/* vfp/vfpsingle.c - ARM VFPv3 emulation unit - SoftFloat single instruction Copyright (C) 2003 Skyeye Develop Group for help please send mail to This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* * This code is derived in part from : * - Android kernel * - John R. Housers softfloat library, which * carries the following notice: * * =========================================================================== * This C source file is part of the SoftFloat IEC/IEEE Floating-point * Arithmetic Package, Release 2. * * Written by John R. Hauser. This work was made possible in part by the * International Computer Science Institute, located at Suite 600, 1947 Center * Street, Berkeley, California 94704. Funding was partially provided by the * National Science Foundation under grant MIP-9311980. The original version * of this code was written as part of a project to build a fixed-point vector * processor in collaboration with the University of California at Berkeley, * overseen by Profs. Nelson Morgan and John Wawrzynek. More information * is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ * arithmetic/softfloat.html'. * * THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort * has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT * TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO * PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY * AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. * * Derivative works are acceptable, even for commercial purposes, so long as * (1) they include prominent notice that the work is derivative, and (2) they * include prominent notice akin to these three paragraphs for those parts of * this code that are retained. * =========================================================================== */ #include #include #include "common/common_types.h" #include "common/logging/log.h" #include "skyeye_interpreter/skyeye_common/vfp/vfp_helper.h" #include "skyeye_interpreter/skyeye_common/vfp/asm_vfp.h" #include "skyeye_interpreter/skyeye_common/vfp/vfp.h" static struct vfp_single vfp_single_default_qnan = { 255, 0, VFP_SINGLE_SIGNIFICAND_QNAN, }; static void vfp_single_dump(const char *str, struct vfp_single *s) { LOG_TRACE(Core_ARM11, "%s: sign=%d exponent=%d significand=%08x", str, s->sign != 0, s->exponent, s->significand); } static void vfp_single_normalise_denormal(struct vfp_single *vs) { int bits = 31 - fls(vs->significand); vfp_single_dump("normalise_denormal: in", vs); if (bits) { vs->exponent -= bits - 1; vs->significand <<= bits; } vfp_single_dump("normalise_denormal: out", vs); } u32 vfp_single_normaliseround(ARMul_State* state, int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func) { u32 significand, incr, rmode; int exponent, shift, underflow; vfp_single_dump("pack: in", vs); /* * Infinities and NaNs are a special case. */ if (vs->exponent == 255 && (vs->significand == 0 || exceptions)) goto pack; /* * Special-case zero. */ if (vs->significand == 0) { vs->exponent = 0; goto pack; } exponent = vs->exponent; significand = vs->significand; /* * Normalise first. Note that we shift the significand up to * bit 31, so we have VFP_SINGLE_LOW_BITS + 1 below the least * significant bit. */ shift = 32 - fls(significand); if (shift < 32 && shift) { exponent -= shift; significand <<= shift; } #if 1 vs->exponent = exponent; vs->significand = significand; vfp_single_dump("pack: normalised", vs); #endif /* * Tiny number? */ underflow = exponent < 0; if (underflow) { significand = vfp_shiftright32jamming(significand, -exponent); exponent = 0; #if 1 vs->exponent = exponent; vs->significand = significand; vfp_single_dump("pack: tiny number", vs); #endif if (!(significand & ((1 << (VFP_SINGLE_LOW_BITS + 1)) - 1))) underflow = 0; } /* * Select rounding increment. */ incr = 0; rmode = fpscr & FPSCR_RMODE_MASK; if (rmode == FPSCR_ROUND_NEAREST) { incr = 1 << VFP_SINGLE_LOW_BITS; if ((significand & (1 << (VFP_SINGLE_LOW_BITS + 1))) == 0) incr -= 1; } else if (rmode == FPSCR_ROUND_TOZERO) { incr = 0; } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vs->sign != 0)) incr = (1 << (VFP_SINGLE_LOW_BITS + 1)) - 1; LOG_TRACE(Core_ARM11, "rounding increment = 0x%08x", incr); /* * Is our rounding going to overflow? */ if ((significand + incr) < significand) { exponent += 1; significand = (significand >> 1) | (significand & 1); incr >>= 1; #if 1 vs->exponent = exponent; vs->significand = significand; vfp_single_dump("pack: overflow", vs); #endif } /* * If any of the low bits (which will be shifted out of the * number) are non-zero, the result is inexact. */ if (significand & ((1 << (VFP_SINGLE_LOW_BITS + 1)) - 1)) exceptions |= FPSCR_IXC; /* * Do our rounding. */ significand += incr; /* * Infinity? */ if (exponent >= 254) { exceptions |= FPSCR_OFC | FPSCR_IXC; if (incr == 0) { vs->exponent = 253; vs->significand = 0x7fffffff; } else { vs->exponent = 255; /* infinity */ vs->significand = 0; } } else { if (significand >> (VFP_SINGLE_LOW_BITS + 1) == 0) exponent = 0; if (exponent || significand > 0x80000000) underflow = 0; if (underflow) exceptions |= FPSCR_UFC; vs->exponent = exponent; vs->significand = significand >> 1; } pack: vfp_single_dump("pack: final", vs); { s32 d = vfp_single_pack(vs); LOG_TRACE(Core_ARM11, "%s: d(s%d)=%08x exceptions=%08x", func, sd, d, exceptions); vfp_put_float(state, d, sd); } return exceptions; } /* * Propagate the NaN, setting exceptions if it is signalling. * 'n' is always a NaN. 'm' may be a number, NaN or infinity. */ static u32 vfp_propagate_nan(struct vfp_single *vsd, struct vfp_single *vsn, struct vfp_single *vsm, u32 fpscr) { struct vfp_single *nan; int tn, tm = 0; tn = vfp_single_type(vsn); if (vsm) tm = vfp_single_type(vsm); if (fpscr & FPSCR_DEFAULT_NAN) /* * Default NaN mode - always returns a quiet NaN */ nan = &vfp_single_default_qnan; else { /* * Contemporary mode - select the first signalling * NAN, or if neither are signalling, the first * quiet NAN. */ if (tn == VFP_SNAN || (tm != VFP_SNAN && tn == VFP_QNAN)) nan = vsn; else nan = vsm; /* * Make the NaN quiet. */ nan->significand |= VFP_SINGLE_SIGNIFICAND_QNAN; } *vsd = *nan; /* * If one was a signalling NAN, raise invalid operation. */ return tn == VFP_SNAN || tm == VFP_SNAN ? (u32)FPSCR_IOC : (u32)VFP_NAN_FLAG; } /* * Extended operations */ static u32 vfp_single_fabs(ARMul_State* state, int sd, int unused, s32 m, u32 fpscr) { vfp_put_float(state, vfp_single_packed_abs(m), sd); return 0; } static u32 vfp_single_fcpy(ARMul_State* state, int sd, int unused, s32 m, u32 fpscr) { vfp_put_float(state, m, sd); return 0; } static u32 vfp_single_fneg(ARMul_State* state, int sd, int unused, s32 m, u32 fpscr) { vfp_put_float(state, vfp_single_packed_negate(m), sd); return 0; } static const u16 sqrt_oddadjust[] = { 0x0004, 0x0022, 0x005d, 0x00b1, 0x011d, 0x019f, 0x0236, 0x02e0, 0x039c, 0x0468, 0x0545, 0x0631, 0x072b, 0x0832, 0x0946, 0x0a67 }; static const u16 sqrt_evenadjust[] = { 0x0a2d, 0x08af, 0x075a, 0x0629, 0x051a, 0x0429, 0x0356, 0x029e, 0x0200, 0x0179, 0x0109, 0x00af, 0x0068, 0x0034, 0x0012, 0x0002 }; u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand) { int index; u32 z, a; if ((significand & 0xc0000000) != 0x40000000) { LOG_TRACE(Core_ARM11, "invalid significand"); } a = significand << 1; index = (a >> 27) & 15; if (exponent & 1) { z = 0x4000 + (a >> 17) - sqrt_oddadjust[index]; z = ((a / z) << 14) + (z << 15); a >>= 1; } else { z = 0x8000 + (a >> 17) - sqrt_evenadjust[index]; z = a / z + z; z = (z >= 0x20000) ? 0xffff8000 : (z << 15); if (z <= a) return (s32)a >> 1; } { u64 v = (u64)a << 31; do_div(v, z); return (u32)(v + (z >> 1)); } } static u32 vfp_single_fsqrt(ARMul_State* state, int sd, int unused, s32 m, u32 fpscr) { struct vfp_single vsm, vsd, *vsp; int ret, tm; vfp_single_unpack(&vsm, m, &fpscr); tm = vfp_single_type(&vsm); if (tm & (VFP_NAN|VFP_INFINITY)) { vsp = &vsd; if (tm & VFP_NAN) ret = vfp_propagate_nan(vsp, &vsm, nullptr, fpscr); else if (vsm.sign == 0) { sqrt_copy: vsp = &vsm; ret = 0; } else { sqrt_invalid: vsp = &vfp_single_default_qnan; ret = FPSCR_IOC; } vfp_put_float(state, vfp_single_pack(vsp), sd); return ret; } /* * sqrt(+/- 0) == +/- 0 */ if (tm & VFP_ZERO) goto sqrt_copy; /* * Normalise a denormalised number */ if (tm & VFP_DENORMAL) vfp_single_normalise_denormal(&vsm); /* * sqrt(<0) = invalid */ if (vsm.sign) goto sqrt_invalid; vfp_single_dump("sqrt", &vsm); /* * Estimate the square root. */ vsd.sign = 0; vsd.exponent = ((vsm.exponent - 127) >> 1) + 127; vsd.significand = vfp_estimate_sqrt_significand(vsm.exponent, vsm.significand) + 2; vfp_single_dump("sqrt estimate", &vsd); /* * And now adjust. */ if ((vsd.significand & VFP_SINGLE_LOW_BITS_MASK) <= 5) { if (vsd.significand < 2) { vsd.significand = 0xffffffff; } else { u64 term; s64 rem; vsm.significand <<= static_cast((vsm.exponent & 1) == 0); term = (u64)vsd.significand * vsd.significand; rem = ((u64)vsm.significand << 32) - term; LOG_TRACE(Core_ARM11, "term=%016" PRIx64 "rem=%016" PRIx64, term, rem); while (rem < 0) { vsd.significand -= 1; rem += ((u64)vsd.significand << 1) | 1; } vsd.significand |= rem != 0; } } vsd.significand = vfp_shiftright32jamming(vsd.significand, 1); return vfp_single_normaliseround(state, sd, &vsd, fpscr, 0, "fsqrt"); } /* * Equal := ZC * Less than := N * Greater than := C * Unordered := CV */ static u32 vfp_compare(ARMul_State* state, int sd, int signal_on_qnan, s32 m, u32 fpscr) { s32 d; u32 ret = 0; d = vfp_get_float(state, sd); if (vfp_single_packed_exponent(m) == 255 && vfp_single_packed_mantissa(m)) { ret |= FPSCR_CFLAG | FPSCR_VFLAG; if (signal_on_qnan || !(vfp_single_packed_mantissa(m) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1)))) /* * Signalling NaN, or signalling on quiet NaN */ ret |= FPSCR_IOC; } if (vfp_single_packed_exponent(d) == 255 && vfp_single_packed_mantissa(d)) { ret |= FPSCR_CFLAG | FPSCR_VFLAG; if (signal_on_qnan || !(vfp_single_packed_mantissa(d) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1)))) /* * Signalling NaN, or signalling on quiet NaN */ ret |= FPSCR_IOC; } if (ret == 0) { if (d == m || vfp_single_packed_abs(d | m) == 0) { /* * equal */ ret |= FPSCR_ZFLAG | FPSCR_CFLAG; } else if (vfp_single_packed_sign(d ^ m)) { /* * different signs */ if (vfp_single_packed_sign(d)) /* * d is negative, so d < m */ ret |= FPSCR_NFLAG; else /* * d is positive, so d > m */ ret |= FPSCR_CFLAG; } else if ((vfp_single_packed_sign(d) != 0) ^ (d < m)) { /* * d < m */ ret |= FPSCR_NFLAG; } else if ((vfp_single_packed_sign(d) != 0) ^ (d > m)) { /* * d > m */ ret |= FPSCR_CFLAG; } } return ret; } static u32 vfp_single_fcmp(ARMul_State* state, int sd, int unused, s32 m, u32 fpscr) { return vfp_compare(state, sd, 0, m, fpscr); } static u32 vfp_single_fcmpe(ARMul_State* state, int sd, int unused, s32 m, u32 fpscr) { return vfp_compare(state, sd, 1, m, fpscr); } static u32 vfp_single_fcmpz(ARMul_State* state, int sd, int unused, s32 m, u32 fpscr) { return vfp_compare(state, sd, 0, 0, fpscr); } static u32 vfp_single_fcmpez(ARMul_State* state, int sd, int unused, s32 m, u32 fpscr) { return vfp_compare(state, sd, 1, 0, fpscr); } static u32 vfp_single_fcvtd(ARMul_State* state, int dd, int unused, s32 m, u32 fpscr) { struct vfp_single vsm; struct vfp_double vdd; int tm; u32 exceptions = 0; vfp_single_unpack(&vsm, m, &fpscr); tm = vfp_single_type(&vsm); /* * If we have a signalling NaN, signal invalid operation. */ if (tm == VFP_SNAN) exceptions = FPSCR_IOC; if (tm & VFP_DENORMAL) vfp_single_normalise_denormal(&vsm); vdd.sign = vsm.sign; vdd.significand = (u64)vsm.significand << 32; /* * If we have an infinity or NaN, the exponent must be 2047. */ if (tm & (VFP_INFINITY|VFP_NAN)) { vdd.exponent = 2047; if (tm == VFP_QNAN) vdd.significand |= VFP_DOUBLE_SIGNIFICAND_QNAN; goto pack_nan; } else if (tm & VFP_ZERO) vdd.exponent = 0; else vdd.exponent = vsm.exponent + (1023 - 127); return vfp_double_normaliseround(state, dd, &vdd, fpscr, exceptions, "fcvtd"); pack_nan: vfp_put_double(state, vfp_double_pack(&vdd), dd); return exceptions; } static u32 vfp_single_fuito(ARMul_State* state, int sd, int unused, s32 m, u32 fpscr) { struct vfp_single vs; vs.sign = 0; vs.exponent = 127 + 31 - 1; vs.significand = (u32)m; return vfp_single_normaliseround(state, sd, &vs, fpscr, 0, "fuito"); } static u32 vfp_single_fsito(ARMul_State* state, int sd, int unused, s32 m, u32 fpscr) { struct vfp_single vs; vs.sign = (m & 0x80000000) >> 16; vs.exponent = 127 + 31 - 1; vs.significand = vs.sign ? -m : m; return vfp_single_normaliseround(state, sd, &vs, fpscr, 0, "fsito"); } static u32 vfp_single_ftoui(ARMul_State* state, int sd, int unused, s32 m, u32 fpscr) { struct vfp_single vsm; u32 d, exceptions = 0; int rmode = fpscr & FPSCR_RMODE_MASK; int tm; vfp_single_unpack(&vsm, m, &fpscr); vfp_single_dump("VSM", &vsm); /* * Do we have a denormalised number? */ tm = vfp_single_type(&vsm); if (tm & VFP_DENORMAL) exceptions |= FPSCR_IDC; if (tm & VFP_NAN) vsm.sign = 1; if (vsm.exponent >= 127 + 32) { d = vsm.sign ? 0 : 0xffffffff; exceptions = FPSCR_IOC; } else if (vsm.exponent >= 127) { int shift = 127 + 31 - vsm.exponent; u32 rem, incr = 0; /* * 2^0 <= m < 2^32-2^8 */ d = (vsm.significand << 1) >> shift; rem = vsm.significand << (33 - shift); if (rmode == FPSCR_ROUND_NEAREST) { incr = 0x80000000; if ((d & 1) == 0) incr -= 1; } else if (rmode == FPSCR_ROUND_TOZERO) { incr = 0; } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vsm.sign != 0)) { incr = ~0; } if ((rem + incr) < rem) { if (d < 0xffffffff) d += 1; else exceptions |= FPSCR_IOC; } if (d && vsm.sign) { d = 0; exceptions |= FPSCR_IOC; } else if (rem) exceptions |= FPSCR_IXC; } else { d = 0; if (vsm.exponent | vsm.significand) { exceptions |= FPSCR_IXC; if (rmode == FPSCR_ROUND_PLUSINF && vsm.sign == 0) d = 1; else if (rmode == FPSCR_ROUND_MINUSINF && vsm.sign) { d = 0; exceptions |= FPSCR_IOC; } } } LOG_TRACE(Core_ARM11, "ftoui: d(s%d)=%08x exceptions=%08x", sd, d, exceptions); vfp_put_float(state, d, sd); return exceptions; } static u32 vfp_single_ftouiz(ARMul_State* state, int sd, int unused, s32 m, u32 fpscr) { return vfp_single_ftoui(state, sd, unused, m, FPSCR_ROUND_TOZERO); } static u32 vfp_single_ftosi(ARMul_State* state, int sd, int unused, s32 m, u32 fpscr) { struct vfp_single vsm; u32 d, exceptions = 0; int rmode = fpscr & FPSCR_RMODE_MASK; int tm; vfp_single_unpack(&vsm, m, &fpscr); vfp_single_dump("VSM", &vsm); /* * Do we have a denormalised number? */ tm = vfp_single_type(&vsm); if (vfp_single_type(&vsm) & VFP_DENORMAL) exceptions |= FPSCR_IDC; if (tm & VFP_NAN) { d = 0; exceptions |= FPSCR_IOC; } else if (vsm.exponent >= 127 + 32) { /* * m >= 2^31-2^7: invalid */ d = 0x7fffffff; if (vsm.sign) d = ~d; exceptions |= FPSCR_IOC; } else if (vsm.exponent >= 127) { int shift = 127 + 31 - vsm.exponent; u32 rem, incr = 0; /* 2^0 <= m <= 2^31-2^7 */ d = (vsm.significand << 1) >> shift; rem = vsm.significand << (33 - shift); if (rmode == FPSCR_ROUND_NEAREST) { incr = 0x80000000; if ((d & 1) == 0) incr -= 1; } else if (rmode == FPSCR_ROUND_TOZERO) { incr = 0; } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vsm.sign != 0)) { incr = ~0; } if ((rem + incr) < rem && d < 0xffffffff) d += 1; if (d > (0x7fffffffu + (vsm.sign != 0))) { d = (0x7fffffffu + (vsm.sign != 0)); exceptions |= FPSCR_IOC; } else if (rem) exceptions |= FPSCR_IXC; if (vsm.sign) d = (~d + 1); } else { d = 0; if (vsm.exponent | vsm.significand) { exceptions |= FPSCR_IXC; if (rmode == FPSCR_ROUND_PLUSINF && vsm.sign == 0) d = 1; else if (rmode == FPSCR_ROUND_MINUSINF && vsm.sign) d = -1; } } LOG_TRACE(Core_ARM11, "ftosi: d(s%d)=%08x exceptions=%08x", sd, d, exceptions); vfp_put_float(state, (s32)d, sd); return exceptions; } static u32 vfp_single_ftosiz(ARMul_State* state, int sd, int unused, s32 m, u32 fpscr) { return vfp_single_ftosi(state, sd, unused, m, FPSCR_ROUND_TOZERO); } static struct op fops_ext[] = { { vfp_single_fcpy, 0 }, //0x00000000 - FEXT_FCPY { vfp_single_fabs, 0 }, //0x00000001 - FEXT_FABS { vfp_single_fneg, 0 }, //0x00000002 - FEXT_FNEG { vfp_single_fsqrt, 0 }, //0x00000003 - FEXT_FSQRT { nullptr, 0 }, { nullptr, 0 }, { nullptr, 0 }, { nullptr, 0 }, { vfp_single_fcmp, OP_SCALAR }, //0x00000008 - FEXT_FCMP { vfp_single_fcmpe, OP_SCALAR }, //0x00000009 - FEXT_FCMPE { vfp_single_fcmpz, OP_SCALAR }, //0x0000000A - FEXT_FCMPZ { vfp_single_fcmpez, OP_SCALAR }, //0x0000000B - FEXT_FCMPEZ { nullptr, 0 }, { nullptr, 0 }, { nullptr, 0 }, { vfp_single_fcvtd, OP_SCALAR|OP_DD }, //0x0000000F - FEXT_FCVT { vfp_single_fuito, OP_SCALAR }, //0x00000010 - FEXT_FUITO { vfp_single_fsito, OP_SCALAR }, //0x00000011 - FEXT_FSITO { nullptr, 0 }, { nullptr, 0 }, { nullptr, 0 }, { nullptr, 0 }, { nullptr, 0 }, { nullptr, 0 }, { vfp_single_ftoui, OP_SCALAR }, //0x00000018 - FEXT_FTOUI { vfp_single_ftouiz, OP_SCALAR }, //0x00000019 - FEXT_FTOUIZ { vfp_single_ftosi, OP_SCALAR }, //0x0000001A - FEXT_FTOSI { vfp_single_ftosiz, OP_SCALAR }, //0x0000001B - FEXT_FTOSIZ }; static u32 vfp_single_fadd_nonnumber(struct vfp_single *vsd, struct vfp_single *vsn, struct vfp_single *vsm, u32 fpscr) { struct vfp_single *vsp; u32 exceptions = 0; int tn, tm; tn = vfp_single_type(vsn); tm = vfp_single_type(vsm); if (tn & tm & VFP_INFINITY) { /* * Two infinities. Are they different signs? */ if (vsn->sign ^ vsm->sign) { /* * different signs -> invalid */ exceptions = FPSCR_IOC; vsp = &vfp_single_default_qnan; } else { /* * same signs -> valid */ vsp = vsn; } } else if (tn & VFP_INFINITY && tm & VFP_NUMBER) { /* * One infinity and one number -> infinity */ vsp = vsn; } else { /* * 'n' is a NaN of some type */ return vfp_propagate_nan(vsd, vsn, vsm, fpscr); } *vsd = *vsp; return exceptions; } static u32 vfp_single_add(struct vfp_single *vsd, struct vfp_single *vsn, struct vfp_single *vsm, u32 fpscr) { u32 exp_diff, m_sig; if (vsn->significand & 0x80000000 || vsm->significand & 0x80000000) { LOG_WARNING(Core_ARM11, "bad FP values"); vfp_single_dump("VSN", vsn); vfp_single_dump("VSM", vsm); } /* * Ensure that 'n' is the largest magnitude number. Note that * if 'n' and 'm' have equal exponents, we do not swap them. * This ensures that NaN propagation works correctly. */ if (vsn->exponent < vsm->exponent) { std::swap(vsm, vsn); } /* * Is 'n' an infinity or a NaN? Note that 'm' may be a number, * infinity or a NaN here. */ if (vsn->exponent == 255) return vfp_single_fadd_nonnumber(vsd, vsn, vsm, fpscr); /* * We have two proper numbers, where 'vsn' is the larger magnitude. * * Copy 'n' to 'd' before doing the arithmetic. */ *vsd = *vsn; /* * Align both numbers. */ exp_diff = vsn->exponent - vsm->exponent; m_sig = vfp_shiftright32jamming(vsm->significand, exp_diff); /* * If the signs are different, we are really subtracting. */ if (vsn->sign ^ vsm->sign) { m_sig = vsn->significand - m_sig; if ((s32)m_sig < 0) { vsd->sign = vfp_sign_negate(vsd->sign); m_sig = (~m_sig + 1); } else if (m_sig == 0) { vsd->sign = (fpscr & FPSCR_RMODE_MASK) == FPSCR_ROUND_MINUSINF ? 0x8000 : 0; } } else { m_sig = vsn->significand + m_sig; } vsd->significand = m_sig; return 0; } static u32 vfp_single_multiply(struct vfp_single *vsd, struct vfp_single *vsn, struct vfp_single *vsm, u32 fpscr) { vfp_single_dump("VSN", vsn); vfp_single_dump("VSM", vsm); /* * Ensure that 'n' is the largest magnitude number. Note that * if 'n' and 'm' have equal exponents, we do not swap them. * This ensures that NaN propagation works correctly. */ if (vsn->exponent < vsm->exponent) { std::swap(vsm, vsn); LOG_TRACE(Core_ARM11, "swapping M <-> N"); } vsd->sign = vsn->sign ^ vsm->sign; /* * If 'n' is an infinity or NaN, handle it. 'm' may be anything. */ if (vsn->exponent == 255) { if (vsn->significand || (vsm->exponent == 255 && vsm->significand)) return vfp_propagate_nan(vsd, vsn, vsm, fpscr); if ((vsm->exponent | vsm->significand) == 0) { *vsd = vfp_single_default_qnan; return FPSCR_IOC; } vsd->exponent = vsn->exponent; vsd->significand = 0; return 0; } /* * If 'm' is zero, the result is always zero. In this case, * 'n' may be zero or a number, but it doesn't matter which. */ if ((vsm->exponent | vsm->significand) == 0) { vsd->exponent = 0; vsd->significand = 0; return 0; } /* * We add 2 to the destination exponent for the same reason as * the addition case - though this time we have +1 from each * input operand. */ vsd->exponent = vsn->exponent + vsm->exponent - 127 + 2; vsd->significand = vfp_hi64to32jamming((u64)vsn->significand * vsm->significand); vfp_single_dump("VSD", vsd); return 0; } #define NEG_MULTIPLY (1 << 0) #define NEG_SUBTRACT (1 << 1) static u32 vfp_single_multiply_accumulate(ARMul_State* state, int sd, int sn, s32 m, u32 fpscr, u32 negate, const char *func) { vfp_single vsd, vsp, vsn, vsm; u32 exceptions; s32 v; v = vfp_get_float(state, sn); LOG_TRACE(Core_ARM11, "s%u = %08x", sn, v); vfp_single_unpack(&vsn, v, &fpscr); if (vsn.exponent == 0 && vsn.significand) vfp_single_normalise_denormal(&vsn); vfp_single_unpack(&vsm, m, &fpscr); if (vsm.exponent == 0 && vsm.significand) vfp_single_normalise_denormal(&vsm); exceptions = vfp_single_multiply(&vsp, &vsn, &vsm, fpscr); if (negate & NEG_MULTIPLY) vsp.sign = vfp_sign_negate(vsp.sign); v = vfp_get_float(state, sd); LOG_TRACE(Core_ARM11, "s%u = %08x", sd, v); vfp_single_unpack(&vsn, v, &fpscr); if (vsn.exponent == 0 && vsn.significand != 0) vfp_single_normalise_denormal(&vsn); if (negate & NEG_SUBTRACT) vsn.sign = vfp_sign_negate(vsn.sign); exceptions |= vfp_single_add(&vsd, &vsn, &vsp, fpscr); return vfp_single_normaliseround(state, sd, &vsd, fpscr, exceptions, func); } /* * Standard operations */ /* * sd = sd + (sn * sm) */ static u32 vfp_single_fmac(ARMul_State* state, int sd, int sn, s32 m, u32 fpscr) { LOG_TRACE(Core_ARM11, "s%u = %08x", sn, sd); return vfp_single_multiply_accumulate(state, sd, sn, m, fpscr, 0, "fmac"); } /* * sd = sd - (sn * sm) */ static u32 vfp_single_fnmac(ARMul_State* state, int sd, int sn, s32 m, u32 fpscr) { // TODO: this one has its arguments inverted, investigate. LOG_TRACE(Core_ARM11, "s%u = %08x", sd, sn); return vfp_single_multiply_accumulate(state, sd, sn, m, fpscr, NEG_MULTIPLY, "fnmac"); } /* * sd = -sd + (sn * sm) */ static u32 vfp_single_fmsc(ARMul_State* state, int sd, int sn, s32 m, u32 fpscr) { LOG_TRACE(Core_ARM11, "s%u = %08x", sn, sd); return vfp_single_multiply_accumulate(state, sd, sn, m, fpscr, NEG_SUBTRACT, "fmsc"); } /* * sd = -sd - (sn * sm) */ static u32 vfp_single_fnmsc(ARMul_State* state, int sd, int sn, s32 m, u32 fpscr) { LOG_TRACE(Core_ARM11, "s%u = %08x", sn, sd); return vfp_single_multiply_accumulate(state, sd, sn, m, fpscr, NEG_SUBTRACT | NEG_MULTIPLY, "fnmsc"); } /* * sd = sn * sm */ static u32 vfp_single_fmul(ARMul_State* state, int sd, int sn, s32 m, u32 fpscr) { struct vfp_single vsd, vsn, vsm; u32 exceptions; s32 n = vfp_get_float(state, sn); LOG_TRACE(Core_ARM11, "s%u = %08x", sn, n); vfp_single_unpack(&vsn, n, &fpscr); if (vsn.exponent == 0 && vsn.significand) vfp_single_normalise_denormal(&vsn); vfp_single_unpack(&vsm, m, &fpscr); if (vsm.exponent == 0 && vsm.significand) vfp_single_normalise_denormal(&vsm); exceptions = vfp_single_multiply(&vsd, &vsn, &vsm, fpscr); return vfp_single_normaliseround(state, sd, &vsd, fpscr, exceptions, "fmul"); } /* * sd = -(sn * sm) */ static u32 vfp_single_fnmul(ARMul_State* state, int sd, int sn, s32 m, u32 fpscr) { struct vfp_single vsd, vsn, vsm; u32 exceptions; s32 n = vfp_get_float(state, sn); LOG_TRACE(Core_ARM11, "s%u = %08x", sn, n); vfp_single_unpack(&vsn, n, &fpscr); if (vsn.exponent == 0 && vsn.significand) vfp_single_normalise_denormal(&vsn); vfp_single_unpack(&vsm, m, &fpscr); if (vsm.exponent == 0 && vsm.significand) vfp_single_normalise_denormal(&vsm); exceptions = vfp_single_multiply(&vsd, &vsn, &vsm, fpscr); vsd.sign = vfp_sign_negate(vsd.sign); return vfp_single_normaliseround(state, sd, &vsd, fpscr, exceptions, "fnmul"); } /* * sd = sn + sm */ static u32 vfp_single_fadd(ARMul_State* state, int sd, int sn, s32 m, u32 fpscr) { struct vfp_single vsd, vsn, vsm; u32 exceptions; s32 n = vfp_get_float(state, sn); LOG_TRACE(Core_ARM11, "s%u = %08x", sn, n); /* * Unpack and normalise denormals. */ vfp_single_unpack(&vsn, n, &fpscr); if (vsn.exponent == 0 && vsn.significand) vfp_single_normalise_denormal(&vsn); vfp_single_unpack(&vsm, m, &fpscr); if (vsm.exponent == 0 && vsm.significand) vfp_single_normalise_denormal(&vsm); exceptions = vfp_single_add(&vsd, &vsn, &vsm, fpscr); return vfp_single_normaliseround(state, sd, &vsd, fpscr, exceptions, "fadd"); } /* * sd = sn - sm */ static u32 vfp_single_fsub(ARMul_State* state, int sd, int sn, s32 m, u32 fpscr) { LOG_TRACE(Core_ARM11, "s%u = %08x", sn, sd); /* * Subtraction is addition with one sign inverted. */ if (m != 0x7FC00000) // Only negate if m isn't NaN. m = vfp_single_packed_negate(m); return vfp_single_fadd(state, sd, sn, m, fpscr); } /* * sd = sn / sm */ static u32 vfp_single_fdiv(ARMul_State* state, int sd, int sn, s32 m, u32 fpscr) { struct vfp_single vsd, vsn, vsm; u32 exceptions = 0; s32 n = vfp_get_float(state, sn); int tm, tn; LOG_TRACE(Core_ARM11, "s%u = %08x", sn, n); vfp_single_unpack(&vsn, n, &fpscr); vfp_single_unpack(&vsm, m, &fpscr); vsd.sign = vsn.sign ^ vsm.sign; tn = vfp_single_type(&vsn); tm = vfp_single_type(&vsm); /* * Is n a NAN? */ if (tn & VFP_NAN) goto vsn_nan; /* * Is m a NAN? */ if (tm & VFP_NAN) goto vsm_nan; /* * If n and m are infinity, the result is invalid * If n and m are zero, the result is invalid */ if (tm & tn & (VFP_INFINITY|VFP_ZERO)) goto invalid; /* * If n is infinity, the result is infinity */ if (tn & VFP_INFINITY) goto infinity; /* * If m is zero, raise div0 exception */ if (tm & VFP_ZERO) goto divzero; /* * If m is infinity, or n is zero, the result is zero */ if (tm & VFP_INFINITY || tn & VFP_ZERO) goto zero; if (tn & VFP_DENORMAL) vfp_single_normalise_denormal(&vsn); if (tm & VFP_DENORMAL) vfp_single_normalise_denormal(&vsm); /* * Ok, we have two numbers, we can perform division. */ vsd.exponent = vsn.exponent - vsm.exponent + 127 - 1; vsm.significand <<= 1; if (vsm.significand <= (2 * vsn.significand)) { vsn.significand >>= 1; vsd.exponent++; } { u64 significand = (u64)vsn.significand << 32; do_div(significand, vsm.significand); vsd.significand = (u32)significand; } if ((vsd.significand & 0x3f) == 0) vsd.significand |= ((u64)vsm.significand * vsd.significand != (u64)vsn.significand << 32); return vfp_single_normaliseround(state, sd, &vsd, fpscr, 0, "fdiv"); vsn_nan: exceptions = vfp_propagate_nan(&vsd, &vsn, &vsm, fpscr); pack: vfp_put_float(state, vfp_single_pack(&vsd), sd); return exceptions; vsm_nan: exceptions = vfp_propagate_nan(&vsd, &vsm, &vsn, fpscr); goto pack; zero: vsd.exponent = 0; vsd.significand = 0; goto pack; divzero: exceptions = FPSCR_DZC; infinity: vsd.exponent = 255; vsd.significand = 0; goto pack; invalid: vfp_put_float(state, vfp_single_pack(&vfp_single_default_qnan), sd); return FPSCR_IOC; } static struct op fops[] = { { vfp_single_fmac, 0 }, { vfp_single_fmsc, 0 }, { vfp_single_fmul, 0 }, { vfp_single_fadd, 0 }, { vfp_single_fnmac, 0 }, { vfp_single_fnmsc, 0 }, { vfp_single_fnmul, 0 }, { vfp_single_fsub, 0 }, { vfp_single_fdiv, 0 }, }; #define FREG_BANK(x) ((x) & 0x18) #define FREG_IDX(x) ((x) & 7) u32 vfp_single_cpdo(ARMul_State* state, u32 inst, u32 fpscr) { u32 op = inst & FOP_MASK; u32 exceptions = 0; unsigned int dest; unsigned int sn = vfp_get_sn(inst); unsigned int sm = vfp_get_sm(inst); unsigned int vecitr, veclen, vecstride; struct op *fop; vecstride = 1 + ((fpscr & FPSCR_STRIDE_MASK) == FPSCR_STRIDE_MASK); fop = (op == FOP_EXT) ? &fops_ext[FEXT_TO_IDX(inst)] : &fops[FOP_TO_IDX(op)]; /* * fcvtsd takes a dN register number as destination, not sN. * Technically, if bit 0 of dd is set, this is an invalid * instruction. However, we ignore this for efficiency. * It also only operates on scalars. */ if (fop->flags & OP_DD) dest = vfp_get_dd(inst); else dest = vfp_get_sd(inst); /* * If destination bank is zero, vector length is always '1'. * ARM DDI0100F C5.1.3, C5.3.2. */ if ((fop->flags & OP_SCALAR) || FREG_BANK(dest) == 0) veclen = 0; else veclen = fpscr & FPSCR_LENGTH_MASK; LOG_TRACE(Core_ARM11, "vecstride=%u veclen=%u", vecstride, (veclen >> FPSCR_LENGTH_BIT) + 1); if (!fop->fn) { LOG_CRITICAL(Core_ARM11, "could not find single op %d, inst=0x%x@0x%x", FEXT_TO_IDX(inst), inst, state->Reg[15]); exit(-1); goto invalid; } for (vecitr = 0; vecitr <= veclen; vecitr += 1 << FPSCR_LENGTH_BIT) { s32 m = vfp_get_float(state, sm); u32 except; char type; type = (fop->flags & OP_DD) ? 'd' : 's'; (void)type; if (op == FOP_EXT) LOG_TRACE(Core_ARM11, "itr%d (%c%u) = op[%u] (s%u=%08x)", vecitr >> FPSCR_LENGTH_BIT, type, dest, sn, sm, m); else LOG_TRACE(Core_ARM11, "itr%d (%c%u) = (s%u) op[%u] (s%u=%08x)", vecitr >> FPSCR_LENGTH_BIT, type, dest, sn, FOP_TO_IDX(op), sm, m); except = fop->fn(state, dest, sn, m, fpscr); LOG_TRACE(Core_ARM11, "itr%d: exceptions=%08x", vecitr >> FPSCR_LENGTH_BIT, except); exceptions |= except; /* * CHECK: It appears to be undefined whether we stop when * we encounter an exception. We continue. */ dest = FREG_BANK(dest) + ((FREG_IDX(dest) + vecstride) & 7); sn = FREG_BANK(sn) + ((FREG_IDX(sn) + vecstride) & 7); if (FREG_BANK(sm) != 0) sm = FREG_BANK(sm) + ((FREG_IDX(sm) + vecstride) & 7); } return exceptions; invalid: return (u32)-1; }