/* This file is part of the dynarmic project. * Copyright (c) 2018 MerryMage * SPDX-License-Identifier: 0BSD */ #include #include #include #include "../rand_int.h" #include "dynarmic/common/common_types.h" #include "dynarmic/common/fp/fpcr.h" #include "dynarmic/common/fp/fpsr.h" #include "dynarmic/common/fp/unpacked.h" using namespace Dynarmic; using namespace Dynarmic::FP; TEST_CASE("FPUnpack Tests", "[fp]") { const static std::vector, u32>> test_cases { {0x00000000, {FPType::Zero, false, ToNormalized(false, 0, 0)}, 0}, {0x7F800000, {FPType::Infinity, false, ToNormalized(false, 1000000, 1)}, 0}, {0xFF800000, {FPType::Infinity, true, ToNormalized(true, 1000000, 1)}, 0}, {0x7F800001, {FPType::SNaN, false, ToNormalized(false, 0, 0)}, 0}, {0xFF800001, {FPType::SNaN, true, ToNormalized(true, 0, 0)}, 0}, {0x7FC00001, {FPType::QNaN, false, ToNormalized(false, 0, 0)}, 0}, {0xFFC00001, {FPType::QNaN, true, ToNormalized(true, 0, 0)}, 0}, {0x00000001, {FPType::Nonzero, false, ToNormalized(false, -149, 1)}, 0}, // Smallest single precision denormal is 2^-149. {0x3F7FFFFF, {FPType::Nonzero, false, ToNormalized(false, -24, 0xFFFFFF)}, 0}, // 1.0 - epsilon }; const FPCR fpcr; for (const auto& [input, expected_output, expected_fpsr] : test_cases) { FPSR fpsr; const auto output = FPUnpack(input, fpcr, fpsr); INFO("Input: " << std::hex << input); INFO("Output Sign: " << std::get<2>(output).sign); INFO("Output Exponent: " << std::get<2>(output).exponent); INFO("Output Mantissa: " << std::hex << std::get<2>(output).mantissa); INFO("Expected Sign: " << std::get<2>(expected_output).sign); INFO("Expected Exponent: " << std::get<2>(expected_output).exponent); INFO("Expected Mantissa: " << std::hex << std::get<2>(expected_output).mantissa); REQUIRE(output == expected_output); REQUIRE(fpsr.Value() == expected_fpsr); } } TEST_CASE("FPRound Tests", "[fp]") { const static std::vector, u32>> test_cases { {0x7F800000, {FPType::Infinity, false, ToNormalized(false, 1000000, 1)}, 0x14}, {0xFF800000, {FPType::Infinity, true, ToNormalized(true, 1000000, 1)}, 0x14}, {0x00000001, {FPType::Nonzero, false, ToNormalized(false, -149, 1)}, 0}, // Smallest single precision denormal is 2^-149. {0x3F7FFFFF, {FPType::Nonzero, false, ToNormalized(false, -24, 0xFFFFFF)}, 0}, // 1.0 - epsilon {0x3F800000, {FPType::Nonzero, false, ToNormalized(false, -28, 0xFFFFFFF)}, 0x10}, // rounds to 1.0 }; const FPCR fpcr; for (const auto& [expected_output, input, expected_fpsr] : test_cases) { FPSR fpsr; const auto output = FPRound(std::get<2>(input), fpcr, fpsr); INFO("Expected Output: " << std::hex << expected_output); REQUIRE(output == expected_output); REQUIRE(fpsr.Value() == expected_fpsr); } } TEST_CASE("FPUnpack<->FPRound Round-trip Tests", "[fp]") { const FPCR fpcr; for (size_t count = 0; count < 100000; count++) { FPSR fpsr; const u32 input = RandInt(0, 1) == 0 ? RandInt(0x00000001, 0x7F800000) : RandInt(0x80000001, 0xFF800000); const auto intermediate = std::get<2>(FPUnpack(input, fpcr, fpsr)); const u32 output = FPRound(intermediate, fpcr, fpsr); INFO("Count: " << count); INFO("Intermediate Values: " << std::hex << intermediate.sign << ';' << intermediate.exponent << ';' << intermediate.mantissa); REQUIRE(input == output); } } TEST_CASE("FPRound (near zero, round to posinf)", "[fp]") { const FPUnpacked input = {false, -353, 0x0a98d25ace5b2000}; FPSR fpsr; FPCR fpcr; fpcr.RMode(RoundingMode::TowardsPlusInfinity); const u32 output = FPRound(input, fpcr, fpsr); REQUIRE(output == 0x00000001); }