/* This file is part of the dynarmic project. * Copyright (c) 2016 MerryMage * This software may be used and distributed according to the terms of the GNU * General Public License version 2 or any later version. */ #include #include #include #include "backend_x64/emit_x64.h" #include "backend_x64/jitstate.h" #include "frontend/arm_types.h" // TODO: Have ARM flags in host flags and not have them use up GPR registers unless necessary. // TODO: Actually implement that proper instruction selector you've always wanted to sweetheart. namespace Dynarmic { namespace BackendX64 { static Xbyak::Address MJitStateReg(Arm::Reg reg) { using namespace Xbyak::util; return dword[r15 + offsetof(JitState, Reg) + sizeof(u32) * static_cast(reg)]; } static Xbyak::Address MJitStateExtReg(Arm::ExtReg reg) { using namespace Xbyak::util; if (reg >= Arm::ExtReg::S0 && reg <= Arm::ExtReg::S31) { size_t index = static_cast(reg) - static_cast(Arm::ExtReg::S0); return dword[r15 + offsetof(JitState, ExtReg) + sizeof(u32) * index]; } if (reg >= Arm::ExtReg::D0 && reg <= Arm::ExtReg::D31) { size_t index = static_cast(reg) - static_cast(Arm::ExtReg::D0); return qword[r15 + offsetof(JitState, ExtReg) + sizeof(u64) * index]; } ASSERT_MSG(false, "Should never happen."); } static Xbyak::Address MJitStateCpsr() { using namespace Xbyak::util; return dword[r15 + offsetof(JitState, Cpsr)]; } static void EraseInstruction(IR::Block& block, IR::Inst* inst) { block.Instructions().erase(inst); } EmitX64::BlockDescriptor EmitX64::Emit(IR::Block& block) { const Arm::LocationDescriptor descriptor = block.Location(); reg_alloc.Reset(); code->align(); const CodePtr code_ptr = code->getCurr(); basic_blocks[descriptor].code_ptr = code_ptr; unique_hash_to_code_ptr[descriptor.UniqueHash()] = code_ptr; EmitCondPrelude(block); for (auto iter = block.begin(); iter != block.end(); ++iter) { IR::Inst* inst = &*iter; // Call the relevant Emit* member function. switch (inst->GetOpcode()) { #define OPCODE(name, type, ...) \ case IR::Opcode::name: \ EmitX64::Emit##name(block, inst); \ break; #include "frontend/ir/opcodes.inc" #undef OPCODE default: ASSERT_MSG(false, "Invalid opcode %zu", static_cast(inst->GetOpcode())); break; } reg_alloc.EndOfAllocScope(); } EmitAddCycles(block.CycleCount()); EmitTerminal(block.GetTerminal(), block.Location()); code->int3(); reg_alloc.AssertNoMoreUses(); Patch(descriptor, code_ptr); basic_blocks[descriptor].size = std::intptr_t(code->getCurr()) - std::intptr_t(code_ptr); return basic_blocks[descriptor]; } void EmitX64::EmitBreakpoint(IR::Block&, IR::Inst*) { code->int3(); } void EmitX64::EmitIdentity(IR::Block& block, IR::Inst* inst) { if (!inst->GetArg(0).IsImmediate()) { reg_alloc.RegisterAddDef(inst, inst->GetArg(0)); } } void EmitX64::EmitGetRegister(IR::Block&, IR::Inst* inst) { Arm::Reg reg = inst->GetArg(0).GetRegRef(); Xbyak::Reg32 result = reg_alloc.DefGpr(inst).cvt32(); code->mov(result, MJitStateReg(reg)); } void EmitX64::EmitGetExtendedRegister32(IR::Block& block, IR::Inst* inst) { Arm::ExtReg reg = inst->GetArg(0).GetExtRegRef(); ASSERT(reg >= Arm::ExtReg::S0 && reg <= Arm::ExtReg::S31); Xbyak::Xmm result = reg_alloc.DefXmm(inst); code->movss(result, MJitStateExtReg(reg)); } void EmitX64::EmitGetExtendedRegister64(IR::Block&, IR::Inst* inst) { Arm::ExtReg reg = inst->GetArg(0).GetExtRegRef(); ASSERT(reg >= Arm::ExtReg::D0 && reg <= Arm::ExtReg::D31); Xbyak::Xmm result = reg_alloc.DefXmm(inst); code->movsd(result, MJitStateExtReg(reg)); } void EmitX64::EmitSetRegister(IR::Block&, IR::Inst* inst) { Arm::Reg reg = inst->GetArg(0).GetRegRef(); IR::Value arg = inst->GetArg(1); if (arg.IsImmediate()) { code->mov(MJitStateReg(reg), arg.GetU32()); } else { Xbyak::Reg32 to_store = reg_alloc.UseGpr(arg).cvt32(); code->mov(MJitStateReg(reg), to_store); } } void EmitX64::EmitSetExtendedRegister32(IR::Block&, IR::Inst* inst) { Arm::ExtReg reg = inst->GetArg(0).GetExtRegRef(); ASSERT(reg >= Arm::ExtReg::S0 && reg <= Arm::ExtReg::S31); Xbyak::Xmm source = reg_alloc.UseXmm(inst->GetArg(1)); code->movss(MJitStateExtReg(reg), source); } void EmitX64::EmitSetExtendedRegister64(IR::Block&, IR::Inst* inst) { Arm::ExtReg reg = inst->GetArg(0).GetExtRegRef(); ASSERT(reg >= Arm::ExtReg::D0 && reg <= Arm::ExtReg::D31); Xbyak::Xmm source = reg_alloc.UseXmm(inst->GetArg(1)); code->movsd(MJitStateExtReg(reg), source); } void EmitX64::EmitGetCpsr(IR::Block&, IR::Inst* inst) { Xbyak::Reg32 result = reg_alloc.DefGpr(inst).cvt32(); code->mov(result, MJitStateCpsr()); } void EmitX64::EmitSetCpsr(IR::Block&, IR::Inst* inst) { Xbyak::Reg32 arg = reg_alloc.UseGpr(inst->GetArg(0)).cvt32(); code->mov(MJitStateCpsr(), arg); } void EmitX64::EmitGetNFlag(IR::Block&, IR::Inst* inst) { Xbyak::Reg32 result = reg_alloc.DefGpr(inst).cvt32(); code->mov(result, MJitStateCpsr()); code->shr(result, 31); } void EmitX64::EmitSetNFlag(IR::Block&, IR::Inst* inst) { constexpr size_t flag_bit = 31; constexpr u32 flag_mask = 1u << flag_bit; IR::Value arg = inst->GetArg(0); if (arg.IsImmediate()) { if (arg.GetU1()) { code->or_(MJitStateCpsr(), flag_mask); } else { code->and_(MJitStateCpsr(), ~flag_mask); } } else { Xbyak::Reg32 to_store = reg_alloc.UseScratchGpr(arg).cvt32(); code->shl(to_store, flag_bit); code->and_(MJitStateCpsr(), ~flag_mask); code->or_(MJitStateCpsr(), to_store); } } void EmitX64::EmitGetZFlag(IR::Block&, IR::Inst* inst) { Xbyak::Reg32 result = reg_alloc.DefGpr(inst).cvt32(); code->mov(result, MJitStateCpsr()); code->shr(result, 30); code->and_(result, 1); } void EmitX64::EmitSetZFlag(IR::Block&, IR::Inst* inst) { constexpr size_t flag_bit = 30; constexpr u32 flag_mask = 1u << flag_bit; IR::Value arg = inst->GetArg(0); if (arg.IsImmediate()) { if (arg.GetU1()) { code->or_(MJitStateCpsr(), flag_mask); } else { code->and_(MJitStateCpsr(), ~flag_mask); } } else { Xbyak::Reg32 to_store = reg_alloc.UseScratchGpr(arg).cvt32(); code->shl(to_store, flag_bit); code->and_(MJitStateCpsr(), ~flag_mask); code->or_(MJitStateCpsr(), to_store); } } void EmitX64::EmitGetCFlag(IR::Block&, IR::Inst* inst) { Xbyak::Reg32 result = reg_alloc.DefGpr(inst).cvt32(); code->mov(result, MJitStateCpsr()); code->shr(result, 29); code->and_(result, 1); } void EmitX64::EmitSetCFlag(IR::Block&, IR::Inst* inst) { constexpr size_t flag_bit = 29; constexpr u32 flag_mask = 1u << flag_bit; IR::Value arg = inst->GetArg(0); if (arg.IsImmediate()) { if (arg.GetU1()) { code->or_(MJitStateCpsr(), flag_mask); } else { code->and_(MJitStateCpsr(), ~flag_mask); } } else { Xbyak::Reg32 to_store = reg_alloc.UseScratchGpr(arg).cvt32(); code->shl(to_store, flag_bit); code->and_(MJitStateCpsr(), ~flag_mask); code->or_(MJitStateCpsr(), to_store); } } void EmitX64::EmitGetVFlag(IR::Block&, IR::Inst* inst) { Xbyak::Reg32 result = reg_alloc.DefGpr(inst).cvt32(); code->mov(result, MJitStateCpsr()); code->shr(result, 28); code->and_(result, 1); } void EmitX64::EmitSetVFlag(IR::Block&, IR::Inst* inst) { constexpr size_t flag_bit = 28; constexpr u32 flag_mask = 1u << flag_bit; IR::Value arg = inst->GetArg(0); if (arg.IsImmediate()) { if (arg.GetU1()) { code->or_(MJitStateCpsr(), flag_mask); } else { code->and_(MJitStateCpsr(), ~flag_mask); } } else { Xbyak::Reg32 to_store = reg_alloc.UseScratchGpr(arg).cvt32(); code->shl(to_store, flag_bit); code->and_(MJitStateCpsr(), ~flag_mask); code->or_(MJitStateCpsr(), to_store); } } void EmitX64::EmitOrQFlag(IR::Block&, IR::Inst* inst) { constexpr size_t flag_bit = 27; constexpr u32 flag_mask = 1u << flag_bit; IR::Value arg = inst->GetArg(0); if (arg.IsImmediate()) { if (arg.GetU1()) code->or_(MJitStateCpsr(), flag_mask); } else { Xbyak::Reg32 to_store = reg_alloc.UseScratchGpr(arg).cvt32(); code->shl(to_store, flag_bit); code->or_(MJitStateCpsr(), to_store); } } void EmitX64::EmitBXWritePC(IR::Block&, IR::Inst* inst) { const u32 T_bit = 1 << 5; auto arg = inst->GetArg(0); // Pseudocode: // if (new_pc & 1) { // new_pc &= 0xFFFFFFFE; // cpsr.T = true; // } else { // new_pc &= 0xFFFFFFFC; // cpsr.T = false; // } if (arg.IsImmediate()) { u32 new_pc = arg.GetU32(); if (Common::Bit<0>(new_pc)) { new_pc &= 0xFFFFFFFE; code->mov(MJitStateReg(Arm::Reg::PC), new_pc); code->or_(MJitStateCpsr(), T_bit); } else { new_pc &= 0xFFFFFFFC; code->mov(MJitStateReg(Arm::Reg::PC), new_pc); code->and_(MJitStateCpsr(), ~T_bit); } } else { using Xbyak::util::ptr; Xbyak::Reg64 new_pc = reg_alloc.UseScratchGpr(arg); Xbyak::Reg64 tmp1 = reg_alloc.ScratchGpr(); Xbyak::Reg64 tmp2 = reg_alloc.ScratchGpr(); code->mov(tmp1, MJitStateCpsr()); code->mov(tmp2, tmp1); code->and_(tmp2, u32(~T_bit)); // CPSR.T = 0 code->or_(tmp1, u32(T_bit)); // CPSR.T = 1 code->test(new_pc, u32(1)); code->cmove(tmp1, tmp2); // CPSR.T = pc & 1 code->mov(MJitStateCpsr(), tmp1); code->lea(tmp2, ptr[new_pc + new_pc * 1]); code->or_(tmp2, u32(0xFFFFFFFC)); // tmp2 = pc & 1 ? 0xFFFFFFFE : 0xFFFFFFFC code->and_(new_pc, tmp2); code->mov(MJitStateReg(Arm::Reg::PC), new_pc); } } void EmitX64::EmitCallSupervisor(IR::Block&, IR::Inst* inst) { auto imm32 = inst->GetArg(0); reg_alloc.HostCall(nullptr, imm32); code->SwitchMxcsrOnExit(); code->CallFunction(reinterpret_cast(cb.CallSVC)); code->SwitchMxcsrOnEntry(); } static u32 GetFpscrImpl(JitState* jit_state) { return jit_state->Fpscr(); } void EmitX64::EmitGetFpscr(IR::Block&, IR::Inst* inst) { reg_alloc.HostCall(inst); code->mov(code->ABI_PARAM1, code->r15); code->SwitchMxcsrOnExit(); code->CallFunction(reinterpret_cast(&GetFpscrImpl)); code->SwitchMxcsrOnEntry(); } static void SetFpscrImpl(u32 value, JitState* jit_state) { jit_state->SetFpscr(value); } void EmitX64::EmitSetFpscr(IR::Block&, IR::Inst* inst) { auto a = inst->GetArg(0); reg_alloc.HostCall(nullptr, a); code->mov(code->ABI_PARAM2, code->r15); code->SwitchMxcsrOnExit(); code->CallFunction(reinterpret_cast(&SetFpscrImpl)); code->SwitchMxcsrOnEntry(); } void EmitX64::EmitGetFpscrNZCV(IR::Block&, IR::Inst* inst) { using namespace Xbyak::util; Xbyak::Reg32 result = reg_alloc.DefGpr(inst).cvt32(); code->mov(result, dword[r15 + offsetof(JitState, guest_FPSCR_nzcv)]); } void EmitX64::EmitSetFpscrNZCV(IR::Block&, IR::Inst* inst) { using namespace Xbyak::util; Xbyak::Reg32 value = reg_alloc.UseGpr(inst->GetArg(0)).cvt32(); code->mov(dword[r15 + offsetof(JitState, guest_FPSCR_nzcv)], value); } void EmitX64::EmitPushRSB(IR::Block&, IR::Inst* inst) { using namespace Xbyak::util; ASSERT(inst->GetArg(0).IsImmediate()); u64 imm64 = inst->GetArg(0).GetU64(); Xbyak::Reg64 code_ptr_reg = reg_alloc.ScratchGpr({HostLoc::RCX}); Xbyak::Reg64 loc_desc_reg = reg_alloc.ScratchGpr(); Xbyak::Reg32 index_reg = reg_alloc.ScratchGpr().cvt32(); u64 code_ptr = unique_hash_to_code_ptr.find(imm64) != unique_hash_to_code_ptr.end() ? u64(unique_hash_to_code_ptr[imm64]) : u64(code->GetReturnFromRunCodeAddress()); code->mov(index_reg, dword[r15 + offsetof(JitState, rsb_ptr)]); code->add(index_reg, 1); code->and_(index_reg, u32(JitState::RSBSize - 1)); code->mov(loc_desc_reg, u64(imm64)); CodePtr patch_location = code->getCurr(); patch_unique_hash_locations[imm64].emplace_back(patch_location); code->mov(code_ptr_reg, u64(code_ptr)); // This line has to match up with EmitX64::Patch. code->EnsurePatchLocationSize(patch_location, 10); Xbyak::Label label; for (size_t i = 0; i < JitState::RSBSize; ++i) { code->cmp(loc_desc_reg, qword[r15 + offsetof(JitState, rsb_location_descriptors) + i * sizeof(u64)]); code->je(label, code->T_SHORT); } code->mov(dword[r15 + offsetof(JitState, rsb_ptr)], index_reg); code->mov(qword[r15 + index_reg.cvt64() * 8 + offsetof(JitState, rsb_location_descriptors)], loc_desc_reg); code->mov(qword[r15 + index_reg.cvt64() * 8 + offsetof(JitState, rsb_codeptrs)], code_ptr_reg); code->L(label); } void EmitX64::EmitGetCarryFromOp(IR::Block&, IR::Inst*) { ASSERT_MSG(false, "should never happen"); } void EmitX64::EmitGetOverflowFromOp(IR::Block&, IR::Inst*) { ASSERT_MSG(false, "should never happen"); } void EmitX64::EmitPack2x32To1x64(IR::Block&, IR::Inst* inst) { OpArg lo; Xbyak::Reg64 result; if (inst->GetArg(0).IsImmediate()) { // TODO: Optimize result = reg_alloc.UseDefGpr(inst->GetArg(0), inst); lo = result.cvt32(); } else { std::tie(lo, result) = reg_alloc.UseDefOpArgGpr(inst->GetArg(0), inst); } lo.setBit(32); Xbyak::Reg64 hi = reg_alloc.UseScratchGpr(inst->GetArg(1)); code->shl(hi, 32); code->mov(result.cvt32(), *lo); // Zero extend to 64-bits code->or_(result, hi); } void EmitX64::EmitLeastSignificantWord(IR::Block&, IR::Inst* inst) { reg_alloc.RegisterAddDef(inst, inst->GetArg(0)); } void EmitX64::EmitMostSignificantWord(IR::Block& block, IR::Inst* inst) { auto carry_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetCarryFromOp); Xbyak::Reg64 result = reg_alloc.UseDefGpr(inst->GetArg(0), inst); code->shr(result, 32); if (carry_inst) { EraseInstruction(block, carry_inst); reg_alloc.DecrementRemainingUses(inst); Xbyak::Reg64 carry = reg_alloc.DefGpr(carry_inst); code->setc(carry.cvt8()); } } void EmitX64::EmitLeastSignificantHalf(IR::Block&, IR::Inst* inst) { reg_alloc.RegisterAddDef(inst, inst->GetArg(0)); } void EmitX64::EmitLeastSignificantByte(IR::Block&, IR::Inst* inst) { reg_alloc.RegisterAddDef(inst, inst->GetArg(0)); } void EmitX64::EmitMostSignificantBit(IR::Block&, IR::Inst* inst) { Xbyak::Reg32 result = reg_alloc.UseDefGpr(inst->GetArg(0), inst).cvt32(); // TODO: Flag optimization code->shr(result, 31); } void EmitX64::EmitIsZero(IR::Block&, IR::Inst* inst) { Xbyak::Reg32 result = reg_alloc.UseDefGpr(inst->GetArg(0), inst).cvt32(); // TODO: Flag optimization code->test(result, result); code->sete(result.cvt8()); code->movzx(result, result.cvt8()); } void EmitX64::EmitIsZero64(IR::Block&, IR::Inst* inst) { Xbyak::Reg64 result = reg_alloc.UseDefGpr(inst->GetArg(0), inst); // TODO: Flag optimization code->test(result, result); code->sete(result.cvt8()); code->movzx(result, result.cvt8()); } void EmitX64::EmitLogicalShiftLeft(IR::Block& block, IR::Inst* inst) { auto carry_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetCarryFromOp); // TODO: Consider using BMI2 instructions like SHLX when arm-in-host flags is implemented. if (!carry_inst) { if (!inst->GetArg(2).IsImmediate()) { // TODO: Remove redundant argument. reg_alloc.DecrementRemainingUses(inst->GetArg(2).GetInst()); } auto shift_arg = inst->GetArg(1); if (shift_arg.IsImmediate()) { Xbyak::Reg32 result = reg_alloc.UseDefGpr(inst->GetArg(0), inst).cvt32(); u8 shift = shift_arg.GetU8(); if (shift <= 31) { code->shl(result, shift); } else { code->xor_(result, result); } } else { Xbyak::Reg8 shift = reg_alloc.UseGpr(shift_arg, {HostLoc::RCX}).cvt8(); Xbyak::Reg32 result = reg_alloc.UseDefGpr(inst->GetArg(0), inst).cvt32(); Xbyak::Reg32 zero = reg_alloc.ScratchGpr().cvt32(); // The 32-bit x64 SHL instruction masks the shift count by 0x1F before performing the shift. // ARM differs from the behaviour: It does not mask the count, so shifts above 31 result in zeros. code->shl(result, shift); code->xor_(zero, zero); code->cmp(shift, 32); code->cmovnb(result, zero); } } else { EraseInstruction(block, carry_inst); reg_alloc.DecrementRemainingUses(inst); auto shift_arg = inst->GetArg(1); if (shift_arg.IsImmediate()) { u8 shift = shift_arg.GetU8(); Xbyak::Reg32 result = reg_alloc.UseDefGpr(inst->GetArg(0), inst).cvt32(); Xbyak::Reg32 carry = reg_alloc.UseDefGpr(inst->GetArg(2), carry_inst).cvt32(); if (shift == 0) { // There is nothing more to do. } else if (shift < 32) { code->bt(carry.cvt32(), 0); code->shl(result, shift); code->setc(carry.cvt8()); } else if (shift > 32) { code->xor_(result, result); code->xor_(carry, carry); } else { code->mov(carry, result); code->xor_(result, result); code->and_(carry, 1); } } else { Xbyak::Reg8 shift = reg_alloc.UseGpr(shift_arg, {HostLoc::RCX}).cvt8(); Xbyak::Reg32 result = reg_alloc.UseDefGpr(inst->GetArg(0), inst).cvt32(); Xbyak::Reg32 carry = reg_alloc.UseDefGpr(inst->GetArg(2), carry_inst).cvt32(); // TODO: Optimize this. code->inLocalLabel(); code->cmp(shift, 32); code->ja(".Rs_gt32"); code->je(".Rs_eq32"); // if (Rs & 0xFF < 32) { code->bt(carry.cvt32(), 0); // Set the carry flag for correct behaviour in the case when Rs & 0xFF == 0 code->shl(result, shift); code->setc(carry.cvt8()); code->jmp(".end"); // } else if (Rs & 0xFF > 32) { code->L(".Rs_gt32"); code->xor_(result, result); code->xor_(carry, carry); code->jmp(".end"); // } else if (Rs & 0xFF == 32) { code->L(".Rs_eq32"); code->mov(carry, result); code->and_(carry, 1); code->xor_(result, result); // } code->L(".end"); code->outLocalLabel(); } } } void EmitX64::EmitLogicalShiftRight(IR::Block& block, IR::Inst* inst) { auto carry_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetCarryFromOp); if (!carry_inst) { if (!inst->GetArg(2).IsImmediate()) { // TODO: Remove redundant argument. reg_alloc.DecrementRemainingUses(inst->GetArg(2).GetInst()); } auto shift_arg = inst->GetArg(1); if (shift_arg.IsImmediate()) { Xbyak::Reg32 result = reg_alloc.UseDefGpr(inst->GetArg(0), inst).cvt32(); u8 shift = shift_arg.GetU8(); if (shift <= 31) { code->shr(result, shift); } else { code->xor_(result, result); } } else { Xbyak::Reg8 shift = reg_alloc.UseGpr(shift_arg, {HostLoc::RCX}).cvt8(); Xbyak::Reg32 result = reg_alloc.UseDefGpr(inst->GetArg(0), inst).cvt32(); Xbyak::Reg32 zero = reg_alloc.ScratchGpr().cvt32(); // The 32-bit x64 SHR instruction masks the shift count by 0x1F before performing the shift. // ARM differs from the behaviour: It does not mask the count, so shifts above 31 result in zeros. code->shr(result, shift); code->xor_(zero, zero); code->cmp(shift, 32); code->cmovnb(result, zero); } } else { EraseInstruction(block, carry_inst); reg_alloc.DecrementRemainingUses(inst); auto shift_arg = inst->GetArg(1); if (shift_arg.IsImmediate()) { u8 shift = shift_arg.GetU8(); Xbyak::Reg32 result = reg_alloc.UseDefGpr(inst->GetArg(0), inst).cvt32(); Xbyak::Reg32 carry = reg_alloc.UseDefGpr(inst->GetArg(2), carry_inst).cvt32(); if (shift == 0) { // There is nothing more to do. } else if (shift < 32) { code->shr(result, shift); code->setc(carry.cvt8()); } else if (shift == 32) { code->bt(result, 31); code->setc(carry.cvt8()); code->mov(result, 0); } else { code->xor_(result, result); code->xor_(carry, carry); } } else { Xbyak::Reg8 shift = reg_alloc.UseGpr(shift_arg, {HostLoc::RCX}).cvt8(); Xbyak::Reg32 result = reg_alloc.UseDefGpr(inst->GetArg(0), inst).cvt32(); Xbyak::Reg32 carry = reg_alloc.UseDefGpr(inst->GetArg(2), carry_inst).cvt32(); // TODO: Optimize this. code->inLocalLabel(); code->cmp(shift, 32); code->ja(".Rs_gt32"); code->je(".Rs_eq32"); // if (Rs & 0xFF == 0) goto end; code->test(shift, shift); code->jz(".end"); // if (Rs & 0xFF < 32) { code->shr(result, shift); code->setc(carry.cvt8()); code->jmp(".end"); // } else if (Rs & 0xFF > 32) { code->L(".Rs_gt32"); code->xor_(result, result); code->xor_(carry, carry); code->jmp(".end"); // } else if (Rs & 0xFF == 32) { code->L(".Rs_eq32"); code->bt(result, 31); code->setc(carry.cvt8()); code->xor_(result, result); // } code->L(".end"); code->outLocalLabel(); } } } void EmitX64::EmitLogicalShiftRight64(IR::Block& block, IR::Inst* inst) { Xbyak::Reg64 result = reg_alloc.UseDefGpr(inst->GetArg(0), inst); auto shift_arg = inst->GetArg(1); ASSERT_MSG(shift_arg.IsImmediate(), "variable 64 bit shifts are not implemented"); u8 shift = shift_arg.GetU8(); ASSERT_MSG(shift < 64, "shift width clamping is not implemented"); code->shr(result.cvt64(), shift); } void EmitX64::EmitArithmeticShiftRight(IR::Block& block, IR::Inst* inst) { auto carry_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetCarryFromOp); if (!carry_inst) { if (!inst->GetArg(2).IsImmediate()) { // TODO: Remove redundant argument. reg_alloc.DecrementRemainingUses(inst->GetArg(2).GetInst()); } auto shift_arg = inst->GetArg(1); if (shift_arg.IsImmediate()) { u8 shift = shift_arg.GetU8(); Xbyak::Reg32 result = reg_alloc.UseDefGpr(inst->GetArg(0), inst).cvt32(); code->sar(result, u8(shift < 31 ? shift : 31)); } else { Xbyak::Reg32 shift = reg_alloc.UseScratchGpr(shift_arg, {HostLoc::RCX}).cvt32(); Xbyak::Reg32 result = reg_alloc.UseDefGpr(inst->GetArg(0), inst).cvt32(); Xbyak::Reg32 const31 = reg_alloc.ScratchGpr().cvt32(); // The 32-bit x64 SAR instruction masks the shift count by 0x1F before performing the shift. // ARM differs from the behaviour: It does not mask the count. // We note that all shift values above 31 have the same behaviour as 31 does, so we saturate `shift` to 31. code->mov(const31, 31); code->movzx(shift, shift.cvt8()); code->cmp(shift, u32(31)); code->cmovg(shift, const31); code->sar(result, shift.cvt8()); } } else { EraseInstruction(block, carry_inst); reg_alloc.DecrementRemainingUses(inst); auto shift_arg = inst->GetArg(1); if (shift_arg.IsImmediate()) { u8 shift = shift_arg.GetU8(); Xbyak::Reg32 result = reg_alloc.UseDefGpr(inst->GetArg(0), inst).cvt32(); Xbyak::Reg8 carry = reg_alloc.UseDefGpr(inst->GetArg(2), carry_inst).cvt8(); if (shift == 0) { // There is nothing more to do. } else if (shift <= 31) { code->sar(result, shift); code->setc(carry); } else { code->sar(result, 31); code->bt(result, 31); code->setc(carry); } } else { Xbyak::Reg8 shift = reg_alloc.UseGpr(shift_arg, {HostLoc::RCX}).cvt8(); Xbyak::Reg32 result = reg_alloc.UseDefGpr(inst->GetArg(0), inst).cvt32(); Xbyak::Reg8 carry = reg_alloc.UseDefGpr(inst->GetArg(2), carry_inst).cvt8(); // TODO: Optimize this. code->inLocalLabel(); code->cmp(shift, u32(31)); code->ja(".Rs_gt31"); // if (Rs & 0xFF == 0) goto end; code->test(shift, shift); code->jz(".end"); // if (Rs & 0xFF <= 31) { code->sar(result, shift); code->setc(carry); code->jmp(".end"); // } else if (Rs & 0xFF > 31) { code->L(".Rs_gt31"); code->sar(result, 31); // 31 produces the same results as anything above 31 code->bt(result, 31); code->setc(carry); // } code->L(".end"); code->outLocalLabel(); } } } void EmitX64::EmitRotateRight(IR::Block& block, IR::Inst* inst) { auto carry_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetCarryFromOp); if (!carry_inst) { if (!inst->GetArg(2).IsImmediate()) { // TODO: Remove redundant argument. reg_alloc.DecrementRemainingUses(inst->GetArg(2).GetInst()); } auto shift_arg = inst->GetArg(1); if (shift_arg.IsImmediate()) { u8 shift = shift_arg.GetU8(); Xbyak::Reg32 result = reg_alloc.UseDefGpr(inst->GetArg(0), inst).cvt32(); code->ror(result, u8(shift & 0x1F)); } else { Xbyak::Reg8 shift = reg_alloc.UseGpr(shift_arg, {HostLoc::RCX}).cvt8(); Xbyak::Reg32 result = reg_alloc.UseDefGpr(inst->GetArg(0), inst).cvt32(); // x64 ROR instruction does (shift & 0x1F) for us. code->ror(result, shift); } } else { EraseInstruction(block, carry_inst); reg_alloc.DecrementRemainingUses(inst); auto shift_arg = inst->GetArg(1); if (shift_arg.IsImmediate()) { u8 shift = shift_arg.GetU8(); Xbyak::Reg32 result = reg_alloc.UseDefGpr(inst->GetArg(0), inst).cvt32(); Xbyak::Reg8 carry = reg_alloc.UseDefGpr(inst->GetArg(2), carry_inst).cvt8(); if (shift == 0) { // There is nothing more to do. } else if ((shift & 0x1F) == 0) { code->bt(result, u8(31)); code->setc(carry); } else { code->ror(result, shift); code->setc(carry); } } else { Xbyak::Reg8 shift = reg_alloc.UseScratchGpr(shift_arg, {HostLoc::RCX}).cvt8(); Xbyak::Reg32 result = reg_alloc.UseDefGpr(inst->GetArg(0), inst).cvt32(); Xbyak::Reg8 carry = reg_alloc.UseDefGpr(inst->GetArg(2), carry_inst).cvt8(); // TODO: Optimize code->inLocalLabel(); // if (Rs & 0xFF == 0) goto end; code->test(shift, shift); code->jz(".end"); code->and_(shift.cvt32(), u32(0x1F)); code->jz(".zero_1F"); // if (Rs & 0x1F != 0) { code->ror(result, shift); code->setc(carry); code->jmp(".end"); // } else { code->L(".zero_1F"); code->bt(result, u8(31)); code->setc(carry); // } code->L(".end"); code->outLocalLabel(); } } } void EmitX64::EmitRotateRightExtended(IR::Block& block, IR::Inst* inst) { auto carry_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetCarryFromOp); Xbyak::Reg32 result = reg_alloc.UseDefGpr(inst->GetArg(0), inst).cvt32(); Xbyak::Reg8 carry = carry_inst ? reg_alloc.UseDefGpr(inst->GetArg(1), carry_inst).cvt8() : reg_alloc.UseGpr(inst->GetArg(1)).cvt8(); code->bt(carry.cvt32(), 0); code->rcr(result, 1); if (carry_inst) { EraseInstruction(block, carry_inst); reg_alloc.DecrementRemainingUses(inst); code->setc(carry); } } const Xbyak::Reg64 INVALID_REG = Xbyak::Reg64(-1); static Xbyak::Reg8 DoCarry(RegAlloc& reg_alloc, const IR::Value& carry_in, IR::Inst* carry_out) { if (carry_in.IsImmediate()) { return carry_out ? reg_alloc.DefGpr(carry_out).cvt8() : INVALID_REG.cvt8(); } else { return carry_out ? reg_alloc.UseDefGpr(carry_in, carry_out).cvt8() : reg_alloc.UseGpr(carry_in).cvt8(); } } void EmitX64::EmitAddWithCarry(IR::Block& block, IR::Inst* inst) { auto carry_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetCarryFromOp); auto overflow_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetOverflowFromOp); IR::Value a = inst->GetArg(0); IR::Value b = inst->GetArg(1); IR::Value carry_in = inst->GetArg(2); Xbyak::Reg32 result = reg_alloc.UseDefGpr(a, inst).cvt32(); Xbyak::Reg8 carry = DoCarry(reg_alloc, carry_in, carry_inst); Xbyak::Reg8 overflow = overflow_inst ? reg_alloc.DefGpr(overflow_inst).cvt8() : INVALID_REG.cvt8(); // TODO: Consider using LEA. if (b.IsImmediate()) { u32 op_arg = b.GetU32(); if (carry_in.IsImmediate()) { if (carry_in.GetU1()) { code->stc(); code->adc(result, op_arg); } else { code->add(result, op_arg); } } else { code->bt(carry.cvt32(), 0); code->adc(result, op_arg); } } else { OpArg op_arg = reg_alloc.UseOpArg(b, any_gpr); op_arg.setBit(32); if (carry_in.IsImmediate()) { if (carry_in.GetU1()) { code->stc(); code->adc(result, *op_arg); } else { code->add(result, *op_arg); } } else { code->bt(carry.cvt32(), 0); code->adc(result, *op_arg); } } if (carry_inst) { EraseInstruction(block, carry_inst); reg_alloc.DecrementRemainingUses(inst); code->setc(carry); } if (overflow_inst) { EraseInstruction(block, overflow_inst); reg_alloc.DecrementRemainingUses(inst); code->seto(overflow); } } void EmitX64::EmitAdd64(IR::Block& block, IR::Inst* inst) { IR::Value a = inst->GetArg(0); IR::Value b = inst->GetArg(1); Xbyak::Reg64 result = reg_alloc.UseDefGpr(a, inst); Xbyak::Reg64 op_arg = reg_alloc.UseGpr(b); code->add(result, op_arg); } void EmitX64::EmitSubWithCarry(IR::Block& block, IR::Inst* inst) { auto carry_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetCarryFromOp); auto overflow_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetOverflowFromOp); IR::Value a = inst->GetArg(0); IR::Value b = inst->GetArg(1); IR::Value carry_in = inst->GetArg(2); Xbyak::Reg32 result = reg_alloc.UseDefGpr(a, inst).cvt32(); Xbyak::Reg8 carry = DoCarry(reg_alloc, carry_in, carry_inst); Xbyak::Reg8 overflow = overflow_inst ? reg_alloc.DefGpr(overflow_inst).cvt8() : INVALID_REG.cvt8(); // TODO: Consider using LEA. // TODO: Optimize CMP case. // Note that x64 CF is inverse of what the ARM carry flag is here. if (b.IsImmediate()) { u32 op_arg = b.GetU32(); if (carry_in.IsImmediate()) { if (carry_in.GetU1()) { code->sub(result, op_arg); } else { code->stc(); code->sbb(result, op_arg); } } else { code->bt(carry.cvt32(), 0); code->cmc(); code->sbb(result, op_arg); } } else { OpArg op_arg = reg_alloc.UseOpArg(b, any_gpr); op_arg.setBit(32); if (carry_in.IsImmediate()) { if (carry_in.GetU1()) { code->sub(result, *op_arg); } else { code->stc(); code->sbb(result, *op_arg); } } else { code->bt(carry.cvt32(), 0); code->cmc(); code->sbb(result, *op_arg); } } if (carry_inst) { EraseInstruction(block, carry_inst); reg_alloc.DecrementRemainingUses(inst); code->setnc(carry); } if (overflow_inst) { EraseInstruction(block, overflow_inst); reg_alloc.DecrementRemainingUses(inst); code->seto(overflow); } } void EmitX64::EmitSub64(IR::Block& block, IR::Inst* inst) { IR::Value a = inst->GetArg(0); IR::Value b = inst->GetArg(1); Xbyak::Reg64 result = reg_alloc.UseDefGpr(a, inst); Xbyak::Reg64 op_arg = reg_alloc.UseGpr(b); code->sub(result, op_arg); } void EmitX64::EmitMul(IR::Block&, IR::Inst* inst) { IR::Value a = inst->GetArg(0); IR::Value b = inst->GetArg(1); if (a.IsImmediate()) std::swap(a, b); Xbyak::Reg32 result = reg_alloc.UseDefGpr(a, inst).cvt32(); if (b.IsImmediate()) { code->imul(result, result, b.GetU32()); } else { OpArg op_arg = reg_alloc.UseOpArg(b, any_gpr); op_arg.setBit(32); code->imul(result, *op_arg); } } void EmitX64::EmitMul64(IR::Block&, IR::Inst* inst) { IR::Value a = inst->GetArg(0); IR::Value b = inst->GetArg(1); Xbyak::Reg64 result = reg_alloc.UseDefGpr(a, inst); OpArg op_arg = reg_alloc.UseOpArg(b, any_gpr); code->imul(result, *op_arg); } void EmitX64::EmitAnd(IR::Block&, IR::Inst* inst) { IR::Value a = inst->GetArg(0); IR::Value b = inst->GetArg(1); Xbyak::Reg32 result = reg_alloc.UseDefGpr(a, inst).cvt32(); if (b.IsImmediate()) { u32 op_arg = b.GetU32(); code->and_(result, op_arg); } else { OpArg op_arg = reg_alloc.UseOpArg(b, any_gpr); op_arg.setBit(32); code->and_(result, *op_arg); } } void EmitX64::EmitEor(IR::Block&, IR::Inst* inst) { IR::Value a = inst->GetArg(0); IR::Value b = inst->GetArg(1); Xbyak::Reg32 result = reg_alloc.UseDefGpr(a, inst).cvt32(); if (b.IsImmediate()) { u32 op_arg = b.GetU32(); code->xor_(result, op_arg); } else { OpArg op_arg = reg_alloc.UseOpArg(b, any_gpr); op_arg.setBit(32); code->xor_(result, *op_arg); } } void EmitX64::EmitOr(IR::Block&, IR::Inst* inst) { IR::Value a = inst->GetArg(0); IR::Value b = inst->GetArg(1); Xbyak::Reg32 result = reg_alloc.UseDefGpr(a, inst).cvt32(); if (b.IsImmediate()) { u32 op_arg = b.GetU32(); code->or_(result, op_arg); } else { OpArg op_arg = reg_alloc.UseOpArg(b, any_gpr); op_arg.setBit(32); code->or_(result, *op_arg); } } void EmitX64::EmitNot(IR::Block&, IR::Inst* inst) { IR::Value a = inst->GetArg(0); if (a.IsImmediate()) { Xbyak::Reg32 result = reg_alloc.DefGpr(inst).cvt32(); code->mov(result, u32(~a.GetU32())); } else { Xbyak::Reg32 result = reg_alloc.UseDefGpr(a, inst).cvt32(); code->not_(result); } } void EmitX64::EmitSignExtendWordToLong(IR::Block&, IR::Inst* inst) { OpArg source; Xbyak::Reg64 result; if (inst->GetArg(0).IsImmediate()) { // TODO: Optimize result = reg_alloc.UseDefGpr(inst->GetArg(0), inst); source = result; } else { std::tie(source, result) = reg_alloc.UseDefOpArgGpr(inst->GetArg(0), inst); } source.setBit(32); code->movsxd(result.cvt64(), *source); } void EmitX64::EmitSignExtendHalfToWord(IR::Block&, IR::Inst* inst) { OpArg source; Xbyak::Reg64 result; if (inst->GetArg(0).IsImmediate()) { // TODO: Optimize result = reg_alloc.UseDefGpr(inst->GetArg(0), inst); source = result; } else { std::tie(source, result) = reg_alloc.UseDefOpArgGpr(inst->GetArg(0), inst); } source.setBit(16); code->movsx(result.cvt32(), *source); } void EmitX64::EmitSignExtendByteToWord(IR::Block&, IR::Inst* inst) { OpArg source; Xbyak::Reg64 result; if (inst->GetArg(0).IsImmediate()) { // TODO: Optimize result = reg_alloc.UseDefGpr(inst->GetArg(0), inst); source = result; } else { std::tie(source, result) = reg_alloc.UseDefOpArgGpr(inst->GetArg(0), inst); } source.setBit(8); code->movsx(result.cvt32(), *source); } void EmitX64::EmitZeroExtendWordToLong(IR::Block&, IR::Inst* inst) { OpArg source; Xbyak::Reg64 result; if (inst->GetArg(0).IsImmediate()) { // TODO: Optimize result = reg_alloc.UseDefGpr(inst->GetArg(0), inst); source = result; } else { std::tie(source, result) = reg_alloc.UseDefOpArgGpr(inst->GetArg(0), inst); } source.setBit(32); code->mov(result.cvt32(), *source); // x64 zeros upper 32 bits on a 32-bit move } void EmitX64::EmitZeroExtendHalfToWord(IR::Block&, IR::Inst* inst) { OpArg source; Xbyak::Reg64 result; if (inst->GetArg(0).IsImmediate()) { // TODO: Optimize result = reg_alloc.UseDefGpr(inst->GetArg(0), inst); source = result; } else { std::tie(source, result) = reg_alloc.UseDefOpArgGpr(inst->GetArg(0), inst); } source.setBit(16); code->movzx(result.cvt32(), *source); } void EmitX64::EmitZeroExtendByteToWord(IR::Block&, IR::Inst* inst) { OpArg source; Xbyak::Reg64 result; if (inst->GetArg(0).IsImmediate()) { // TODO: Optimize result = reg_alloc.UseDefGpr(inst->GetArg(0), inst); source = result; } else { std::tie(source, result) = reg_alloc.UseDefOpArgGpr(inst->GetArg(0), inst); } source.setBit(8); code->movzx(result.cvt32(), *source); } void EmitX64::EmitByteReverseWord(IR::Block&, IR::Inst* inst) { Xbyak::Reg32 result = reg_alloc.UseDefGpr(inst->GetArg(0), inst).cvt32(); code->bswap(result); } void EmitX64::EmitByteReverseHalf(IR::Block&, IR::Inst* inst) { Xbyak::Reg16 result = reg_alloc.UseDefGpr(inst->GetArg(0), inst).cvt16(); code->rol(result, 8); } void EmitX64::EmitByteReverseDual(IR::Block&, IR::Inst* inst) { Xbyak::Reg64 result = reg_alloc.UseDefGpr(inst->GetArg(0), inst); code->bswap(result); } static void EmitPackedOperation(BlockOfCode* code, RegAlloc& reg_alloc, IR::Inst* inst, void (Xbyak::CodeGenerator::*fn)(const Xbyak::Mmx& mmx, const Xbyak::Operand&)) { IR::Value a = inst->GetArg(0); IR::Value b = inst->GetArg(1); Xbyak::Reg32 result = reg_alloc.UseDefGpr(a, inst).cvt32(); Xbyak::Reg32 arg = reg_alloc.UseGpr(b).cvt32(); Xbyak::Xmm xmm_scratch_a = reg_alloc.ScratchXmm(); Xbyak::Xmm xmm_scratch_b = reg_alloc.ScratchXmm(); code->movd(xmm_scratch_a, result); code->movd(xmm_scratch_b, arg); (code->*fn)(xmm_scratch_a, xmm_scratch_b); code->movd(result, xmm_scratch_a); } void EmitX64::EmitPackedSaturatedAddU8(IR::Block& block, IR::Inst* inst) { EmitPackedOperation(code, reg_alloc, inst, &Xbyak::CodeGenerator::paddusb); } void EmitX64::EmitPackedSaturatedAddS8(IR::Block& block, IR::Inst* inst) { EmitPackedOperation(code, reg_alloc, inst, &Xbyak::CodeGenerator::paddsb); } void EmitX64::EmitPackedSaturatedSubU8(IR::Block& block, IR::Inst* inst) { EmitPackedOperation(code, reg_alloc, inst, &Xbyak::CodeGenerator::psubusb); } void EmitX64::EmitPackedSaturatedSubS8(IR::Block& block, IR::Inst* inst) { EmitPackedOperation(code, reg_alloc, inst, &Xbyak::CodeGenerator::psubsb); } void EmitX64::EmitPackedSaturatedAddU16(IR::Block& block, IR::Inst* inst) { EmitPackedOperation(code, reg_alloc, inst, &Xbyak::CodeGenerator::paddusw); } void EmitX64::EmitPackedSaturatedAddS16(IR::Block& block, IR::Inst* inst) { EmitPackedOperation(code, reg_alloc, inst, &Xbyak::CodeGenerator::paddsw); } void EmitX64::EmitPackedSaturatedSubU16(IR::Block& block, IR::Inst* inst) { EmitPackedOperation(code, reg_alloc, inst, &Xbyak::CodeGenerator::psubusw); } void EmitX64::EmitPackedSaturatedSubS16(IR::Block& block, IR::Inst* inst) { EmitPackedOperation(code, reg_alloc, inst, &Xbyak::CodeGenerator::psubsw); } static void DenormalsAreZero32(BlockOfCode* code, Xbyak::Xmm xmm_value, Xbyak::Reg32 gpr_scratch) { using namespace Xbyak::util; Xbyak::Label end; // We need to report back whether we've found a denormal on input. // SSE doesn't do this for us when SSE's DAZ is enabled. code->movd(gpr_scratch, xmm_value); code->and_(gpr_scratch, u32(0x7FFFFFFF)); code->sub(gpr_scratch, u32(1)); code->cmp(gpr_scratch, u32(0x007FFFFE)); code->ja(end); code->pxor(xmm_value, xmm_value); code->mov(dword[r15 + offsetof(JitState, FPSCR_IDC)], u32(1 << 7)); code->L(end); } static void DenormalsAreZero64(BlockOfCode* code, Xbyak::Xmm xmm_value, Xbyak::Reg64 gpr_scratch) { using namespace Xbyak::util; Xbyak::Label end; auto mask = code->MFloatNonSignMask64(); mask.setBit(64); auto penult_denormal = code->MFloatPenultimatePositiveDenormal64(); penult_denormal.setBit(64); code->movq(gpr_scratch, xmm_value); code->and_(gpr_scratch, mask); code->sub(gpr_scratch, u32(1)); code->cmp(gpr_scratch, penult_denormal); code->ja(end); code->pxor(xmm_value, xmm_value); code->mov(dword[r15 + offsetof(JitState, FPSCR_IDC)], u32(1 << 7)); code->L(end); } static void FlushToZero32(BlockOfCode* code, Xbyak::Xmm xmm_value, Xbyak::Reg32 gpr_scratch) { using namespace Xbyak::util; Xbyak::Label end; code->movd(gpr_scratch, xmm_value); code->and_(gpr_scratch, u32(0x7FFFFFFF)); code->sub(gpr_scratch, u32(1)); code->cmp(gpr_scratch, u32(0x007FFFFE)); code->ja(end); code->pxor(xmm_value, xmm_value); code->mov(dword[r15 + offsetof(JitState, FPSCR_UFC)], u32(1 << 3)); code->L(end); } static void FlushToZero64(BlockOfCode* code, Xbyak::Xmm xmm_value, Xbyak::Reg64 gpr_scratch) { using namespace Xbyak::util; Xbyak::Label end; auto mask = code->MFloatNonSignMask64(); mask.setBit(64); auto penult_denormal = code->MFloatPenultimatePositiveDenormal64(); penult_denormal.setBit(64); code->movq(gpr_scratch, xmm_value); code->and_(gpr_scratch, mask); code->sub(gpr_scratch, u32(1)); code->cmp(gpr_scratch, penult_denormal); code->ja(end); code->pxor(xmm_value, xmm_value); code->mov(dword[r15 + offsetof(JitState, FPSCR_UFC)], u32(1 << 3)); code->L(end); } static void DefaultNaN32(BlockOfCode* code, Xbyak::Xmm xmm_value) { Xbyak::Label end; code->ucomiss(xmm_value, xmm_value); code->jnp(end); code->movaps(xmm_value, code->MFloatNaN32()); code->L(end); } static void DefaultNaN64(BlockOfCode* code, Xbyak::Xmm xmm_value) { Xbyak::Label end; code->ucomisd(xmm_value, xmm_value); code->jnp(end); code->movaps(xmm_value, code->MFloatNaN64()); code->L(end); } static void ZeroIfNaN64(BlockOfCode* code, Xbyak::Xmm xmm_value, Xbyak::Xmm xmm_scratch) { code->pxor(xmm_scratch, xmm_scratch); code->cmpordsd(xmm_scratch, xmm_value); // true mask when ordered (i.e.: when not an NaN) code->pand(xmm_value, xmm_scratch); } static void FPThreeOp32(BlockOfCode* code, RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst, void (Xbyak::CodeGenerator::*fn)(const Xbyak::Xmm&, const Xbyak::Operand&)) { IR::Value a = inst->GetArg(0); IR::Value b = inst->GetArg(1); Xbyak::Xmm result = reg_alloc.UseDefXmm(a, inst); Xbyak::Xmm operand = reg_alloc.UseXmm(b); Xbyak::Reg32 gpr_scratch = reg_alloc.ScratchGpr().cvt32(); if (block.Location().FPSCR().FTZ()) { DenormalsAreZero32(code, result, gpr_scratch); DenormalsAreZero32(code, operand, gpr_scratch); } (code->*fn)(result, operand); if (block.Location().FPSCR().FTZ()) { FlushToZero32(code, result, gpr_scratch); } if (block.Location().FPSCR().DN()) { DefaultNaN32(code, result); } } static void FPThreeOp64(BlockOfCode* code, RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst, void (Xbyak::CodeGenerator::*fn)(const Xbyak::Xmm&, const Xbyak::Operand&)) { IR::Value a = inst->GetArg(0); IR::Value b = inst->GetArg(1); Xbyak::Xmm result = reg_alloc.UseDefXmm(a, inst); Xbyak::Xmm operand = reg_alloc.UseXmm(b); Xbyak::Reg64 gpr_scratch = reg_alloc.ScratchGpr(); if (block.Location().FPSCR().FTZ()) { DenormalsAreZero64(code, result, gpr_scratch); DenormalsAreZero64(code, operand, gpr_scratch); } (code->*fn)(result, operand); if (block.Location().FPSCR().FTZ()) { FlushToZero64(code, result, gpr_scratch); } if (block.Location().FPSCR().DN()) { DefaultNaN64(code, result); } } static void FPTwoOp32(BlockOfCode* code, RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst, void (Xbyak::CodeGenerator::*fn)(const Xbyak::Xmm&, const Xbyak::Operand&)) { IR::Value a = inst->GetArg(0); Xbyak::Xmm result = reg_alloc.UseDefXmm(a, inst); Xbyak::Reg32 gpr_scratch = reg_alloc.ScratchGpr().cvt32(); if (block.Location().FPSCR().FTZ()) { DenormalsAreZero32(code, result, gpr_scratch); } (code->*fn)(result, result); if (block.Location().FPSCR().FTZ()) { FlushToZero32(code, result, gpr_scratch); } if (block.Location().FPSCR().DN()) { DefaultNaN32(code, result); } } static void FPTwoOp64(BlockOfCode* code, RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst, void (Xbyak::CodeGenerator::*fn)(const Xbyak::Xmm&, const Xbyak::Operand&)) { IR::Value a = inst->GetArg(0); Xbyak::Xmm result = reg_alloc.UseDefXmm(a, inst); Xbyak::Reg64 gpr_scratch = reg_alloc.ScratchGpr(); if (block.Location().FPSCR().FTZ()) { DenormalsAreZero64(code, result, gpr_scratch); } (code->*fn)(result, result); if (block.Location().FPSCR().FTZ()) { FlushToZero64(code, result, gpr_scratch); } if (block.Location().FPSCR().DN()) { DefaultNaN64(code, result); } } void EmitX64::EmitTransferFromFP32(IR::Block& block, IR::Inst* inst) { Xbyak::Reg32 result = reg_alloc.DefGpr(inst).cvt32(); Xbyak::Xmm source = reg_alloc.UseXmm(inst->GetArg(0)); // TODO: Eliminate this. code->movd(result, source); } void EmitX64::EmitTransferFromFP64(IR::Block& block, IR::Inst* inst) { Xbyak::Reg64 result = reg_alloc.DefGpr(inst); Xbyak::Xmm source = reg_alloc.UseXmm(inst->GetArg(0)); // TODO: Eliminate this. code->movq(result, source); } void EmitX64::EmitTransferToFP32(IR::Block& block, IR::Inst* inst) { Xbyak::Xmm result = reg_alloc.DefXmm(inst); Xbyak::Reg32 source = reg_alloc.UseGpr(inst->GetArg(0)).cvt32(); // TODO: Eliminate this. code->movd(result, source); } void EmitX64::EmitTransferToFP64(IR::Block& block, IR::Inst* inst) { Xbyak::Xmm result = reg_alloc.DefXmm(inst); Xbyak::Reg64 source = reg_alloc.UseGpr(inst->GetArg(0)); // TODO: Eliminate this. code->movq(result, source); } void EmitX64::EmitFPAbs32(IR::Block&, IR::Inst* inst) { IR::Value a = inst->GetArg(0); Xbyak::Xmm result = reg_alloc.UseDefXmm(a, inst); code->pand(result, code->MFloatNonSignMask32()); } void EmitX64::EmitFPAbs64(IR::Block&, IR::Inst* inst) { IR::Value a = inst->GetArg(0); Xbyak::Xmm result = reg_alloc.UseDefXmm(a, inst); code->pand(result, code->MFloatNonSignMask64()); } void EmitX64::EmitFPNeg32(IR::Block&, IR::Inst* inst) { IR::Value a = inst->GetArg(0); Xbyak::Xmm result = reg_alloc.UseDefXmm(a, inst); code->pxor(result, code->MFloatNegativeZero32()); } void EmitX64::EmitFPNeg64(IR::Block&, IR::Inst* inst) { IR::Value a = inst->GetArg(0); Xbyak::Xmm result = reg_alloc.UseDefXmm(a, inst); code->pxor(result, code->MFloatNegativeZero64()); } void EmitX64::EmitFPAdd32(IR::Block& block, IR::Inst* inst) { FPThreeOp32(code, reg_alloc, block, inst, &Xbyak::CodeGenerator::addss); } void EmitX64::EmitFPAdd64(IR::Block& block, IR::Inst* inst) { FPThreeOp64(code, reg_alloc, block, inst, &Xbyak::CodeGenerator::addsd); } void EmitX64::EmitFPDiv32(IR::Block& block, IR::Inst* inst) { FPThreeOp32(code, reg_alloc, block, inst, &Xbyak::CodeGenerator::divss); } void EmitX64::EmitFPDiv64(IR::Block& block, IR::Inst* inst) { FPThreeOp64(code, reg_alloc, block, inst, &Xbyak::CodeGenerator::divsd); } void EmitX64::EmitFPMul32(IR::Block& block, IR::Inst* inst) { FPThreeOp32(code, reg_alloc, block, inst, &Xbyak::CodeGenerator::mulss); } void EmitX64::EmitFPMul64(IR::Block& block, IR::Inst* inst) { FPThreeOp64(code, reg_alloc, block, inst, &Xbyak::CodeGenerator::mulsd); } void EmitX64::EmitFPSqrt32(IR::Block& block, IR::Inst* inst) { FPTwoOp32(code, reg_alloc, block, inst, &Xbyak::CodeGenerator::sqrtss); } void EmitX64::EmitFPSqrt64(IR::Block& block, IR::Inst* inst) { FPTwoOp64(code, reg_alloc, block, inst, &Xbyak::CodeGenerator::sqrtsd); } void EmitX64::EmitFPSub32(IR::Block& block, IR::Inst* inst) { FPThreeOp32(code, reg_alloc, block, inst, &Xbyak::CodeGenerator::subss); } void EmitX64::EmitFPSub64(IR::Block& block, IR::Inst* inst) { FPThreeOp64(code, reg_alloc, block, inst, &Xbyak::CodeGenerator::subsd); } void EmitX64::EmitFPSingleToDouble(IR::Block& block, IR::Inst* inst) { IR::Value a = inst->GetArg(0); Xbyak::Xmm result = reg_alloc.UseDefXmm(a, inst); Xbyak::Reg64 gpr_scratch = reg_alloc.ScratchGpr(); if (block.Location().FPSCR().FTZ()) { DenormalsAreZero32(code, result, gpr_scratch.cvt32()); } code->cvtss2sd(result, result); if (block.Location().FPSCR().FTZ()) { FlushToZero64(code, result, gpr_scratch); } if (block.Location().FPSCR().DN()) { DefaultNaN64(code, result); } } void EmitX64::EmitFPDoubleToSingle(IR::Block& block, IR::Inst* inst) { IR::Value a = inst->GetArg(0); Xbyak::Xmm result = reg_alloc.UseDefXmm(a, inst); Xbyak::Reg64 gpr_scratch = reg_alloc.ScratchGpr(); if (block.Location().FPSCR().FTZ()) { DenormalsAreZero64(code, result, gpr_scratch); } code->cvtsd2ss(result, result); if (block.Location().FPSCR().FTZ()) { FlushToZero32(code, result, gpr_scratch.cvt32()); } if (block.Location().FPSCR().DN()) { DefaultNaN32(code, result); } } void EmitX64::EmitFPSingleToS32(IR::Block& block, IR::Inst* inst) { IR::Value a = inst->GetArg(0); bool round_towards_zero = inst->GetArg(1).GetU1(); Xbyak::Xmm from = reg_alloc.UseScratchXmm(a); Xbyak::Xmm to = reg_alloc.DefXmm(inst); Xbyak::Reg32 gpr_scratch = reg_alloc.ScratchGpr().cvt32(); Xbyak::Xmm xmm_scratch = reg_alloc.ScratchXmm(); // ARM saturates on conversion; this differs from x64 which returns a sentinel value. // Conversion to double is lossless, and allows for clamping. if (block.Location().FPSCR().FTZ()) { DenormalsAreZero32(code, from, gpr_scratch); } code->cvtss2sd(from, from); // First time is to set flags if (round_towards_zero) { code->cvttsd2si(gpr_scratch, from); // 32 bit gpr } else { code->cvtsd2si(gpr_scratch, from); // 32 bit gpr } // Clamp to output range ZeroIfNaN64(code, from, xmm_scratch); code->minsd(from, code->MFloatMaxS32()); code->maxsd(from, code->MFloatMinS32()); // Second time is for real if (round_towards_zero) { code->cvttsd2si(gpr_scratch, from); // 32 bit gpr } else { code->cvtsd2si(gpr_scratch, from); // 32 bit gpr } code->movd(to, gpr_scratch); } void EmitX64::EmitFPSingleToU32(IR::Block& block, IR::Inst* inst) { IR::Value a = inst->GetArg(0); bool round_towards_zero = inst->GetArg(1).GetU1(); Xbyak::Xmm from = reg_alloc.UseScratchXmm(a); Xbyak::Xmm to = reg_alloc.DefXmm(inst); Xbyak::Reg32 gpr_scratch = reg_alloc.ScratchGpr().cvt32(); Xbyak::Xmm xmm_scratch = reg_alloc.ScratchXmm(); // ARM saturates on conversion; this differs from x64 which returns a sentinel value. // Conversion to double is lossless, and allows for accurate clamping. // // Since SSE2 doesn't provide an unsigned conversion, we shift the range as appropriate. // // FIXME: Inexact exception not correctly signalled with the below code if (block.Location().FPSCR().RMode() != Arm::FPSCR::RoundingMode::TowardsZero && !round_towards_zero) { if (block.Location().FPSCR().FTZ()) { DenormalsAreZero32(code, from, gpr_scratch); } code->cvtss2sd(from, from); ZeroIfNaN64(code, from, xmm_scratch); // Bring into SSE range code->addsd(from, code->MFloatMinS32()); // First time is to set flags code->cvtsd2si(gpr_scratch, from); // 32 bit gpr // Clamp to output range code->minsd(from, code->MFloatMaxS32()); code->maxsd(from, code->MFloatMinS32()); // Actually convert code->cvtsd2si(gpr_scratch, from); // 32 bit gpr // Bring back into original range code->add(gpr_scratch, u32(2147483648u)); code->movd(to, gpr_scratch); } else { Xbyak::Xmm xmm_mask = reg_alloc.ScratchXmm(); Xbyak::Reg32 gpr_mask = reg_alloc.ScratchGpr().cvt32(); if (block.Location().FPSCR().FTZ()) { DenormalsAreZero32(code, from, gpr_scratch); } code->cvtss2sd(from, from); ZeroIfNaN64(code, from, xmm_scratch); // Generate masks if out-of-signed-range code->movaps(xmm_mask, code->MFloatMaxS32()); code->cmpltsd(xmm_mask, from); code->movd(gpr_mask, xmm_mask); code->pand(xmm_mask, code->MFloatMinS32()); code->and_(gpr_mask, u32(2147483648u)); // Bring into range if necessary code->addsd(from, xmm_mask); // First time is to set flags code->cvttsd2si(gpr_scratch, from); // 32 bit gpr // Clamp to output range code->minsd(from, code->MFloatMaxS32()); code->maxsd(from, code->MFloatMinU32()); // Actually convert code->cvttsd2si(gpr_scratch, from); // 32 bit gpr // Bring back into original range if necessary code->add(gpr_scratch, gpr_mask); code->movd(to, gpr_scratch); } } void EmitX64::EmitFPDoubleToS32(IR::Block& block, IR::Inst* inst) { IR::Value a = inst->GetArg(0); bool round_towards_zero = inst->GetArg(1).GetU1(); Xbyak::Xmm from = reg_alloc.UseScratchXmm(a); Xbyak::Xmm to = reg_alloc.DefXmm(inst); Xbyak::Reg32 gpr_scratch = reg_alloc.ScratchGpr().cvt32(); Xbyak::Xmm xmm_scratch = reg_alloc.ScratchXmm(); // ARM saturates on conversion; this differs from x64 which returns a sentinel value. if (block.Location().FPSCR().FTZ()) { DenormalsAreZero64(code, from, gpr_scratch.cvt64()); } // First time is to set flags if (round_towards_zero) { code->cvttsd2si(gpr_scratch, from); // 32 bit gpr } else { code->cvtsd2si(gpr_scratch, from); // 32 bit gpr } // Clamp to output range ZeroIfNaN64(code, from, xmm_scratch); code->minsd(from, code->MFloatMaxS32()); code->maxsd(from, code->MFloatMinS32()); // Second time is for real if (round_towards_zero) { code->cvttsd2si(gpr_scratch, from); // 32 bit gpr } else { code->cvtsd2si(gpr_scratch, from); // 32 bit gpr } code->movd(to, gpr_scratch); } void EmitX64::EmitFPDoubleToU32(IR::Block& block, IR::Inst* inst) { IR::Value a = inst->GetArg(0); bool round_towards_zero = inst->GetArg(1).GetU1(); Xbyak::Xmm from = reg_alloc.UseScratchXmm(a); Xbyak::Xmm to = reg_alloc.DefXmm(inst); Xbyak::Reg32 gpr_scratch = reg_alloc.ScratchGpr().cvt32(); Xbyak::Xmm xmm_scratch = reg_alloc.ScratchXmm(); // ARM saturates on conversion; this differs from x64 which returns a sentinel value. // TODO: Use VCVTPD2UDQ when AVX512VL is available. // FIXME: Inexact exception not correctly signalled with the below code if (block.Location().FPSCR().RMode() != Arm::FPSCR::RoundingMode::TowardsZero && !round_towards_zero) { if (block.Location().FPSCR().FTZ()) { DenormalsAreZero64(code, from, gpr_scratch.cvt64()); } ZeroIfNaN64(code, from, xmm_scratch); // Bring into SSE range code->addsd(from, code->MFloatMinS32()); // First time is to set flags code->cvtsd2si(gpr_scratch, from); // 32 bit gpr // Clamp to output range code->minsd(from, code->MFloatMaxS32()); code->maxsd(from, code->MFloatMinS32()); // Actually convert code->cvtsd2si(gpr_scratch, from); // 32 bit gpr // Bring back into original range code->add(gpr_scratch, u32(2147483648u)); code->movd(to, gpr_scratch); } else { Xbyak::Xmm xmm_mask = reg_alloc.ScratchXmm(); Xbyak::Reg32 gpr_mask = reg_alloc.ScratchGpr().cvt32(); if (block.Location().FPSCR().FTZ()) { DenormalsAreZero64(code, from, gpr_scratch.cvt64()); } ZeroIfNaN64(code, from, xmm_scratch); // Generate masks if out-of-signed-range code->movaps(xmm_mask, code->MFloatMaxS32()); code->cmpltsd(xmm_mask, from); code->movd(gpr_mask, xmm_mask); code->pand(xmm_mask, code->MFloatMinS32()); code->and_(gpr_mask, u32(2147483648u)); // Bring into range if necessary code->addsd(from, xmm_mask); // First time is to set flags code->cvttsd2si(gpr_scratch, from); // 32 bit gpr // Clamp to output range code->minsd(from, code->MFloatMaxS32()); code->maxsd(from, code->MFloatMinU32()); // Actually convert code->cvttsd2si(gpr_scratch, from); // 32 bit gpr // Bring back into original range if necessary code->add(gpr_scratch, gpr_mask); code->movd(to, gpr_scratch); } } void EmitX64::EmitFPS32ToSingle(IR::Block& block, IR::Inst* inst) { IR::Value a = inst->GetArg(0); bool round_to_nearest = inst->GetArg(1).GetU1(); ASSERT_MSG(!round_to_nearest, "round_to_nearest unimplemented"); Xbyak::Xmm from = reg_alloc.UseXmm(a); Xbyak::Xmm to = reg_alloc.DefXmm(inst); Xbyak::Reg32 gpr_scratch = reg_alloc.ScratchGpr().cvt32(); code->movd(gpr_scratch, from); code->cvtsi2ss(to, gpr_scratch); } void EmitX64::EmitFPU32ToSingle(IR::Block& block, IR::Inst* inst) { IR::Value a = inst->GetArg(0); bool round_to_nearest = inst->GetArg(1).GetU1(); ASSERT_MSG(!round_to_nearest, "round_to_nearest unimplemented"); Xbyak::Xmm from = reg_alloc.UseXmm(a); Xbyak::Xmm to = reg_alloc.DefXmm(inst); Xbyak::Reg32 gpr_scratch = reg_alloc.ScratchGpr().cvt32(); code->movd(gpr_scratch, from); code->cvtsi2ss(to, gpr_scratch); } void EmitX64::EmitFPS32ToDouble(IR::Block& block, IR::Inst* inst) { IR::Value a = inst->GetArg(0); bool round_to_nearest = inst->GetArg(1).GetU1(); ASSERT_MSG(!round_to_nearest, "round_to_nearest unimplemented"); Xbyak::Xmm from = reg_alloc.UseXmm(a); Xbyak::Xmm to = reg_alloc.DefXmm(inst); Xbyak::Reg32 gpr_scratch = reg_alloc.ScratchGpr().cvt32(); code->movd(gpr_scratch, from); code->cvtsi2sd(to, gpr_scratch); } void EmitX64::EmitFPU32ToDouble(IR::Block& block, IR::Inst* inst) { IR::Value a = inst->GetArg(0); bool round_to_nearest = inst->GetArg(1).GetU1(); ASSERT_MSG(!round_to_nearest, "round_to_nearest unimplemented"); Xbyak::Xmm from = reg_alloc.UseXmm(a); Xbyak::Xmm to = reg_alloc.DefXmm(inst); Xbyak::Reg32 gpr_scratch = reg_alloc.ScratchGpr().cvt32(); code->movd(gpr_scratch, from); code->cvtsi2sd(to, gpr_scratch); } void EmitX64::EmitClearExclusive(IR::Block&, IR::Inst*) { using namespace Xbyak::util; code->mov(code->byte[r15 + offsetof(JitState, exclusive_state)], u8(0)); } void EmitX64::EmitSetExclusive(IR::Block&, IR::Inst* inst) { using namespace Xbyak::util; ASSERT(inst->GetArg(1).IsImmediate()); Xbyak::Reg32 address = reg_alloc.UseGpr(inst->GetArg(0)).cvt32(); code->mov(code->byte[r15 + offsetof(JitState, exclusive_state)], u8(1)); code->mov(dword[r15 + offsetof(JitState, exclusive_address)], address); } void EmitX64::EmitReadMemory8(IR::Block&, IR::Inst* inst) { reg_alloc.HostCall(inst, inst->GetArg(0)); code->CallFunction(reinterpret_cast(cb.MemoryRead8)); } void EmitX64::EmitReadMemory16(IR::Block&, IR::Inst* inst) { reg_alloc.HostCall(inst, inst->GetArg(0)); code->CallFunction(reinterpret_cast(cb.MemoryRead16)); } void EmitX64::EmitReadMemory32(IR::Block&, IR::Inst* inst) { reg_alloc.HostCall(inst, inst->GetArg(0)); code->CallFunction(reinterpret_cast(cb.MemoryRead32)); } void EmitX64::EmitReadMemory64(IR::Block&, IR::Inst* inst) { reg_alloc.HostCall(inst, inst->GetArg(0)); code->CallFunction(reinterpret_cast(cb.MemoryRead64)); } void EmitX64::EmitWriteMemory8(IR::Block&, IR::Inst* inst) { reg_alloc.HostCall(nullptr, inst->GetArg(0), inst->GetArg(1)); code->CallFunction(reinterpret_cast(cb.MemoryWrite8)); } void EmitX64::EmitWriteMemory16(IR::Block&, IR::Inst* inst) { reg_alloc.HostCall(nullptr, inst->GetArg(0), inst->GetArg(1)); code->CallFunction(reinterpret_cast(cb.MemoryWrite16)); } void EmitX64::EmitWriteMemory32(IR::Block&, IR::Inst* inst) { reg_alloc.HostCall(nullptr, inst->GetArg(0), inst->GetArg(1)); code->CallFunction(reinterpret_cast(cb.MemoryWrite32)); } void EmitX64::EmitWriteMemory64(IR::Block&, IR::Inst* inst) { reg_alloc.HostCall(nullptr, inst->GetArg(0), inst->GetArg(1)); code->CallFunction(reinterpret_cast(cb.MemoryWrite64)); } static void ExclusiveWrite(BlockOfCode* code, RegAlloc& reg_alloc, IR::Inst* inst, void* fn) { using namespace Xbyak::util; Xbyak::Label end; reg_alloc.HostCall(nullptr, inst->GetArg(0), inst->GetArg(1)); Xbyak::Reg32 passed = reg_alloc.DefGpr(inst).cvt32(); Xbyak::Reg32 tmp = code->ABI_RETURN.cvt32(); // Use one of the unusued HostCall registers. code->mov(passed, u32(1)); code->cmp(code->byte[r15 + offsetof(JitState, exclusive_state)], u8(0)); code->je(end); code->mov(tmp, code->ABI_PARAM1); code->xor_(tmp, dword[r15 + offsetof(JitState, exclusive_address)]); code->test(tmp, JitState::RESERVATION_GRANULE_MASK); code->jne(end); code->mov(code->byte[r15 + offsetof(JitState, exclusive_state)], u8(0)); code->CallFunction(fn); code->xor_(passed, passed); code->L(end); } void EmitX64::EmitExclusiveWriteMemory8(IR::Block&, IR::Inst* inst) { ExclusiveWrite(code, reg_alloc, inst, reinterpret_cast(cb.MemoryWrite8)); } void EmitX64::EmitExclusiveWriteMemory16(IR::Block&, IR::Inst* inst) { ExclusiveWrite(code, reg_alloc, inst, reinterpret_cast(cb.MemoryWrite16)); } void EmitX64::EmitExclusiveWriteMemory32(IR::Block&, IR::Inst* inst) { ExclusiveWrite(code, reg_alloc, inst, reinterpret_cast(cb.MemoryWrite32)); } void EmitX64::EmitExclusiveWriteMemory64(IR::Block&, IR::Inst* inst) { using namespace Xbyak::util; Xbyak::Label end; reg_alloc.HostCall(nullptr, inst->GetArg(0), inst->GetArg(1)); Xbyak::Reg32 passed = reg_alloc.DefGpr(inst).cvt32(); Xbyak::Reg64 value_hi = reg_alloc.UseScratchGpr(inst->GetArg(2)); Xbyak::Reg64 value = code->ABI_PARAM2; Xbyak::Reg32 tmp = code->ABI_RETURN.cvt32(); // Use one of the unusued HostCall registers. code->mov(passed, u32(1)); code->cmp(code->byte[r15 + offsetof(JitState, exclusive_state)], u8(0)); code->je(end); code->mov(tmp, code->ABI_PARAM1); code->xor_(tmp, dword[r15 + offsetof(JitState, exclusive_address)]); code->test(tmp, JitState::RESERVATION_GRANULE_MASK); code->jne(end); code->mov(code->byte[r15 + offsetof(JitState, exclusive_state)], u8(0)); code->mov(value.cvt32(), value.cvt32()); // zero extend to 64-bits code->shl(value_hi, 32); code->or_(value, value_hi); code->CallFunction(reinterpret_cast(cb.MemoryWrite64)); code->xor_(passed, passed); code->L(end); } void EmitX64::EmitAddCycles(size_t cycles) { using namespace Xbyak::util; ASSERT(cycles < std::numeric_limits::max()); code->sub(qword[r15 + offsetof(JitState, cycles_remaining)], static_cast(cycles)); } static Xbyak::Label EmitCond(BlockOfCode* code, Arm::Cond cond) { using namespace Xbyak::util; Xbyak::Label label; const Xbyak::Reg32 cpsr = eax; code->mov(cpsr, MJitStateCpsr()); constexpr size_t n_shift = 31; constexpr size_t z_shift = 30; constexpr size_t c_shift = 29; constexpr size_t v_shift = 28; constexpr u32 n_mask = 1u << n_shift; constexpr u32 z_mask = 1u << z_shift; constexpr u32 c_mask = 1u << c_shift; constexpr u32 v_mask = 1u << v_shift; switch (cond) { case Arm::Cond::EQ: //z code->test(cpsr, z_mask); code->jnz(label); break; case Arm::Cond::NE: //!z code->test(cpsr, z_mask); code->jz(label); break; case Arm::Cond::CS: //c code->test(cpsr, c_mask); code->jnz(label); break; case Arm::Cond::CC: //!c code->test(cpsr, c_mask); code->jz(label); break; case Arm::Cond::MI: //n code->test(cpsr, n_mask); code->jnz(label); break; case Arm::Cond::PL: //!n code->test(cpsr, n_mask); code->jz(label); break; case Arm::Cond::VS: //v code->test(cpsr, v_mask); code->jnz(label); break; case Arm::Cond::VC: //!v code->test(cpsr, v_mask); code->jz(label); break; case Arm::Cond::HI: { //c & !z code->and_(cpsr, z_mask | c_mask); code->cmp(cpsr, c_mask); code->je(label); break; } case Arm::Cond::LS: { //!c | z code->and_(cpsr, z_mask | c_mask); code->cmp(cpsr, c_mask); code->jne(label); break; } case Arm::Cond::GE: { // n == v code->and_(cpsr, n_mask | v_mask); code->jz(label); code->cmp(cpsr, n_mask | v_mask); code->je(label); break; } case Arm::Cond::LT: { // n != v Xbyak::Label fail; code->and_(cpsr, n_mask | v_mask); code->jz(fail); code->cmp(cpsr, n_mask | v_mask); code->jne(label); code->L(fail); break; } case Arm::Cond::GT: { // !z & (n == v) const Xbyak::Reg32 tmp1 = ebx; const Xbyak::Reg32 tmp2 = esi; code->mov(tmp1, cpsr); code->mov(tmp2, cpsr); code->shr(tmp1, n_shift); code->shr(tmp2, v_shift); code->shr(cpsr, z_shift); code->xor_(tmp1, tmp2); code->or_(tmp1, cpsr); code->test(tmp1, 1); code->jz(label); break; } case Arm::Cond::LE: { // z | (n != v) const Xbyak::Reg32 tmp1 = ebx; const Xbyak::Reg32 tmp2 = esi; code->mov(tmp1, cpsr); code->mov(tmp2, cpsr); code->shr(tmp1, n_shift); code->shr(tmp2, v_shift); code->shr(cpsr, z_shift); code->xor_(tmp1, tmp2); code->or_(tmp1, cpsr); code->test(tmp1, 1); code->jnz(label); break; } default: ASSERT_MSG(false, "Unknown cond %zu", static_cast(cond)); break; } return label; } void EmitX64::EmitCondPrelude(const IR::Block& block) { if (block.GetCondition() == Arm::Cond::AL) { ASSERT(!block.HasConditionFailedLocation()); return; } ASSERT(block.HasConditionFailedLocation()); Xbyak::Label pass = EmitCond(code, block.GetCondition()); EmitAddCycles(block.ConditionFailedCycleCount()); EmitTerminalLinkBlock(IR::Term::LinkBlock{block.ConditionFailedLocation()}, block.Location()); code->L(pass); } void EmitX64::EmitTerminal(IR::Terminal terminal, Arm::LocationDescriptor initial_location) { switch (terminal.which()) { case 1: EmitTerminalInterpret(boost::get(terminal), initial_location); return; case 2: EmitTerminalReturnToDispatch(boost::get(terminal), initial_location); return; case 3: EmitTerminalLinkBlock(boost::get(terminal), initial_location); return; case 4: EmitTerminalLinkBlockFast(boost::get(terminal), initial_location); return; case 5: EmitTerminalPopRSBHint(boost::get(terminal), initial_location); return; case 6: EmitTerminalIf(boost::get(terminal), initial_location); return; case 7: EmitTerminalCheckHalt(boost::get(terminal), initial_location); return; default: ASSERT_MSG(false, "Invalid Terminal. Bad programmer."); return; } } void EmitX64::EmitTerminalInterpret(IR::Term::Interpret terminal, Arm::LocationDescriptor initial_location) { ASSERT_MSG(terminal.next.TFlag() == initial_location.TFlag(), "Unimplemented"); ASSERT_MSG(terminal.next.EFlag() == initial_location.EFlag(), "Unimplemented"); code->mov(code->ABI_PARAM1.cvt32(), terminal.next.PC()); code->mov(code->ABI_PARAM2, reinterpret_cast(jit_interface)); code->mov(MJitStateReg(Arm::Reg::PC), code->ABI_PARAM1.cvt32()); code->SwitchMxcsrOnExit(); code->CallFunction(reinterpret_cast(cb.InterpreterFallback)); code->ReturnFromRunCode(false); // TODO: Check cycles } void EmitX64::EmitTerminalReturnToDispatch(IR::Term::ReturnToDispatch, Arm::LocationDescriptor initial_location) { code->ReturnFromRunCode(); } void EmitX64::EmitTerminalLinkBlock(IR::Term::LinkBlock terminal, Arm::LocationDescriptor initial_location) { using namespace Xbyak::util; if (terminal.next.TFlag() != initial_location.TFlag()) { if (terminal.next.TFlag()) { code->or_(MJitStateCpsr(), u32(1 << 5)); } else { code->and_(MJitStateCpsr(), u32(~(1 << 5))); } } if (terminal.next.EFlag() != initial_location.EFlag()) { if (terminal.next.EFlag()) { code->or_(MJitStateCpsr(), u32(1 << 9)); } else { code->and_(MJitStateCpsr(), u32(~(1 << 9))); } } code->cmp(qword[r15 + offsetof(JitState, cycles_remaining)], 0); CodePtr patch_location = code->getCurr(); patch_jg_locations[terminal.next].emplace_back(patch_location); if (auto next_bb = GetBasicBlock(terminal.next)) { code->jg(next_bb->code_ptr); } code->EnsurePatchLocationSize(patch_location, 6); code->mov(MJitStateReg(Arm::Reg::PC), terminal.next.PC()); code->ReturnFromRunCode(); // TODO: Check cycles, Properly do a link } void EmitX64::EmitTerminalLinkBlockFast(IR::Term::LinkBlockFast terminal, Arm::LocationDescriptor initial_location) { using namespace Xbyak::util; if (terminal.next.TFlag() != initial_location.TFlag()) { if (terminal.next.TFlag()) { code->or_(MJitStateCpsr(), u32(1 << 5)); } else { code->and_(MJitStateCpsr(), u32(~(1 << 5))); } } if (terminal.next.EFlag() != initial_location.EFlag()) { if (terminal.next.EFlag()) { code->or_(MJitStateCpsr(), u32(1 << 9)); } else { code->and_(MJitStateCpsr(), u32(~(1 << 9))); } } CodePtr patch_location = code->getCurr(); patch_jmp_locations[terminal.next].emplace_back(patch_location); if (auto next_bb = GetBasicBlock(terminal.next)) { code->jmp(next_bb->code_ptr); code->EnsurePatchLocationSize(patch_location, 5); } else { code->mov(MJitStateReg(Arm::Reg::PC), terminal.next.PC()); code->jmp(code->GetReturnFromRunCodeAddress()); code->nop(3); } } void EmitX64::EmitTerminalPopRSBHint(IR::Term::PopRSBHint, Arm::LocationDescriptor initial_location) { using namespace Xbyak::util; // This calculation has to match up with IREmitter::PushRSB code->mov(ebx, MJitStateCpsr()); code->mov(ecx, MJitStateReg(Arm::Reg::PC)); code->and_(ebx, u32((1 << 5) | (1 << 9))); code->shr(ebx, 2); code->or_(ebx, dword[r15 + offsetof(JitState, guest_FPSCR_mode)]); code->shl(rbx, 32); code->or_(rbx, rcx); code->mov(rax, u64(code->GetReturnFromRunCodeAddress())); for (size_t i = 0; i < JitState::RSBSize; ++i) { code->cmp(rbx, qword[r15 + offsetof(JitState, rsb_location_descriptors) + i * sizeof(u64)]); code->cmove(rax, qword[r15 + offsetof(JitState, rsb_codeptrs) + i * sizeof(u64)]); } code->jmp(rax); } void EmitX64::EmitTerminalIf(IR::Term::If terminal, Arm::LocationDescriptor initial_location) { Xbyak::Label pass = EmitCond(code, terminal.if_); EmitTerminal(terminal.else_, initial_location); code->L(pass); EmitTerminal(terminal.then_, initial_location); } void EmitX64::EmitTerminalCheckHalt(IR::Term::CheckHalt terminal, Arm::LocationDescriptor initial_location) { using namespace Xbyak::util; code->cmp(code->byte[r15 + offsetof(JitState, halt_requested)], u8(0)); code->jne(code->GetReturnFromRunCodeAddress()); EmitTerminal(terminal.else_, initial_location); } void EmitX64::Patch(Arm::LocationDescriptor desc, CodePtr bb) { using namespace Xbyak::util; const CodePtr save_code_ptr = code->getCurr(); for (CodePtr location : patch_jg_locations[desc]) { code->SetCodePtr(location); code->jg(bb); code->EnsurePatchLocationSize(location, 6); } for (CodePtr location : patch_jmp_locations[desc]) { code->SetCodePtr(location); code->jmp(bb); code->EnsurePatchLocationSize(location, 5); } for (CodePtr location : patch_unique_hash_locations[desc.UniqueHash()]) { code->SetCodePtr(location); code->mov(rcx, u64(bb)); code->EnsurePatchLocationSize(location, 10); } code->SetCodePtr(save_code_ptr); } void EmitX64::ClearCache() { unique_hash_to_code_ptr.clear(); patch_unique_hash_locations.clear(); basic_blocks.clear(); patch_jg_locations.clear(); patch_jmp_locations.clear(); } } // namespace BackendX64 } // namespace Dynarmic