin, not top_.)
// These are offsets from Xbyak::CodeArray::top_.
std::size_t far_code_offset, near_code_offset;
if (in_far_code) {
near_code_offset = static_cast<const u8*>(near_code_ptr) - getCode();
far_code_offset = getCurr() - getCode();
} else {
near_code_offset = getCurr() - getCode();
far_code_offset = static_cast<const u8*>(far_code_ptr) - getCode();
}
if (far_code_offset > TOTAL_CODE_SIZE)
return 0;
if (near_code_offset > FAR_CODE_OFFSET)
return 0;
return std::min(TOTAL_CODE_SIZE - far_code_offset, FAR_CODE_OFFSET - near_code_offset);
}
2018-01-01 22:49:17 +00:00
void BlockOfCode::RunCode(A32JitState* jit_state, size_t cycles_to_run) const {
constexpr size_t max_cycles_to_run = static_cast<size_t>(std::numeric_limits<decltype(jit_state->cycles_remaining)>::max());
ASSERT(cycles_to_run <= max_cycles_to_run);
2016-07-01 14:01:06 +01:00
jit_state->cycles_to_run = cycles_to_run;
2016-07-01 14:01:06 +01:00
jit_state->cycles_remaining = cycles_to_run;
2018-01-01 22:49:17 +00:00
u32 new_rsb_ptr = (jit_state->rsb_ptr - 1) & A32JitState::RSBPtrMask;
if (jit_state->GetUniqueHash() == jit_state->rsb_location_descriptors[new_rsb_ptr]) {
jit_state->rsb_ptr = new_rsb_ptr;
run_code_from(jit_state, jit_state->rsb_codeptrs[new_rsb_ptr]);
} else {
run_code(jit_state);
}
2016-07-01 14:01:06 +01:00
}
void BlockOfCode::ReturnFromRunCode(bool mxcsr_already_exited) {
2017-04-07 10:52:44 +01:00
size_t index = 0;
if (mxcsr_already_exited)
index |= MXCSR_ALREADY_EXITED;
2017-04-07 10:52:44 +01:00
jmp(return_from_run_code[index]);
}
void BlockOfCode::ForceReturnFromRunCode(bool mxcsr_already_exited) {
2017-04-07 10:52:44 +01:00
size_t index = FORCE_RETURN;
if (mxcsr_already_exited)
index |= MXCSR_ALREADY_EXITED;
2017-04-07 10:52:44 +01:00
jmp(return_from_run_code[index]);
}
void BlockOfCode::GenRunCode() {
Xbyak::Label loop, enter_mxcsr_then_loop;
2017-04-07 10:52:44 +01:00
align();
run_code_from = getCurr<RunCodeFromFuncType>();
ABI_PushCalleeSaveRegistersAndAdjustStack(this);
mov(r15, ABI_PARAM1);
SwitchMxcsrOnEntry();
jmp(ABI_PARAM2);
2016-08-24 20:07:08 +01:00
align();
run_code = getCurr<RunCodeFuncType>();
2016-07-01 14:01:06 +01:00
// This serves two purposes:
// 1. It saves all the registers we as a callee need to save.
// 2. It aligns the stack so that the code the JIT emits can assume
// that the stack is appropriately aligned for CALLs.
2016-08-24 20:07:08 +01:00
ABI_PushCalleeSaveRegistersAndAdjustStack(this);
2016-07-01 14:01:06 +01:00
2016-08-24 20:07:08 +01:00
mov(r15, ABI_PARAM1);
2017-04-07 10:52:44 +01:00
L(enter_mxcsr_then_loop);
SwitchMxcsrOnEntry();
2017-04-07 10:52:44 +01:00
L(loop);
mov(ABI_PARAM1, u64(lookup_block_arg));
CallFunction(lookup_block);
jmp(ABI_RETURN);
2017-04-07 10:52:44 +01:00
// Return from run code variants
const auto emit_return_from_run_code = [this, &loop, &enter_mxcsr_then_loop](bool mxcsr_already_exited, bool force_return){
2017-04-07 10:52:44 +01:00
if (!force_return) {
2018-01-01 22:49:17 +00:00
cmp(qword[r15 + offsetof(A32JitState, cycles_remaining)], 0);
jg(mxcsr_already_exited ? enter_mxcsr_then_loop : loop);
}
if (!mxcsr_already_exited) {
SwitchMxcsrOnExit();
2017-04-07 10:52:44 +01:00
}
2018-01-01 22:49:17 +00:00
mov(ABI_PARAM1, qword[r15 + offsetof(A32JitState, cycles_to_run)]);
sub(ABI_PARAM1, qword[r15 + offsetof(A32JitState, cycles_remaining)]);
CallFunction(cb.AddTicks);
2017-04-07 10:52:44 +01:00
ABI_PopCalleeSaveRegistersAndAdjustStack(this);
ret();
};
2017-04-07 10:52:44 +01:00
align();
return_from_run_code[0] = getCurr<const void*>();
emit_return_from_run_code(false, false);
align();
return_from_run_code[MXCSR_ALREADY_EXITED] = getCurr<const void*>();
2017-04-07 10:52:44 +01:00
emit_return_from_run_code(true, false);
align();
return_from_run_code[FORCE_RETURN] = getCurr<const void*>();
emit_return_from_run_code(false, true);
align();
return_from_run_code[MXCSR_ALREADY_EXITED | FORCE_RETURN] = getCurr<const void*>();
2017-04-07 10:52:44 +01:00
emit_return_from_run_code(true, true);
}
void BlockOfCode::GenMemoryAccessors() {
align();
read_memory_8 = getCurr<const void*>();
ABI_PushCallerSaveRegistersAndAdjustStack(this);
CallFunction(cb.memory.Read8);
ABI_PopCallerSaveRegistersAndAdjustStack(this);
ret();
align();
read_memory_16 = getCurr<const void*>();
ABI_PushCallerSaveRegistersAndAdjustStack(this);
CallFunction(cb.memory.Read16);
ABI_PopCallerSaveRegistersAndAdjustStack(this);
ret();
align();
read_memory_32 = getCurr<const void*>();
ABI_PushCallerSaveRegistersAndAdjustStack(this);
CallFunction(cb.memory.Read32);
ABI_PopCallerSaveRegistersAndAdjustStack(this);
ret();
align();
read_memory_64 = getCurr<const void*>();
ABI_PushCallerSaveRegistersAndAdjustStack(this);
CallFunction(cb.memory.Read64);
ABI_PopCallerSaveRegistersAndAdjustStack(this);
ret();
align();
write_memory_8 = getCurr<const void*>();
ABI_PushCallerSaveRegistersAndAdjustStack(this);
CallFunction(cb.memory.Write8);
ABI_PopCallerSaveRegistersAndAdjustStack(this);
ret();
align();
write_memory_16 = getCurr<const void*>();
ABI_PushCallerSaveRegistersAndAdjustStack(this);
CallFunction(cb.memory.Write16);
ABI_PopCallerSaveRegistersAndAdjustStack(this);
ret();
align();
write_memory_32 = getCurr<const void*>();
ABI_PushCallerSaveRegistersAndAdjustStack(this);
CallFunction(cb.memory.Write32);
ABI_PopCallerSaveRegistersAndAdjustStack(this);
ret();
align();
write_memory_64 = getCurr<const void*>();
ABI_PushCallerSaveRegistersAndAdjustStack(this);
CallFunction(cb.memory.Write64);
ABI_PopCallerSaveRegistersAndAdjustStack(this);
ret();
}
void BlockOfCode::SwitchMxcsrOnEntry() {
2018-01-01 22:49:17 +00:00
stmxcsr(dword[r15 + offsetof(A32JitState, save_host_MXCSR)]);
ldmxcsr(dword[r15 + offsetof(A32JitState, guest_MXCSR)]);
}
2016-07-01 14:01:06 +01:00
void BlockOfCode::SwitchMxcsrOnExit() {
2018-01-01 22:49:17 +00:00
stmxcsr(dword[r15 + offsetof(A32JitState, guest_MXCSR)]);
ldmxcsr(dword[r15 + offsetof(A32JitState, save_host_MXCSR)]);
2016-08-24 20:07:08 +01:00
}
Xbyak::Address BlockOfCode::MConst(u64 constant) {
return constant_pool.GetConstant(constant);
}
2017-04-19 18:58:36 +01:00
void BlockOfCode::SwitchToFarCode() {
ASSERT(!in_far_code);
in_far_code = true;
near_code_ptr = getCurr();
SetCodePtr(far_code_ptr);
ASSERT_MSG(near_code_ptr < far_code_begin, "Near code has overwritten far code!");
}
void BlockOfCode::SwitchToNearCode() {
ASSERT(in_far_code);
in_far_code = false;
far_code_ptr = getCurr();
SetCodePtr(near_code_ptr);
}
void* BlockOfCode::AllocateFromCodeSpace(size_t alloc_size) {
if (size_ + alloc_size >= maxSize_) {
throw Xbyak::Error(Xbyak::ERR_CODE_IS_TOO_BIG);
}
void* ret = getCurr<void*>();
size_ += alloc_size;
memset(ret, 0, alloc_size);
return ret;
}
void BlockOfCode::SetCodePtr(CodePtr code_ptr) {
2016-08-24 20:07:08 +01:00
// The "size" defines where top_, the insertion point, is.
size_t required_size = reinterpret_cast<const u8*>(code_ptr) - getCode();
2016-08-24 20:07:08 +01:00
setSize(required_size);
}
void BlockOfCode::EnsurePatchLocationSize(CodePtr begin, size_t size) {
size_t current_size = getCurr<const u8*>() - reinterpret_cast<const u8*>(begin);
ASSERT(current_size <= size);
nop(size - current_size);
2016-07-01 14:01:06 +01:00
}
bool BlockOfCode::DoesCpuSupport(Xbyak::util::Cpu::Type type) const {
return cpu_info.has(type);
}
2016-07-01 14:01:06 +01:00
} // namespace BackendX64
} // namespace Dynarmic