/* This file is part of the dynarmic project. * Copyright (c) 2016 MerryMage * This software may be used and distributed according to the terms of the GNU * General Public License version 2 or any later version. */ #include #include #include "backend_x64/abi.h" #include "backend_x64/block_of_code.h" #include "backend_x64/emit_x64.h" #include "backend_x64/jitstate.h" #include "common/address_range.h" #include "common/assert.h" #include "common/bit_util.h" #include "common/common_types.h" #include "common/variant_util.h" #include "frontend/arm/types.h" #include "frontend/ir/basic_block.h" #include "frontend/ir/location_descriptor.h" #include "frontend/ir/microinstruction.h" #include "frontend/ir/opcodes.h" // TODO: Have ARM flags in host flags and not have them use up GPR registers unless necessary. // TODO: Actually implement that proper instruction selector you've always wanted to sweetheart. namespace Dynarmic { namespace BackendX64 { constexpr u64 f32_negative_zero = 0x80000000u; constexpr u64 f32_nan = 0x7fc00000u; constexpr u64 f32_non_sign_mask = 0x7fffffffu; constexpr u64 f64_negative_zero = 0x8000000000000000u; constexpr u64 f64_nan = 0x7ff8000000000000u; constexpr u64 f64_non_sign_mask = 0x7fffffffffffffffu; constexpr u64 f64_penultimate_positive_denormal = 0x000ffffffffffffeu; constexpr u64 f64_min_s32 = 0xc1e0000000000000u; // -2147483648 as a double constexpr u64 f64_max_s32 = 0x41dfffffffc00000u; // 2147483647 as a double constexpr u64 f64_min_u32 = 0x0000000000000000u; // 0 as a double static Xbyak::Address MJitStateReg(Arm::Reg reg) { using namespace Xbyak::util; return dword[r15 + offsetof(JitState, Reg) + sizeof(u32) * static_cast(reg)]; } static Xbyak::Address MJitStateExtReg(Arm::ExtReg reg) { using namespace Xbyak::util; if (Arm::IsSingleExtReg(reg)) { size_t index = static_cast(reg) - static_cast(Arm::ExtReg::S0); return dword[r15 + offsetof(JitState, ExtReg) + sizeof(u32) * index]; } if (Arm::IsDoubleExtReg(reg)) { size_t index = static_cast(reg) - static_cast(Arm::ExtReg::D0); return qword[r15 + offsetof(JitState, ExtReg) + sizeof(u64) * index]; } ASSERT_MSG(false, "Should never happen."); } static Xbyak::Address MJitStateCpsr() { using namespace Xbyak::util; return dword[r15 + offsetof(JitState, Cpsr)]; } static void EraseInstruction(IR::Block& block, IR::Inst* inst) { block.Instructions().erase(inst); inst->Invalidate(); } EmitX64::EmitX64(BlockOfCode* code, UserCallbacks cb, Jit* jit_interface) : code(code), cb(cb), jit_interface(jit_interface) { } EmitX64::BlockDescriptor EmitX64::Emit(IR::Block& block) { code->align(); const u8* const entrypoint = code->getCurr(); // Start emitting. EmitCondPrelude(block); RegAlloc reg_alloc{code}; for (auto iter = block.begin(); iter != block.end(); ++iter) { IR::Inst* inst = &*iter; // Call the relevant Emit* member function. switch (inst->GetOpcode()) { #define OPCODE(name, type, ...) \ case IR::Opcode::name: \ EmitX64::Emit##name(reg_alloc, block, inst); \ break; #include "frontend/ir/opcodes.inc" #undef OPCODE default: ASSERT_MSG(false, "Invalid opcode %zu", static_cast(inst->GetOpcode())); break; } reg_alloc.EndOfAllocScope(); } reg_alloc.AssertNoMoreUses(); EmitAddCycles(block.CycleCount()); EmitTerminal(block.GetTerminal(), block.Location()); code->int3(); const IR::LocationDescriptor descriptor = block.Location(); Patch(descriptor, entrypoint); const size_t size = static_cast(code->getCurr() - entrypoint); EmitX64::BlockDescriptor block_desc{entrypoint, size, block.Location(), block.EndLocation().PC()}; block_descriptors.emplace(descriptor.UniqueHash(), block_desc); return block_desc; } boost::optional EmitX64::GetBasicBlock(IR::LocationDescriptor descriptor) const { auto iter = block_descriptors.find(descriptor.UniqueHash()); if (iter == block_descriptors.end()) return boost::none; return boost::make_optional(iter->second); } void EmitX64::EmitVoid(RegAlloc&, IR::Block&, IR::Inst*) { } void EmitX64::EmitBreakpoint(RegAlloc&, IR::Block&, IR::Inst*) { code->int3(); } void EmitX64::EmitIdentity(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); if (!args[0].IsImmediate()) { reg_alloc.DefineValue(inst, args[0]); } } void EmitX64::EmitGetRegister(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { Arm::Reg reg = inst->GetArg(0).GetRegRef(); Xbyak::Reg32 result = reg_alloc.ScratchGpr().cvt32(); code->mov(result, MJitStateReg(reg)); reg_alloc.DefineValue(inst, result); } void EmitX64::EmitGetExtendedRegister32(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { Arm::ExtReg reg = inst->GetArg(0).GetExtRegRef(); ASSERT(Arm::IsSingleExtReg(reg)); Xbyak::Xmm result = reg_alloc.ScratchXmm(); code->movss(result, MJitStateExtReg(reg)); reg_alloc.DefineValue(inst, result); } void EmitX64::EmitGetExtendedRegister64(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { Arm::ExtReg reg = inst->GetArg(0).GetExtRegRef(); ASSERT(Arm::IsDoubleExtReg(reg)); Xbyak::Xmm result = reg_alloc.ScratchXmm(); code->movsd(result, MJitStateExtReg(reg)); reg_alloc.DefineValue(inst, result); } void EmitX64::EmitSetRegister(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); Arm::Reg reg = inst->GetArg(0).GetRegRef(); if (args[1].IsImmediate()) { code->mov(MJitStateReg(reg), args[1].GetImmediateU32()); } else { Xbyak::Reg32 to_store = reg_alloc.UseGpr(args[1]).cvt32(); code->mov(MJitStateReg(reg), to_store); } } void EmitX64::EmitSetExtendedRegister32(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); Arm::ExtReg reg = inst->GetArg(0).GetExtRegRef(); ASSERT(Arm::IsSingleExtReg(reg)); Xbyak::Xmm source = reg_alloc.UseXmm(args[1]); code->movss(MJitStateExtReg(reg), source); } void EmitX64::EmitSetExtendedRegister64(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); Arm::ExtReg reg = inst->GetArg(0).GetExtRegRef(); ASSERT(Arm::IsDoubleExtReg(reg)); Xbyak::Xmm source = reg_alloc.UseXmm(args[1]); code->movsd(MJitStateExtReg(reg), source); } void EmitX64::EmitGetCpsr(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { Xbyak::Reg32 result = reg_alloc.ScratchGpr().cvt32(); code->mov(result, MJitStateCpsr()); reg_alloc.DefineValue(inst, result); } void EmitX64::EmitSetCpsr(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); Xbyak::Reg32 arg = reg_alloc.UseGpr(args[0]).cvt32(); code->mov(MJitStateCpsr(), arg); } void EmitX64::EmitGetNFlag(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { Xbyak::Reg32 result = reg_alloc.ScratchGpr().cvt32(); code->mov(result, MJitStateCpsr()); code->shr(result, 31); reg_alloc.DefineValue(inst, result); } void EmitX64::EmitSetNFlag(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { constexpr size_t flag_bit = 31; constexpr u32 flag_mask = 1u << flag_bit; auto args = reg_alloc.GetArgumentInfo(inst); if (args[0].IsImmediate()) { if (args[0].GetImmediateU1()) { code->or_(MJitStateCpsr(), flag_mask); } else { code->and_(MJitStateCpsr(), ~flag_mask); } } else { Xbyak::Reg32 to_store = reg_alloc.UseScratchGpr(args[0]).cvt32(); code->shl(to_store, flag_bit); code->and_(MJitStateCpsr(), ~flag_mask); code->or_(MJitStateCpsr(), to_store); } } void EmitX64::EmitGetZFlag(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { Xbyak::Reg32 result = reg_alloc.ScratchGpr().cvt32(); code->mov(result, MJitStateCpsr()); code->shr(result, 30); code->and_(result, 1); reg_alloc.DefineValue(inst, result); } void EmitX64::EmitSetZFlag(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { constexpr size_t flag_bit = 30; constexpr u32 flag_mask = 1u << flag_bit; auto args = reg_alloc.GetArgumentInfo(inst); if (args[0].IsImmediate()) { if (args[0].GetImmediateU1()) { code->or_(MJitStateCpsr(), flag_mask); } else { code->and_(MJitStateCpsr(), ~flag_mask); } } else { Xbyak::Reg32 to_store = reg_alloc.UseScratchGpr(args[0]).cvt32(); code->shl(to_store, flag_bit); code->and_(MJitStateCpsr(), ~flag_mask); code->or_(MJitStateCpsr(), to_store); } } void EmitX64::EmitGetCFlag(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { Xbyak::Reg32 result = reg_alloc.ScratchGpr().cvt32(); code->mov(result, MJitStateCpsr()); code->shr(result, 29); code->and_(result, 1); reg_alloc.DefineValue(inst, result); } void EmitX64::EmitSetCFlag(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { constexpr size_t flag_bit = 29; constexpr u32 flag_mask = 1u << flag_bit; auto args = reg_alloc.GetArgumentInfo(inst); if (args[0].IsImmediate()) { if (args[0].GetImmediateU1()) { code->or_(MJitStateCpsr(), flag_mask); } else { code->and_(MJitStateCpsr(), ~flag_mask); } } else { Xbyak::Reg32 to_store = reg_alloc.UseScratchGpr(args[0]).cvt32(); code->shl(to_store, flag_bit); code->and_(MJitStateCpsr(), ~flag_mask); code->or_(MJitStateCpsr(), to_store); } } void EmitX64::EmitGetVFlag(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { Xbyak::Reg32 result = reg_alloc.ScratchGpr().cvt32(); code->mov(result, MJitStateCpsr()); code->shr(result, 28); code->and_(result, 1); reg_alloc.DefineValue(inst, result); } void EmitX64::EmitSetVFlag(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { constexpr size_t flag_bit = 28; constexpr u32 flag_mask = 1u << flag_bit; auto args = reg_alloc.GetArgumentInfo(inst); if (args[0].IsImmediate()) { if (args[0].GetImmediateU1()) { code->or_(MJitStateCpsr(), flag_mask); } else { code->and_(MJitStateCpsr(), ~flag_mask); } } else { Xbyak::Reg32 to_store = reg_alloc.UseScratchGpr(args[0]).cvt32(); code->shl(to_store, flag_bit); code->and_(MJitStateCpsr(), ~flag_mask); code->or_(MJitStateCpsr(), to_store); } } void EmitX64::EmitOrQFlag(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { constexpr size_t flag_bit = 27; constexpr u32 flag_mask = 1u << flag_bit; auto args = reg_alloc.GetArgumentInfo(inst); if (args[0].IsImmediate()) { if (args[0].GetImmediateU1()) code->or_(MJitStateCpsr(), flag_mask); } else { Xbyak::Reg32 to_store = reg_alloc.UseScratchGpr(args[0]).cvt32(); code->shl(to_store, flag_bit); code->or_(MJitStateCpsr(), to_store); } } void EmitX64::EmitGetGEFlags(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { Xbyak::Reg32 result = reg_alloc.ScratchGpr().cvt32(); code->mov(result, MJitStateCpsr()); code->shr(result, 16); code->and_(result, 0xF); reg_alloc.DefineValue(inst, result); } void EmitX64::EmitSetGEFlags(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { constexpr size_t flag_bit = 16; constexpr u32 flag_mask = 0xFu << flag_bit; auto args = reg_alloc.GetArgumentInfo(inst); if (args[0].IsImmediate()) { u32 imm = (args[0].GetImmediateU32() << flag_bit) & flag_mask; code->and_(MJitStateCpsr(), ~flag_mask); code->or_(MJitStateCpsr(), imm); } else { Xbyak::Reg32 to_store = reg_alloc.UseScratchGpr(args[0]).cvt32(); code->shl(to_store, flag_bit); code->and_(to_store, flag_mask); code->and_(MJitStateCpsr(), ~flag_mask); code->or_(MJitStateCpsr(), to_store); } } void EmitX64::EmitBXWritePC(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); auto& arg = args[0]; const u32 T_bit = 1 << 5; // Pseudocode: // if (new_pc & 1) { // new_pc &= 0xFFFFFFFE; // cpsr.T = true; // } else { // new_pc &= 0xFFFFFFFC; // cpsr.T = false; // } if (arg.IsImmediate()) { u32 new_pc = arg.GetImmediateU32(); if (Common::Bit<0>(new_pc)) { new_pc &= 0xFFFFFFFE; code->mov(MJitStateReg(Arm::Reg::PC), new_pc); code->or_(MJitStateCpsr(), T_bit); } else { new_pc &= 0xFFFFFFFC; code->mov(MJitStateReg(Arm::Reg::PC), new_pc); code->and_(MJitStateCpsr(), ~T_bit); } } else { using Xbyak::util::ptr; Xbyak::Reg64 new_pc = reg_alloc.UseScratchGpr(arg); Xbyak::Reg64 tmp1 = reg_alloc.ScratchGpr(); Xbyak::Reg64 tmp2 = reg_alloc.ScratchGpr(); code->mov(tmp1, MJitStateCpsr()); code->mov(tmp2, tmp1); code->and_(tmp2, u32(~T_bit)); // CPSR.T = 0 code->or_(tmp1, u32(T_bit)); // CPSR.T = 1 code->test(new_pc, u32(1)); code->cmove(tmp1, tmp2); // CPSR.T = pc & 1 code->mov(MJitStateCpsr(), tmp1); code->lea(tmp2, ptr[new_pc + new_pc * 1]); code->or_(tmp2, u32(0xFFFFFFFC)); // tmp2 = pc & 1 ? 0xFFFFFFFE : 0xFFFFFFFC code->and_(new_pc, tmp2); code->mov(MJitStateReg(Arm::Reg::PC), new_pc); } } void EmitX64::EmitCallSupervisor(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); reg_alloc.HostCall(nullptr, args[0]); code->SwitchMxcsrOnExit(); code->CallFunction(cb.CallSVC); code->SwitchMxcsrOnEntry(); } static u32 GetFpscrImpl(JitState* jit_state) { return jit_state->Fpscr(); } void EmitX64::EmitGetFpscr(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { reg_alloc.HostCall(inst); code->mov(code->ABI_PARAM1, code->r15); code->SwitchMxcsrOnExit(); code->CallFunction(&GetFpscrImpl); code->SwitchMxcsrOnEntry(); } static void SetFpscrImpl(u32 value, JitState* jit_state) { jit_state->SetFpscr(value); } void EmitX64::EmitSetFpscr(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); reg_alloc.HostCall(nullptr, args[0]); code->mov(code->ABI_PARAM2, code->r15); code->SwitchMxcsrOnExit(); code->CallFunction(&SetFpscrImpl); code->SwitchMxcsrOnEntry(); } void EmitX64::EmitGetFpscrNZCV(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { using namespace Xbyak::util; Xbyak::Reg32 result = reg_alloc.ScratchGpr().cvt32(); code->mov(result, dword[r15 + offsetof(JitState, FPSCR_nzcv)]); reg_alloc.DefineValue(inst, result); } void EmitX64::EmitSetFpscrNZCV(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { using namespace Xbyak::util; auto args = reg_alloc.GetArgumentInfo(inst); Xbyak::Reg32 value = reg_alloc.UseGpr(args[0]).cvt32(); code->mov(dword[r15 + offsetof(JitState, FPSCR_nzcv)], value); } void EmitX64::EmitPushRSB(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { using namespace Xbyak::util; auto args = reg_alloc.GetArgumentInfo(inst); ASSERT(args[0].IsImmediate()); u64 unique_hash_of_target = args[0].GetImmediateU64(); auto iter = block_descriptors.find(unique_hash_of_target); CodePtr target_code_ptr = iter != block_descriptors.end() ? iter->second.entrypoint : code->GetReturnFromRunCodeAddress(); Xbyak::Reg64 code_ptr_reg = reg_alloc.ScratchGpr({HostLoc::RCX}); Xbyak::Reg64 loc_desc_reg = reg_alloc.ScratchGpr(); Xbyak::Reg32 index_reg = reg_alloc.ScratchGpr().cvt32(); code->mov(index_reg, dword[r15 + offsetof(JitState, rsb_ptr)]); code->add(index_reg, 1); code->and_(index_reg, u32(JitState::RSBSize - 1)); code->mov(loc_desc_reg, unique_hash_of_target); patch_information[unique_hash_of_target].mov_rcx.emplace_back(code->getCurr()); EmitPatchMovRcx(target_code_ptr); Xbyak::Label label; for (size_t i = 0; i < JitState::RSBSize; ++i) { code->cmp(loc_desc_reg, qword[r15 + offsetof(JitState, rsb_location_descriptors) + i * sizeof(u64)]); code->je(label, code->T_SHORT); } code->mov(dword[r15 + offsetof(JitState, rsb_ptr)], index_reg); code->mov(qword[r15 + index_reg.cvt64() * 8 + offsetof(JitState, rsb_location_descriptors)], loc_desc_reg); code->mov(qword[r15 + index_reg.cvt64() * 8 + offsetof(JitState, rsb_codeptrs)], code_ptr_reg); code->L(label); } void EmitX64::EmitGetCarryFromOp(RegAlloc&, IR::Block&, IR::Inst*) { ASSERT_MSG(false, "should never happen"); } void EmitX64::EmitGetOverflowFromOp(RegAlloc&, IR::Block&, IR::Inst*) { ASSERT_MSG(false, "should never happen"); } void EmitX64::EmitGetGEFromOp(RegAlloc&, IR::Block&, IR::Inst*) { ASSERT_MSG(false, "should never happen"); } void EmitX64::EmitPack2x32To1x64(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); Xbyak::Reg64 lo = reg_alloc.UseScratchGpr(args[0]); Xbyak::Reg64 hi = reg_alloc.UseScratchGpr(args[1]); code->shl(hi, 32); code->mov(lo.cvt32(), lo.cvt32()); // Zero extend to 64-bits code->or_(lo, hi); reg_alloc.DefineValue(inst, lo); } void EmitX64::EmitLeastSignificantWord(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); reg_alloc.DefineValue(inst, args[0]); } void EmitX64::EmitMostSignificantWord(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); Xbyak::Reg64 result = reg_alloc.UseScratchGpr(args[0]); code->shr(result, 32); reg_alloc.DefineValue(inst, result); auto carry_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetCarryFromOp); if (carry_inst) { EraseInstruction(block, carry_inst); Xbyak::Reg64 carry = reg_alloc.ScratchGpr(); code->setc(carry.cvt8()); reg_alloc.DefineValue(carry_inst, carry); } } void EmitX64::EmitLeastSignificantHalf(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); reg_alloc.DefineValue(inst, args[0]); } void EmitX64::EmitLeastSignificantByte(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); reg_alloc.DefineValue(inst, args[0]); } void EmitX64::EmitMostSignificantBit(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); Xbyak::Reg64 result = reg_alloc.UseScratchGpr(args[0]); // TODO: Flag optimization code->shr(result, 31); reg_alloc.DefineValue(inst, result); } void EmitX64::EmitIsZero(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); Xbyak::Reg64 result = reg_alloc.UseScratchGpr(args[0]); // TODO: Flag optimization code->test(result, result); code->sete(result.cvt8()); code->movzx(result, result.cvt8()); reg_alloc.DefineValue(inst, result); } void EmitX64::EmitIsZero64(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); Xbyak::Reg64 result = reg_alloc.UseScratchGpr(args[0]); // TODO: Flag optimization code->test(result, result); code->sete(result.cvt8()); code->movzx(result, result.cvt8()); reg_alloc.DefineValue(inst, result); } void EmitX64::EmitLogicalShiftLeft(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) { auto carry_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetCarryFromOp); auto args = reg_alloc.GetArgumentInfo(inst); auto& operand_arg = args[0]; auto& shift_arg = args[1]; auto& carry_arg = args[2]; // TODO: Consider using BMI2 instructions like SHLX when arm-in-host flags is implemented. if (!carry_inst) { if (shift_arg.IsImmediate()) { Xbyak::Reg32 result = reg_alloc.UseScratchGpr(operand_arg).cvt32(); u8 shift = shift_arg.GetImmediateU8(); if (shift <= 31) { code->shl(result, shift); } else { code->xor_(result, result); } reg_alloc.DefineValue(inst, result); } else { reg_alloc.Use(shift_arg, HostLoc::RCX); Xbyak::Reg32 result = reg_alloc.UseScratchGpr(operand_arg).cvt32(); Xbyak::Reg32 zero = reg_alloc.ScratchGpr().cvt32(); // The 32-bit x64 SHL instruction masks the shift count by 0x1F before performing the shift. // ARM differs from the behaviour: It does not mask the count, so shifts above 31 result in zeros. code->shl(result, code->cl); code->xor_(zero, zero); code->cmp(code->cl, 32); code->cmovnb(result, zero); reg_alloc.DefineValue(inst, result); } } else { EraseInstruction(block, carry_inst); if (shift_arg.IsImmediate()) { u8 shift = shift_arg.GetImmediateU8(); Xbyak::Reg32 result = reg_alloc.UseScratchGpr(operand_arg).cvt32(); Xbyak::Reg32 carry = reg_alloc.UseScratchGpr(carry_arg).cvt32(); if (shift == 0) { // There is nothing more to do. } else if (shift < 32) { code->bt(carry.cvt32(), 0); code->shl(result, shift); code->setc(carry.cvt8()); } else if (shift > 32) { code->xor_(result, result); code->xor_(carry, carry); } else { code->mov(carry, result); code->xor_(result, result); code->and_(carry, 1); } reg_alloc.DefineValue(inst, result); reg_alloc.DefineValue(carry_inst, carry); } else { reg_alloc.Use(shift_arg, HostLoc::RCX); Xbyak::Reg32 result = reg_alloc.UseScratchGpr(operand_arg).cvt32(); Xbyak::Reg32 carry = reg_alloc.UseScratchGpr(carry_arg).cvt32(); // TODO: Optimize this. code->inLocalLabel(); code->cmp(code->cl, 32); code->ja(".Rs_gt32"); code->je(".Rs_eq32"); // if (Rs & 0xFF < 32) { code->bt(carry.cvt32(), 0); // Set the carry flag for correct behaviour in the case when Rs & 0xFF == 0 code->shl(result, code->cl); code->setc(carry.cvt8()); code->jmp(".end"); // } else if (Rs & 0xFF > 32) { code->L(".Rs_gt32"); code->xor_(result, result); code->xor_(carry, carry); code->jmp(".end"); // } else if (Rs & 0xFF == 32) { code->L(".Rs_eq32"); code->mov(carry, result); code->and_(carry, 1); code->xor_(result, result); // } code->L(".end"); code->outLocalLabel(); reg_alloc.DefineValue(inst, result); reg_alloc.DefineValue(carry_inst, carry); } } } void EmitX64::EmitLogicalShiftRight(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) { auto carry_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetCarryFromOp); auto args = reg_alloc.GetArgumentInfo(inst); auto& operand_arg = args[0]; auto& shift_arg = args[1]; auto& carry_arg = args[2]; if (!carry_inst) { if (shift_arg.IsImmediate()) { Xbyak::Reg32 result = reg_alloc.UseScratchGpr(operand_arg).cvt32(); u8 shift = shift_arg.GetImmediateU8(); if (shift <= 31) { code->shr(result, shift); } else { code->xor_(result, result); } reg_alloc.DefineValue(inst, result); } else { reg_alloc.Use(shift_arg, HostLoc::RCX); Xbyak::Reg32 result = reg_alloc.UseScratchGpr(operand_arg).cvt32(); Xbyak::Reg32 zero = reg_alloc.ScratchGpr().cvt32(); // The 32-bit x64 SHR instruction masks the shift count by 0x1F before performing the shift. // ARM differs from the behaviour: It does not mask the count, so shifts above 31 result in zeros. code->shr(result, code->cl); code->xor_(zero, zero); code->cmp(code->cl, 32); code->cmovnb(result, zero); reg_alloc.DefineValue(inst, result); } } else { EraseInstruction(block, carry_inst); if (shift_arg.IsImmediate()) { u8 shift = shift_arg.GetImmediateU8(); Xbyak::Reg32 result = reg_alloc.UseScratchGpr(operand_arg).cvt32(); Xbyak::Reg32 carry = reg_alloc.UseScratchGpr(carry_arg).cvt32(); if (shift == 0) { // There is nothing more to do. } else if (shift < 32) { code->shr(result, shift); code->setc(carry.cvt8()); } else if (shift == 32) { code->bt(result, 31); code->setc(carry.cvt8()); code->mov(result, 0); } else { code->xor_(result, result); code->xor_(carry, carry); } reg_alloc.DefineValue(inst, result); reg_alloc.DefineValue(carry_inst, carry); } else { reg_alloc.Use(shift_arg, HostLoc::RCX); Xbyak::Reg32 result = reg_alloc.UseScratchGpr(operand_arg).cvt32(); Xbyak::Reg32 carry = reg_alloc.UseScratchGpr(carry_arg).cvt32(); // TODO: Optimize this. code->inLocalLabel(); code->cmp(code->cl, 32); code->ja(".Rs_gt32"); code->je(".Rs_eq32"); // if (Rs & 0xFF == 0) goto end; code->test(code->cl, code->cl); code->jz(".end"); // if (Rs & 0xFF < 32) { code->shr(result, code->cl); code->setc(carry.cvt8()); code->jmp(".end"); // } else if (Rs & 0xFF > 32) { code->L(".Rs_gt32"); code->xor_(result, result); code->xor_(carry, carry); code->jmp(".end"); // } else if (Rs & 0xFF == 32) { code->L(".Rs_eq32"); code->bt(result, 31); code->setc(carry.cvt8()); code->xor_(result, result); // } code->L(".end"); code->outLocalLabel(); reg_alloc.DefineValue(inst, result); reg_alloc.DefineValue(carry_inst, carry); } } } void EmitX64::EmitLogicalShiftRight64(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); auto& operand_arg = args[0]; auto& shift_arg = args[1]; ASSERT_MSG(shift_arg.IsImmediate(), "variable 64 bit shifts are not implemented"); ASSERT_MSG(shift_arg.GetImmediateU8() < 64, "shift width clamping is not implemented"); Xbyak::Reg64 result = reg_alloc.UseScratchGpr(operand_arg); u8 shift = shift_arg.GetImmediateU8(); code->shr(result.cvt64(), shift); reg_alloc.DefineValue(inst, result); } void EmitX64::EmitArithmeticShiftRight(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) { auto carry_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetCarryFromOp); auto args = reg_alloc.GetArgumentInfo(inst); auto& operand_arg = args[0]; auto& shift_arg = args[1]; auto& carry_arg = args[2]; if (!carry_inst) { if (shift_arg.IsImmediate()) { u8 shift = shift_arg.GetImmediateU8(); Xbyak::Reg32 result = reg_alloc.UseScratchGpr(operand_arg).cvt32(); code->sar(result, u8(shift < 31 ? shift : 31)); reg_alloc.DefineValue(inst, result); } else { reg_alloc.UseScratch(shift_arg, HostLoc::RCX); Xbyak::Reg32 result = reg_alloc.UseScratchGpr(operand_arg).cvt32(); Xbyak::Reg32 const31 = reg_alloc.ScratchGpr().cvt32(); // The 32-bit x64 SAR instruction masks the shift count by 0x1F before performing the shift. // ARM differs from the behaviour: It does not mask the count. // We note that all shift values above 31 have the same behaviour as 31 does, so we saturate `shift` to 31. code->mov(const31, 31); code->movzx(code->ecx, code->cl); code->cmp(code->ecx, u32(31)); code->cmovg(code->ecx, const31); code->sar(result, code->cl); reg_alloc.DefineValue(inst, result); } } else { EraseInstruction(block, carry_inst); if (shift_arg.IsImmediate()) { u8 shift = shift_arg.GetImmediateU8(); Xbyak::Reg32 result = reg_alloc.UseScratchGpr(operand_arg).cvt32(); Xbyak::Reg8 carry = reg_alloc.UseScratchGpr(carry_arg).cvt8(); if (shift == 0) { // There is nothing more to do. } else if (shift <= 31) { code->sar(result, shift); code->setc(carry); } else { code->sar(result, 31); code->bt(result, 31); code->setc(carry); } reg_alloc.DefineValue(inst, result); reg_alloc.DefineValue(carry_inst, carry); } else { reg_alloc.Use(shift_arg, HostLoc::RCX); Xbyak::Reg32 result = reg_alloc.UseScratchGpr(operand_arg).cvt32(); Xbyak::Reg8 carry = reg_alloc.UseScratchGpr(carry_arg).cvt8(); // TODO: Optimize this. code->inLocalLabel(); code->cmp(code->cl, u32(31)); code->ja(".Rs_gt31"); // if (Rs & 0xFF == 0) goto end; code->test(code->cl, code->cl); code->jz(".end"); // if (Rs & 0xFF <= 31) { code->sar(result, code->cl); code->setc(carry); code->jmp(".end"); // } else if (Rs & 0xFF > 31) { code->L(".Rs_gt31"); code->sar(result, 31); // 31 produces the same results as anything above 31 code->bt(result, 31); code->setc(carry); // } code->L(".end"); code->outLocalLabel(); reg_alloc.DefineValue(inst, result); reg_alloc.DefineValue(carry_inst, carry); } } } void EmitX64::EmitRotateRight(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) { auto carry_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetCarryFromOp); auto args = reg_alloc.GetArgumentInfo(inst); auto& operand_arg = args[0]; auto& shift_arg = args[1]; auto& carry_arg = args[2]; if (!carry_inst) { if (shift_arg.IsImmediate()) { u8 shift = shift_arg.GetImmediateU8(); Xbyak::Reg32 result = reg_alloc.UseScratchGpr(operand_arg).cvt32(); code->ror(result, u8(shift & 0x1F)); reg_alloc.DefineValue(inst, result); } else { reg_alloc.Use(shift_arg, HostLoc::RCX); Xbyak::Reg32 result = reg_alloc.UseScratchGpr(operand_arg).cvt32(); // x64 ROR instruction does (shift & 0x1F) for us. code->ror(result, code->cl); reg_alloc.DefineValue(inst, result); } } else { EraseInstruction(block, carry_inst); if (shift_arg.IsImmediate()) { u8 shift = shift_arg.GetImmediateU8(); Xbyak::Reg32 result = reg_alloc.UseScratchGpr(operand_arg).cvt32(); Xbyak::Reg8 carry = reg_alloc.UseScratchGpr(carry_arg).cvt8(); if (shift == 0) { // There is nothing more to do. } else if ((shift & 0x1F) == 0) { code->bt(result, u8(31)); code->setc(carry); } else { code->ror(result, shift); code->setc(carry); } reg_alloc.DefineValue(inst, result); reg_alloc.DefineValue(carry_inst, carry); } else { reg_alloc.UseScratch(shift_arg, HostLoc::RCX); Xbyak::Reg32 result = reg_alloc.UseScratchGpr(operand_arg).cvt32(); Xbyak::Reg8 carry = reg_alloc.UseScratchGpr(carry_arg).cvt8(); // TODO: Optimize code->inLocalLabel(); // if (Rs & 0xFF == 0) goto end; code->test(code->cl, code->cl); code->jz(".end"); code->and_(code->ecx, u32(0x1F)); code->jz(".zero_1F"); // if (Rs & 0x1F != 0) { code->ror(result, code->cl); code->setc(carry); code->jmp(".end"); // } else { code->L(".zero_1F"); code->bt(result, u8(31)); code->setc(carry); // } code->L(".end"); code->outLocalLabel(); reg_alloc.DefineValue(inst, result); reg_alloc.DefineValue(carry_inst, carry); } } } void EmitX64::EmitRotateRightExtended(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) { auto carry_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetCarryFromOp); auto args = reg_alloc.GetArgumentInfo(inst); Xbyak::Reg32 result = reg_alloc.UseScratchGpr(args[0]).cvt32(); Xbyak::Reg8 carry = reg_alloc.UseScratchGpr(args[1]).cvt8(); code->bt(carry.cvt32(), 0); code->rcr(result, 1); reg_alloc.DefineValue(inst, result); if (carry_inst) { EraseInstruction(block, carry_inst); code->setc(carry); reg_alloc.DefineValue(carry_inst, carry); } } const Xbyak::Reg64 INVALID_REG = Xbyak::Reg64(-1); static Xbyak::Reg8 DoCarry(RegAlloc& reg_alloc, Argument& carry_in, IR::Inst* carry_out) { if (carry_in.IsImmediate()) { return carry_out ? reg_alloc.ScratchGpr().cvt8() : INVALID_REG.cvt8(); } else { return carry_out ? reg_alloc.UseScratchGpr(carry_in).cvt8() : reg_alloc.UseGpr(carry_in).cvt8(); } } void EmitX64::EmitAddWithCarry(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) { auto carry_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetCarryFromOp); auto overflow_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetOverflowFromOp); auto args = reg_alloc.GetArgumentInfo(inst); auto& carry_in = args[2]; Xbyak::Reg32 result = reg_alloc.UseScratchGpr(args[0]).cvt32(); Xbyak::Reg8 carry = DoCarry(reg_alloc, carry_in, carry_inst); Xbyak::Reg8 overflow = overflow_inst ? reg_alloc.ScratchGpr().cvt8() : INVALID_REG.cvt8(); // TODO: Consider using LEA. if (args[1].IsImmediate()) { u32 op_arg = args[1].GetImmediateU32(); if (carry_in.IsImmediate()) { if (carry_in.GetImmediateU1()) { code->stc(); code->adc(result, op_arg); } else { code->add(result, op_arg); } } else { code->bt(carry.cvt32(), 0); code->adc(result, op_arg); } } else { OpArg op_arg = reg_alloc.UseOpArg(args[1]); op_arg.setBit(32); if (carry_in.IsImmediate()) { if (carry_in.GetImmediateU1()) { code->stc(); code->adc(result, *op_arg); } else { code->add(result, *op_arg); } } else { code->bt(carry.cvt32(), 0); code->adc(result, *op_arg); } } reg_alloc.DefineValue(inst, result); if (carry_inst) { EraseInstruction(block, carry_inst); code->setc(carry); reg_alloc.DefineValue(carry_inst, carry); } if (overflow_inst) { EraseInstruction(block, overflow_inst); code->seto(overflow); reg_alloc.DefineValue(overflow_inst, overflow); } } void EmitX64::EmitAdd64(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); Xbyak::Reg64 result = reg_alloc.UseScratchGpr(args[0]); Xbyak::Reg64 op_arg = reg_alloc.UseGpr(args[1]); code->add(result, op_arg); reg_alloc.DefineValue(inst, result); } void EmitX64::EmitSubWithCarry(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) { auto carry_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetCarryFromOp); auto overflow_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetOverflowFromOp); auto args = reg_alloc.GetArgumentInfo(inst); auto& carry_in = args[2]; Xbyak::Reg32 result = reg_alloc.UseScratchGpr(args[0]).cvt32(); Xbyak::Reg8 carry = DoCarry(reg_alloc, carry_in, carry_inst); Xbyak::Reg8 overflow = overflow_inst ? reg_alloc.ScratchGpr().cvt8() : INVALID_REG.cvt8(); // TODO: Consider using LEA. // TODO: Optimize CMP case. // Note that x64 CF is inverse of what the ARM carry flag is here. if (args[1].IsImmediate()) { u32 op_arg = args[1].GetImmediateU32(); if (carry_in.IsImmediate()) { if (carry_in.GetImmediateU1()) { code->sub(result, op_arg); } else { code->stc(); code->sbb(result, op_arg); } } else { code->bt(carry.cvt32(), 0); code->cmc(); code->sbb(result, op_arg); } } else { OpArg op_arg = reg_alloc.UseOpArg(args[1]); op_arg.setBit(32); if (carry_in.IsImmediate()) { if (carry_in.GetImmediateU1()) { code->sub(result, *op_arg); } else { code->stc(); code->sbb(result, *op_arg); } } else { code->bt(carry.cvt32(), 0); code->cmc(); code->sbb(result, *op_arg); } } reg_alloc.DefineValue(inst, result); if (carry_inst) { EraseInstruction(block, carry_inst); code->setnc(carry); reg_alloc.DefineValue(carry_inst, carry); } if (overflow_inst) { EraseInstruction(block, overflow_inst); code->seto(overflow); reg_alloc.DefineValue(overflow_inst, overflow); } } void EmitX64::EmitSub64(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); Xbyak::Reg64 result = reg_alloc.UseScratchGpr(args[0]); Xbyak::Reg64 op_arg = reg_alloc.UseGpr(args[1]); code->sub(result, op_arg); reg_alloc.DefineValue(inst, result); } void EmitX64::EmitMul(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); Xbyak::Reg32 result = reg_alloc.UseScratchGpr(args[0]).cvt32(); if (args[1].IsImmediate()) { code->imul(result, result, args[1].GetImmediateU32()); } else { OpArg op_arg = reg_alloc.UseOpArg(args[1]); op_arg.setBit(32); code->imul(result, *op_arg); } reg_alloc.DefineValue(inst, result); } void EmitX64::EmitMul64(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); Xbyak::Reg64 result = reg_alloc.UseScratchGpr(args[0]); OpArg op_arg = reg_alloc.UseOpArg(args[1]); code->imul(result, *op_arg); reg_alloc.DefineValue(inst, result); } void EmitX64::EmitAnd(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); Xbyak::Reg32 result = reg_alloc.UseScratchGpr(args[0]).cvt32(); if (args[1].IsImmediate()) { u32 op_arg = args[1].GetImmediateU32(); code->and_(result, op_arg); } else { OpArg op_arg = reg_alloc.UseOpArg(args[1]); op_arg.setBit(32); code->and_(result, *op_arg); } reg_alloc.DefineValue(inst, result); } void EmitX64::EmitEor(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); Xbyak::Reg32 result = reg_alloc.UseScratchGpr(args[0]).cvt32(); if (args[1].IsImmediate()) { u32 op_arg = args[1].GetImmediateU32(); code->xor_(result, op_arg); } else { OpArg op_arg = reg_alloc.UseOpArg(args[1]); op_arg.setBit(32); code->xor_(result, *op_arg); } reg_alloc.DefineValue(inst, result); } void EmitX64::EmitOr(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); Xbyak::Reg32 result = reg_alloc.UseScratchGpr(args[0]).cvt32(); if (args[1].IsImmediate()) { u32 op_arg = args[1].GetImmediateU32(); code->or_(result, op_arg); } else { OpArg op_arg = reg_alloc.UseOpArg(args[1]); op_arg.setBit(32); code->or_(result, *op_arg); } reg_alloc.DefineValue(inst, result); } void EmitX64::EmitNot(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); Xbyak::Reg32 result; if (args[0].IsImmediate()) { result = reg_alloc.ScratchGpr().cvt32(); code->mov(result, u32(~args[0].GetImmediateU32())); } else { result = reg_alloc.UseScratchGpr(args[0]).cvt32(); code->not_(result); } reg_alloc.DefineValue(inst, result); } void EmitX64::EmitSignExtendWordToLong(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); Xbyak::Reg64 result = reg_alloc.UseScratchGpr(args[0]); code->movsxd(result.cvt64(), result.cvt32()); reg_alloc.DefineValue(inst, result); } void EmitX64::EmitSignExtendHalfToWord(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); Xbyak::Reg64 result = reg_alloc.UseScratchGpr(args[0]); code->movsx(result.cvt32(), result.cvt16()); reg_alloc.DefineValue(inst, result); } void EmitX64::EmitSignExtendByteToWord(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); Xbyak::Reg64 result = reg_alloc.UseScratchGpr(args[0]); code->movsx(result.cvt32(), result.cvt8()); reg_alloc.DefineValue(inst, result); } void EmitX64::EmitZeroExtendWordToLong(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); Xbyak::Reg64 result = reg_alloc.UseScratchGpr(args[0]); code->mov(result.cvt32(), result.cvt32()); // x64 zeros upper 32 bits on a 32-bit move reg_alloc.DefineValue(inst, result); } void EmitX64::EmitZeroExtendHalfToWord(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); Xbyak::Reg64 result = reg_alloc.UseScratchGpr(args[0]); code->movzx(result.cvt32(), result.cvt16()); reg_alloc.DefineValue(inst, result); } void EmitX64::EmitZeroExtendByteToWord(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); Xbyak::Reg64 result = reg_alloc.UseScratchGpr(args[0]); code->movzx(result.cvt32(), result.cvt8()); reg_alloc.DefineValue(inst, result); } void EmitX64::EmitByteReverseWord(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); Xbyak::Reg32 result = reg_alloc.UseScratchGpr(args[0]).cvt32(); code->bswap(result); reg_alloc.DefineValue(inst, result); } void EmitX64::EmitByteReverseHalf(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); Xbyak::Reg16 result = reg_alloc.UseScratchGpr(args[0]).cvt16(); code->rol(result, 8); reg_alloc.DefineValue(inst, result); } void EmitX64::EmitByteReverseDual(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); Xbyak::Reg64 result = reg_alloc.UseScratchGpr(args[0]); code->bswap(result); reg_alloc.DefineValue(inst, result); } void EmitX64::EmitCountLeadingZeros(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); if (code->DoesCpuSupport(Xbyak::util::Cpu::tLZCNT)) { Xbyak::Reg32 source = reg_alloc.UseGpr(args[0]).cvt32(); Xbyak::Reg32 result = reg_alloc.ScratchGpr().cvt32(); code->lzcnt(result, source); reg_alloc.DefineValue(inst, result); } else { Xbyak::Reg32 source = reg_alloc.UseScratchGpr(args[0]).cvt32(); Xbyak::Reg32 result = reg_alloc.ScratchGpr().cvt32(); // The result of a bsr of zero is undefined, but zf is set after it. code->bsr(result, source); code->mov(source, 0xFFFFFFFF); code->cmovz(result, source); code->neg(result); code->add(result, 31); reg_alloc.DefineValue(inst, result); } } void EmitX64::EmitSignedSaturatedAdd(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) { auto overflow_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetOverflowFromOp); auto args = reg_alloc.GetArgumentInfo(inst); Xbyak::Reg32 result = reg_alloc.UseScratchGpr(args[0]).cvt32(); Xbyak::Reg32 addend = reg_alloc.UseGpr(args[1]).cvt32(); Xbyak::Reg32 overflow = reg_alloc.ScratchGpr().cvt32(); code->mov(overflow, result); code->shr(overflow, 31); code->add(overflow, 0x7FFFFFFF); // overflow now contains 0x7FFFFFFF if a was positive, or 0x80000000 if a was negative code->add(result, addend); code->cmovo(result, overflow); reg_alloc.DefineValue(inst, result); if (overflow_inst) { EraseInstruction(block, overflow_inst); code->seto(overflow.cvt8()); reg_alloc.DefineValue(overflow_inst, overflow); } } void EmitX64::EmitSignedSaturatedSub(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) { auto overflow_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetOverflowFromOp); auto args = reg_alloc.GetArgumentInfo(inst); Xbyak::Reg32 result = reg_alloc.UseScratchGpr(args[0]).cvt32(); Xbyak::Reg32 subend = reg_alloc.UseGpr(args[1]).cvt32(); Xbyak::Reg32 overflow = reg_alloc.ScratchGpr().cvt32(); code->mov(overflow, result); code->shr(overflow, 31); code->add(overflow, 0x7FFFFFFF); // overflow now contains 0x7FFFFFFF if a was positive, or 0x80000000 if a was negative code->sub(result, subend); code->cmovo(result, overflow); reg_alloc.DefineValue(inst, result); if (overflow_inst) { EraseInstruction(block, overflow_inst); code->seto(overflow.cvt8()); reg_alloc.DefineValue(overflow_inst, overflow); } } void EmitX64::EmitUnsignedSaturation(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) { auto overflow_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetOverflowFromOp); auto args = reg_alloc.GetArgumentInfo(inst); size_t N = args[1].GetImmediateU8(); ASSERT(N <= 31); u32 saturated_value = (1u << N) - 1; Xbyak::Reg32 result = reg_alloc.ScratchGpr().cvt32(); Xbyak::Reg32 reg_a = reg_alloc.UseGpr(args[0]).cvt32(); Xbyak::Reg32 overflow = reg_alloc.ScratchGpr().cvt32(); // Pseudocode: result = clamp(reg_a, 0, saturated_value); code->xor_(overflow, overflow); code->cmp(reg_a, saturated_value); code->mov(result, saturated_value); code->cmovle(result, overflow); code->cmovbe(result, reg_a); reg_alloc.DefineValue(inst, result); if (overflow_inst) { EraseInstruction(block, overflow_inst); code->seta(overflow.cvt8()); reg_alloc.DefineValue(overflow_inst, overflow); } } void EmitX64::EmitSignedSaturation(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) { auto overflow_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetOverflowFromOp); auto args = reg_alloc.GetArgumentInfo(inst); size_t N = args[1].GetImmediateU8(); ASSERT(N >= 1 && N <= 32); if (N == 32) { reg_alloc.DefineValue(inst, args[0]); if (overflow_inst) { auto no_overflow = IR::Value(false); overflow_inst->ReplaceUsesWith(no_overflow); } return; } u32 mask = (1u << N) - 1; u32 positive_saturated_value = (1u << (N - 1)) - 1; u32 negative_saturated_value = 1u << (N - 1); u32 sext_negative_satured_value = Common::SignExtend(N, negative_saturated_value); Xbyak::Reg32 result = reg_alloc.ScratchGpr().cvt32(); Xbyak::Reg32 reg_a = reg_alloc.UseGpr(args[0]).cvt32(); Xbyak::Reg32 overflow = reg_alloc.ScratchGpr().cvt32(); Xbyak::Reg32 tmp = reg_alloc.ScratchGpr().cvt32(); // overflow now contains a value between 0 and mask if it was originally between {negative,positive}_saturated_value. code->lea(overflow, code->ptr[reg_a.cvt64() + negative_saturated_value]); // Put the appropriate saturated value in result code->cmp(reg_a, positive_saturated_value); code->mov(tmp, positive_saturated_value); code->mov(result, sext_negative_satured_value); code->cmovg(result, tmp); // Do the saturation code->cmp(overflow, mask); code->cmovbe(result, reg_a); reg_alloc.DefineValue(inst, result); if (overflow_inst) { EraseInstruction(block, overflow_inst); code->seta(overflow.cvt8()); reg_alloc.DefineValue(overflow_inst, overflow); } } /** * Extracts the most significant bits from each of the packed bytes, and packs them together. * * value before: a-------b-------c-------d------- * value after: 0000000000000000000000000000abcd * * @param value The register containing the value to operate on. Result will be stored in the same register. * @param a_tmp A register which can be used as a scratch register. */ static void ExtractMostSignificantBitFromPackedBytes(BlockOfCode* code, RegAlloc& reg_alloc, Xbyak::Reg32 value, boost::optional a_tmp = boost::none) { if (code->DoesCpuSupport(Xbyak::util::Cpu::tBMI2)) { Xbyak::Reg32 tmp = a_tmp ? *a_tmp : reg_alloc.ScratchGpr().cvt32(); code->mov(tmp, 0x80808080); code->pext(value, value, tmp); } else { code->and_(value, 0x80808080); code->imul(value, value, 0x00204081); code->shr(value, 28); } } /** * Extracts the most significant bits from each of the packed words, duplicates them, and packs them together. * * value before: a---------------b--------------- * value after: 0000000000000000000000000000aabb * * @param value The register containing the value to operate on. Result will be stored in the same register. */ static void ExtractAndDuplicateMostSignificantBitFromPackedWords(BlockOfCode* code, Xbyak::Reg32 value) { code->and_(value, 0x80008000); code->shr(value, 1); code->imul(value, value, 0xC003); code->shr(value, 28); } void EmitX64::EmitPackedAddU8(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); auto ge_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetGEFromOp); Xbyak::Xmm xmm_a = reg_alloc.UseScratchXmm(args[0]); Xbyak::Xmm xmm_b = reg_alloc.UseXmm(args[1]); code->paddb(xmm_a, xmm_b); if (ge_inst) { EraseInstruction(block, ge_inst); Xbyak::Reg32 reg_ge = reg_alloc.ScratchGpr().cvt32(); Xbyak::Xmm tmp = reg_alloc.ScratchXmm(); code->movdqa(tmp, xmm_a); code->pminub(tmp, xmm_b); code->pcmpeqb(tmp, xmm_b); code->movd(reg_ge, tmp); code->not_(reg_ge); ExtractMostSignificantBitFromPackedBytes(code, reg_alloc, reg_ge); reg_alloc.DefineValue(ge_inst, reg_ge); } reg_alloc.DefineValue(inst, xmm_a); } void EmitX64::EmitPackedAddS8(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); auto ge_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetGEFromOp); Xbyak::Reg32 reg_ge; Xbyak::Xmm xmm_a = reg_alloc.UseScratchXmm(args[0]); Xbyak::Xmm xmm_b = reg_alloc.UseXmm(args[1]); if (ge_inst) { EraseInstruction(block, ge_inst); Xbyak::Xmm saturated_sum = reg_alloc.ScratchXmm(); reg_ge = reg_alloc.ScratchGpr().cvt32(); code->movdqa(saturated_sum, xmm_a); code->paddsb(saturated_sum, xmm_b); code->movd(reg_ge, saturated_sum); } code->paddb(xmm_a, xmm_b); if (ge_inst) { code->not_(reg_ge); ExtractMostSignificantBitFromPackedBytes(code, reg_alloc, reg_ge); reg_alloc.DefineValue(ge_inst, reg_ge); } reg_alloc.DefineValue(inst, xmm_a); } void EmitX64::EmitPackedAddU16(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); auto ge_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetGEFromOp); Xbyak::Xmm xmm_a = reg_alloc.UseScratchXmm(args[0]); Xbyak::Xmm xmm_b = reg_alloc.UseXmm(args[1]); code->paddw(xmm_a, xmm_b); if (ge_inst) { EraseInstruction(block, ge_inst); Xbyak::Reg32 reg_ge = reg_alloc.ScratchGpr().cvt32(); Xbyak::Xmm tmp = reg_alloc.ScratchXmm(); if (code->DoesCpuSupport(Xbyak::util::Cpu::tSSE41)) { code->movdqa(tmp, xmm_a); code->pminuw(tmp, xmm_b); code->pcmpeqw(tmp, xmm_b); code->movd(reg_ge, tmp); code->not_(reg_ge); } else { // !(b <= a+b) == b > a+b Xbyak::Xmm tmp_b = reg_alloc.ScratchXmm(); code->movdqa(tmp, xmm_a); code->movdqa(tmp_b, xmm_b); code->paddw(tmp, code->MConst(0x80008000)); code->paddw(tmp_b, code->MConst(0x80008000)); code->pcmpgtw(tmp_b, tmp); // *Signed* comparison! code->movd(reg_ge, tmp_b); } ExtractMostSignificantBitFromPackedBytes(code, reg_alloc, reg_ge); reg_alloc.DefineValue(ge_inst, reg_ge); } reg_alloc.DefineValue(inst, xmm_a); } void EmitX64::EmitPackedAddS16(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); auto ge_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetGEFromOp); Xbyak::Xmm xmm_a = reg_alloc.UseScratchXmm(args[0]); Xbyak::Xmm xmm_b = reg_alloc.UseXmm(args[1]); Xbyak::Reg32 reg_ge; if (ge_inst) { EraseInstruction(block, ge_inst); reg_ge = reg_alloc.ScratchGpr().cvt32(); Xbyak::Xmm saturated_sum = reg_alloc.ScratchXmm(); code->movdqa(saturated_sum, xmm_a); code->paddsw(saturated_sum, xmm_b); code->movd(reg_ge, saturated_sum); } code->paddw(xmm_a, xmm_b); if (ge_inst) { code->not_(reg_ge); ExtractAndDuplicateMostSignificantBitFromPackedWords(code, reg_ge); reg_alloc.DefineValue(ge_inst, reg_ge); } reg_alloc.DefineValue(inst, xmm_a); } void EmitX64::EmitPackedSubU8(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); auto ge_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetGEFromOp); Xbyak::Xmm xmm_a = reg_alloc.UseScratchXmm(args[0]); Xbyak::Xmm xmm_b = reg_alloc.UseXmm(args[1]); Xbyak::Reg32 reg_ge; if (ge_inst) { EraseInstruction(block, ge_inst); Xbyak::Xmm xmm_ge = reg_alloc.ScratchXmm(); reg_ge = reg_alloc.ScratchGpr().cvt32(); code->movdqa(xmm_ge, xmm_a); code->pmaxub(xmm_ge, xmm_b); code->pcmpeqb(xmm_ge, xmm_a); code->movd(reg_ge, xmm_ge); } code->psubb(xmm_a, xmm_b); if (ge_inst) { ExtractMostSignificantBitFromPackedBytes(code, reg_alloc, reg_ge); reg_alloc.DefineValue(ge_inst, reg_ge); } reg_alloc.DefineValue(inst, xmm_a); } void EmitX64::EmitPackedSubS8(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); auto ge_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetGEFromOp); Xbyak::Xmm xmm_a = reg_alloc.UseScratchXmm(args[0]); Xbyak::Xmm xmm_b = reg_alloc.UseXmm(args[1]); Xbyak::Reg32 reg_ge; if (ge_inst) { EraseInstruction(block, ge_inst); Xbyak::Xmm xmm_ge = reg_alloc.ScratchXmm(); reg_ge = reg_alloc.ScratchGpr().cvt32(); code->movdqa(xmm_ge, xmm_a); code->psubsb(xmm_ge, xmm_b); code->movd(reg_ge, xmm_ge); } code->psubb(xmm_a, xmm_b); if (ge_inst) { code->not_(reg_ge); ExtractMostSignificantBitFromPackedBytes(code, reg_alloc, reg_ge); reg_alloc.DefineValue(ge_inst, reg_ge); } reg_alloc.DefineValue(inst, xmm_a); } void EmitX64::EmitPackedSubU16(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); auto ge_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetGEFromOp); Xbyak::Xmm xmm_a = reg_alloc.UseScratchXmm(args[0]); Xbyak::Xmm xmm_b = reg_alloc.UseXmm(args[1]); Xbyak::Reg32 reg_ge; if (ge_inst) { EraseInstruction(block, ge_inst); reg_ge = reg_alloc.ScratchGpr().cvt32(); Xbyak::Xmm xmm_ge = reg_alloc.ScratchXmm(); if (code->DoesCpuSupport(Xbyak::util::Cpu::tSSE41)) { code->movdqa(xmm_ge, xmm_a); code->pmaxuw(xmm_ge, xmm_b); // Requires SSE 4.1 code->pcmpeqw(xmm_ge, xmm_a); code->movd(reg_ge, xmm_ge); } else { // (a >= b) == !(b > a) code->paddw(xmm_a, code->MConst(0x80008000)); code->paddw(xmm_b, code->MConst(0x80008000)); code->movdqa(xmm_ge, xmm_b); code->pcmpgtw(xmm_ge, xmm_a); // *Signed* comparison! code->movd(reg_ge, xmm_ge); code->not_(reg_ge); } } code->psubw(xmm_a, xmm_b); if (ge_inst) { ExtractAndDuplicateMostSignificantBitFromPackedWords(code, reg_ge); reg_alloc.DefineValue(ge_inst, reg_ge); } reg_alloc.DefineValue(inst, xmm_a); } void EmitX64::EmitPackedSubS16(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); auto ge_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetGEFromOp); Xbyak::Xmm xmm_a = reg_alloc.UseScratchXmm(args[0]); Xbyak::Xmm xmm_b = reg_alloc.UseXmm(args[1]); Xbyak::Reg32 reg_ge; if (ge_inst) { EraseInstruction(block, ge_inst); Xbyak::Xmm xmm_ge = reg_alloc.ScratchXmm(); reg_ge = reg_alloc.ScratchGpr().cvt32(); code->movdqa(xmm_ge, xmm_a); code->psubsw(xmm_ge, xmm_b); code->movd(reg_ge, xmm_ge); } code->psubw(xmm_a, xmm_b); if (ge_inst) { code->not_(reg_ge); ExtractAndDuplicateMostSignificantBitFromPackedWords(code, reg_ge); reg_alloc.DefineValue(ge_inst, reg_ge); } reg_alloc.DefineValue(inst, xmm_a); } void EmitX64::EmitPackedHalvingAddU8(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); // This code path requires SSSE3 because of the PSHUFB instruction. // A fallback implementation is provided below. if (code->DoesCpuSupport(Xbyak::util::Cpu::tSSSE3)) { Xbyak::Xmm xmm_a = reg_alloc.UseScratchXmm(args[0]); Xbyak::Xmm xmm_b = reg_alloc.UseScratchXmm(args[1]); Xbyak::Xmm xmm_mask = reg_alloc.ScratchXmm(); Xbyak::Reg64 mask = reg_alloc.ScratchGpr(); // Set the mask to expand the values // 0xAABBCCDD becomes 0x00AA00BB00CC00DD code->mov(mask, 0x8003800280018000); code->movq(xmm_mask, mask); // Expand each 8-bit value to 16-bit code->pshufb(xmm_a, xmm_mask); code->pshufb(xmm_b, xmm_mask); // Add the individual 16-bit values code->paddw(xmm_a, xmm_b); // Shift the 16-bit values to the right to halve them code->psrlw(xmm_a, 1); // Set the mask to pack the values again // 0x00AA00BB00CC00DD becomes 0xAABBCCDD code->mov(mask, 0x06040200); code->movq(xmm_mask, mask); // Shuffle them back to 8-bit values code->pshufb(xmm_a, xmm_mask); reg_alloc.DefineValue(inst, xmm_a); } else { // Fallback implementation in case the CPU doesn't support SSSE3 Xbyak::Reg32 reg_a = reg_alloc.UseScratchGpr(args[0]).cvt32(); Xbyak::Reg32 reg_b = reg_alloc.UseGpr(args[1]).cvt32(); Xbyak::Reg32 xor_a_b = reg_alloc.ScratchGpr().cvt32(); Xbyak::Reg32 and_a_b = reg_a; Xbyak::Reg32 result = reg_a; code->mov(xor_a_b, reg_a); code->and_(and_a_b, reg_b); code->xor_(xor_a_b, reg_b); code->shr(xor_a_b, 1); code->and_(xor_a_b, 0x7F7F7F7F); code->add(result, xor_a_b); reg_alloc.DefineValue(inst, result); } } void EmitX64::EmitPackedHalvingAddU16(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); Xbyak::Reg32 reg_a = reg_alloc.UseScratchGpr(args[0]).cvt32(); Xbyak::Reg32 reg_b = reg_alloc.UseGpr(args[1]).cvt32(); Xbyak::Reg32 xor_a_b = reg_alloc.ScratchGpr().cvt32(); Xbyak::Reg32 and_a_b = reg_a; Xbyak::Reg32 result = reg_a; // This relies on the equality x+y == ((x&y) << 1) + (x^y). // Note that x^y always contains the LSB of the result. // Since we want to calculate (x+y)/2, we can instead calculate (x&y) + ((x^y)>>1). // We mask by 0x7FFF to remove the LSB so that it doesn't leak into the field below. code->mov(xor_a_b, reg_a); code->and_(and_a_b, reg_b); code->xor_(xor_a_b, reg_b); code->shr(xor_a_b, 1); code->and_(xor_a_b, 0x7FFF7FFF); code->add(result, xor_a_b); reg_alloc.DefineValue(inst, result); } void EmitX64::EmitPackedHalvingAddS8(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); Xbyak::Reg32 reg_a = reg_alloc.UseScratchGpr(args[0]).cvt32(); Xbyak::Reg32 reg_b = reg_alloc.UseGpr(args[1]).cvt32(); Xbyak::Reg32 xor_a_b = reg_alloc.ScratchGpr().cvt32(); Xbyak::Reg32 and_a_b = reg_a; Xbyak::Reg32 result = reg_a; Xbyak::Reg32 carry = reg_alloc.ScratchGpr().cvt32(); // This relies on the equality x+y == ((x&y) << 1) + (x^y). // Note that x^y always contains the LSB of the result. // Since we want to calculate (x+y)/2, we can instead calculate (x&y) + ((x^y)>>1). // We mask by 0x7F to remove the LSB so that it doesn't leak into the field below. // carry propagates the sign bit from (x^y)>>1 upwards by one. code->mov(xor_a_b, reg_a); code->and_(and_a_b, reg_b); code->xor_(xor_a_b, reg_b); code->mov(carry, xor_a_b); code->and_(carry, 0x80808080); code->shr(xor_a_b, 1); code->and_(xor_a_b, 0x7F7F7F7F); code->add(result, xor_a_b); code->xor_(result, carry); reg_alloc.DefineValue(inst, result); } void EmitX64::EmitPackedHalvingAddS16(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); Xbyak::Reg32 reg_a = reg_alloc.UseScratchGpr(args[0]).cvt32(); Xbyak::Reg32 reg_b = reg_alloc.UseGpr(args[1]).cvt32(); Xbyak::Reg32 xor_a_b = reg_alloc.ScratchGpr().cvt32(); Xbyak::Reg32 and_a_b = reg_a; Xbyak::Reg32 result = reg_a; Xbyak::Reg32 carry = reg_alloc.ScratchGpr().cvt32(); // This relies on the equality x+y == ((x&y) << 1) + (x^y). // Note that x^y always contains the LSB of the result. // Since we want to calculate (x+y)/2, we can instead calculate (x&y) + ((x^y)>>1). // We mask by 0x7FFF to remove the LSB so that it doesn't leak into the field below. // carry propagates the sign bit from (x^y)>>1 upwards by one. code->mov(xor_a_b, reg_a); code->and_(and_a_b, reg_b); code->xor_(xor_a_b, reg_b); code->mov(carry, xor_a_b); code->and_(carry, 0x80008000); code->shr(xor_a_b, 1); code->and_(xor_a_b, 0x7FFF7FFF); code->add(result, xor_a_b); code->xor_(result, carry); reg_alloc.DefineValue(inst, result); } void EmitX64::EmitPackedHalvingSubU8(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); Xbyak::Reg32 minuend = reg_alloc.UseScratchGpr(args[0]).cvt32(); Xbyak::Reg32 subtrahend = reg_alloc.UseScratchGpr(args[1]).cvt32(); // This relies on the equality x-y == (x^y) - (((x^y)&y) << 1). // Note that x^y always contains the LSB of the result. // Since we want to calculate (x+y)/2, we can instead calculate ((x^y)>>1) - ((x^y)&y). code->xor_(minuend, subtrahend); code->and_(subtrahend, minuend); code->shr(minuend, 1); // At this point, // minuend := (a^b) >> 1 // subtrahend := (a^b) & b // We must now perform a partitioned subtraction. // We can do this because minuend contains 7 bit fields. // We use the extra bit in minuend as a bit to borrow from; we set this bit. // We invert this bit at the end as this tells us if that bit was borrowed from. code->or_(minuend, 0x80808080); code->sub(minuend, subtrahend); code->xor_(minuend, 0x80808080); // minuend now contains the desired result. reg_alloc.DefineValue(inst, minuend); } void EmitX64::EmitPackedHalvingSubS8(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); Xbyak::Reg32 minuend = reg_alloc.UseScratchGpr(args[0]).cvt32(); Xbyak::Reg32 subtrahend = reg_alloc.UseScratchGpr(args[1]).cvt32(); Xbyak::Reg32 carry = reg_alloc.ScratchGpr().cvt32(); // This relies on the equality x-y == (x^y) - (((x^y)&y) << 1). // Note that x^y always contains the LSB of the result. // Since we want to calculate (x-y)/2, we can instead calculate ((x^y)>>1) - ((x^y)&y). code->xor_(minuend, subtrahend); code->and_(subtrahend, minuend); code->mov(carry, minuend); code->and_(carry, 0x80808080); code->shr(minuend, 1); // At this point, // minuend := (a^b) >> 1 // subtrahend := (a^b) & b // carry := (a^b) & 0x80808080 // We must now perform a partitioned subtraction. // We can do this because minuend contains 7 bit fields. // We use the extra bit in minuend as a bit to borrow from; we set this bit. // We invert this bit at the end as this tells us if that bit was borrowed from. // We then sign extend the result into this bit. code->or_(minuend, 0x80808080); code->sub(minuend, subtrahend); code->xor_(minuend, 0x80808080); code->xor_(minuend, carry); reg_alloc.DefineValue(inst, minuend); } void EmitX64::EmitPackedHalvingSubU16(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); Xbyak::Reg32 minuend = reg_alloc.UseScratchGpr(args[0]).cvt32(); Xbyak::Reg32 subtrahend = reg_alloc.UseScratchGpr(args[1]).cvt32(); // This relies on the equality x-y == (x^y) - (((x^y)&y) << 1). // Note that x^y always contains the LSB of the result. // Since we want to calculate (x+y)/2, we can instead calculate ((x^y)>>1) - ((x^y)&y). code->xor_(minuend, subtrahend); code->and_(subtrahend, minuend); code->shr(minuend, 1); // At this point, // minuend := (a^b) >> 1 // subtrahend := (a^b) & b // We must now perform a partitioned subtraction. // We can do this because minuend contains 15 bit fields. // We use the extra bit in minuend as a bit to borrow from; we set this bit. // We invert this bit at the end as this tells us if that bit was borrowed from. code->or_(minuend, 0x80008000); code->sub(minuend, subtrahend); code->xor_(minuend, 0x80008000); reg_alloc.DefineValue(inst, minuend); } void EmitX64::EmitPackedHalvingSubS16(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); Xbyak::Reg32 minuend = reg_alloc.UseScratchGpr(args[0]).cvt32(); Xbyak::Reg32 subtrahend = reg_alloc.UseScratchGpr(args[1]).cvt32(); Xbyak::Reg32 carry = reg_alloc.ScratchGpr().cvt32(); // This relies on the equality x-y == (x^y) - (((x^y)&y) << 1). // Note that x^y always contains the LSB of the result. // Since we want to calculate (x-y)/2, we can instead calculate ((x^y)>>1) - ((x^y)&y). code->xor_(minuend, subtrahend); code->and_(subtrahend, minuend); code->mov(carry, minuend); code->and_(carry, 0x80008000); code->shr(minuend, 1); // At this point, // minuend := (a^b) >> 1 // subtrahend := (a^b) & b // carry := (a^b) & 0x80008000 // We must now perform a partitioned subtraction. // We can do this because minuend contains 7 bit fields. // We use the extra bit in minuend as a bit to borrow from; we set this bit. // We invert this bit at the end as this tells us if that bit was borrowed from. // We then sign extend the result into this bit. code->or_(minuend, 0x80008000); code->sub(minuend, subtrahend); code->xor_(minuend, 0x80008000); code->xor_(minuend, carry); reg_alloc.DefineValue(inst, minuend); } void EmitPackedSubAdd(BlockOfCode* code, RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst, bool hi_is_sum, bool is_signed, bool is_halving) { auto args = reg_alloc.GetArgumentInfo(inst); auto ge_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetGEFromOp); Xbyak::Reg32 reg_a_hi = reg_alloc.UseScratchGpr(args[0]).cvt32(); Xbyak::Reg32 reg_b_hi = reg_alloc.UseScratchGpr(args[1]).cvt32(); Xbyak::Reg32 reg_a_lo = reg_alloc.ScratchGpr().cvt32(); Xbyak::Reg32 reg_b_lo = reg_alloc.ScratchGpr().cvt32(); Xbyak::Reg32 reg_sum, reg_diff; if (is_signed) { code->movsx(reg_a_lo, reg_a_hi.cvt16()); code->movsx(reg_b_lo, reg_b_hi.cvt16()); code->sar(reg_a_hi, 16); code->sar(reg_b_hi, 16); } else { code->movzx(reg_a_lo, reg_a_hi.cvt16()); code->movzx(reg_b_lo, reg_b_hi.cvt16()); code->shr(reg_a_hi, 16); code->shr(reg_b_hi, 16); } if (hi_is_sum) { code->sub(reg_a_lo, reg_b_hi); code->add(reg_a_hi, reg_b_lo); reg_diff = reg_a_lo; reg_sum = reg_a_hi; } else { code->add(reg_a_lo, reg_b_hi); code->sub(reg_a_hi, reg_b_lo); reg_diff = reg_a_hi; reg_sum = reg_a_lo; } if (ge_inst) { EraseInstruction(block, ge_inst); // The reg_b registers are no longer required. Xbyak::Reg32 ge_sum = reg_b_hi; Xbyak::Reg32 ge_diff = reg_b_lo; code->mov(ge_sum, reg_sum); code->mov(ge_diff, reg_diff); if (!is_signed) { code->shl(ge_sum, 15); code->sar(ge_sum, 16); } else { code->not_(ge_sum); } code->not_(ge_diff); code->and_(ge_sum, hi_is_sum ? 0xC0000000 : 0x30000000); code->and_(ge_diff, hi_is_sum ? 0x30000000 : 0xC0000000); code->or_(ge_sum, ge_diff); code->shr(ge_sum, 28); reg_alloc.DefineValue(ge_inst, ge_sum); } if (is_halving) { code->shl(reg_a_lo, 15); code->shr(reg_a_hi, 1); } else { code->shl(reg_a_lo, 16); } // reg_a_lo now contains the low word and reg_a_hi now contains the high word. // Merge them. code->shld(reg_a_hi, reg_a_lo, 16); reg_alloc.DefineValue(inst, reg_a_hi); } void EmitX64::EmitPackedAddSubU16(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) { EmitPackedSubAdd(code, reg_alloc, block, inst, true, false, false); } void EmitX64::EmitPackedAddSubS16(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) { EmitPackedSubAdd(code, reg_alloc, block, inst, true, true, false); } void EmitX64::EmitPackedSubAddU16(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) { EmitPackedSubAdd(code, reg_alloc, block, inst, false, false, false); } void EmitX64::EmitPackedSubAddS16(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) { EmitPackedSubAdd(code, reg_alloc, block, inst, false, true, false); } void EmitX64::EmitPackedHalvingAddSubU16(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) { EmitPackedSubAdd(code, reg_alloc, block, inst, true, false, true); } void EmitX64::EmitPackedHalvingAddSubS16(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) { EmitPackedSubAdd(code, reg_alloc, block, inst, true, true, true); } void EmitX64::EmitPackedHalvingSubAddU16(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) { EmitPackedSubAdd(code, reg_alloc, block, inst, false, false, true); } void EmitX64::EmitPackedHalvingSubAddS16(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) { EmitPackedSubAdd(code, reg_alloc, block, inst, false, true, true); } static void EmitPackedOperation(BlockOfCode* code, RegAlloc& reg_alloc, IR::Inst* inst, void (Xbyak::CodeGenerator::*fn)(const Xbyak::Mmx& mmx, const Xbyak::Operand&)) { auto args = reg_alloc.GetArgumentInfo(inst); Xbyak::Xmm xmm_a = reg_alloc.UseScratchXmm(args[0]); Xbyak::Xmm xmm_b = reg_alloc.UseXmm(args[1]); (code->*fn)(xmm_a, xmm_b); reg_alloc.DefineValue(inst, xmm_a); } void EmitX64::EmitPackedSaturatedAddU8(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { EmitPackedOperation(code, reg_alloc, inst, &Xbyak::CodeGenerator::paddusb); } void EmitX64::EmitPackedSaturatedAddS8(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { EmitPackedOperation(code, reg_alloc, inst, &Xbyak::CodeGenerator::paddsb); } void EmitX64::EmitPackedSaturatedSubU8(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { EmitPackedOperation(code, reg_alloc, inst, &Xbyak::CodeGenerator::psubusb); } void EmitX64::EmitPackedSaturatedSubS8(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { EmitPackedOperation(code, reg_alloc, inst, &Xbyak::CodeGenerator::psubsb); } void EmitX64::EmitPackedSaturatedAddU16(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { EmitPackedOperation(code, reg_alloc, inst, &Xbyak::CodeGenerator::paddusw); } void EmitX64::EmitPackedSaturatedAddS16(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { EmitPackedOperation(code, reg_alloc, inst, &Xbyak::CodeGenerator::paddsw); } void EmitX64::EmitPackedSaturatedSubU16(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { EmitPackedOperation(code, reg_alloc, inst, &Xbyak::CodeGenerator::psubusw); } void EmitX64::EmitPackedSaturatedSubS16(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { EmitPackedOperation(code, reg_alloc, inst, &Xbyak::CodeGenerator::psubsw); } void EmitX64::EmitPackedAbsDiffSumS8(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { EmitPackedOperation(code, reg_alloc, inst, &Xbyak::CodeGenerator::psadbw); } static void DenormalsAreZero32(BlockOfCode* code, Xbyak::Xmm xmm_value, Xbyak::Reg32 gpr_scratch) { using namespace Xbyak::util; Xbyak::Label end; // We need to report back whether we've found a denormal on input. // SSE doesn't do this for us when SSE's DAZ is enabled. code->movd(gpr_scratch, xmm_value); code->and_(gpr_scratch, u32(0x7FFFFFFF)); code->sub(gpr_scratch, u32(1)); code->cmp(gpr_scratch, u32(0x007FFFFE)); code->ja(end); code->pxor(xmm_value, xmm_value); code->mov(dword[r15 + offsetof(JitState, FPSCR_IDC)], u32(1 << 7)); code->L(end); } static void DenormalsAreZero64(BlockOfCode* code, Xbyak::Xmm xmm_value, Xbyak::Reg64 gpr_scratch) { using namespace Xbyak::util; Xbyak::Label end; auto mask = code->MConst(f64_non_sign_mask); mask.setBit(64); auto penult_denormal = code->MConst(f64_penultimate_positive_denormal); penult_denormal.setBit(64); code->movq(gpr_scratch, xmm_value); code->and_(gpr_scratch, mask); code->sub(gpr_scratch, u32(1)); code->cmp(gpr_scratch, penult_denormal); code->ja(end); code->pxor(xmm_value, xmm_value); code->mov(dword[r15 + offsetof(JitState, FPSCR_IDC)], u32(1 << 7)); code->L(end); } static void FlushToZero32(BlockOfCode* code, Xbyak::Xmm xmm_value, Xbyak::Reg32 gpr_scratch) { using namespace Xbyak::util; Xbyak::Label end; code->movd(gpr_scratch, xmm_value); code->and_(gpr_scratch, u32(0x7FFFFFFF)); code->sub(gpr_scratch, u32(1)); code->cmp(gpr_scratch, u32(0x007FFFFE)); code->ja(end); code->pxor(xmm_value, xmm_value); code->mov(dword[r15 + offsetof(JitState, FPSCR_UFC)], u32(1 << 3)); code->L(end); } static void FlushToZero64(BlockOfCode* code, Xbyak::Xmm xmm_value, Xbyak::Reg64 gpr_scratch) { using namespace Xbyak::util; Xbyak::Label end; auto mask = code->MConst(f64_non_sign_mask); mask.setBit(64); auto penult_denormal = code->MConst(f64_penultimate_positive_denormal); penult_denormal.setBit(64); code->movq(gpr_scratch, xmm_value); code->and_(gpr_scratch, mask); code->sub(gpr_scratch, u32(1)); code->cmp(gpr_scratch, penult_denormal); code->ja(end); code->pxor(xmm_value, xmm_value); code->mov(dword[r15 + offsetof(JitState, FPSCR_UFC)], u32(1 << 3)); code->L(end); } static void DefaultNaN32(BlockOfCode* code, Xbyak::Xmm xmm_value) { Xbyak::Label end; code->ucomiss(xmm_value, xmm_value); code->jnp(end); code->movaps(xmm_value, code->MConst(f32_nan)); code->L(end); } static void DefaultNaN64(BlockOfCode* code, Xbyak::Xmm xmm_value) { Xbyak::Label end; code->ucomisd(xmm_value, xmm_value); code->jnp(end); code->movaps(xmm_value, code->MConst(f64_nan)); code->L(end); } static void ZeroIfNaN64(BlockOfCode* code, Xbyak::Xmm xmm_value, Xbyak::Xmm xmm_scratch) { code->pxor(xmm_scratch, xmm_scratch); code->cmpordsd(xmm_scratch, xmm_value); // true mask when ordered (i.e.: when not an NaN) code->pand(xmm_value, xmm_scratch); } static void FPThreeOp32(BlockOfCode* code, RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst, void (Xbyak::CodeGenerator::*fn)(const Xbyak::Xmm&, const Xbyak::Operand&)) { auto args = reg_alloc.GetArgumentInfo(inst); Xbyak::Xmm result = reg_alloc.UseScratchXmm(args[0]); Xbyak::Xmm operand = reg_alloc.UseScratchXmm(args[1]); Xbyak::Reg32 gpr_scratch = reg_alloc.ScratchGpr().cvt32(); if (block.Location().FPSCR().FTZ()) { DenormalsAreZero32(code, result, gpr_scratch); DenormalsAreZero32(code, operand, gpr_scratch); } (code->*fn)(result, operand); if (block.Location().FPSCR().FTZ()) { FlushToZero32(code, result, gpr_scratch); } if (block.Location().FPSCR().DN()) { DefaultNaN32(code, result); } reg_alloc.DefineValue(inst, result); } static void FPThreeOp64(BlockOfCode* code, RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst, void (Xbyak::CodeGenerator::*fn)(const Xbyak::Xmm&, const Xbyak::Operand&)) { auto args = reg_alloc.GetArgumentInfo(inst); Xbyak::Xmm result = reg_alloc.UseScratchXmm(args[0]); Xbyak::Xmm operand = reg_alloc.UseScratchXmm(args[1]); Xbyak::Reg64 gpr_scratch = reg_alloc.ScratchGpr(); if (block.Location().FPSCR().FTZ()) { DenormalsAreZero64(code, result, gpr_scratch); DenormalsAreZero64(code, operand, gpr_scratch); } (code->*fn)(result, operand); if (block.Location().FPSCR().FTZ()) { FlushToZero64(code, result, gpr_scratch); } if (block.Location().FPSCR().DN()) { DefaultNaN64(code, result); } reg_alloc.DefineValue(inst, result); } static void FPTwoOp32(BlockOfCode* code, RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst, void (Xbyak::CodeGenerator::*fn)(const Xbyak::Xmm&, const Xbyak::Operand&)) { auto args = reg_alloc.GetArgumentInfo(inst); Xbyak::Xmm result = reg_alloc.UseScratchXmm(args[0]); Xbyak::Reg32 gpr_scratch = reg_alloc.ScratchGpr().cvt32(); if (block.Location().FPSCR().FTZ()) { DenormalsAreZero32(code, result, gpr_scratch); } (code->*fn)(result, result); if (block.Location().FPSCR().FTZ()) { FlushToZero32(code, result, gpr_scratch); } if (block.Location().FPSCR().DN()) { DefaultNaN32(code, result); } reg_alloc.DefineValue(inst, result); } static void FPTwoOp64(BlockOfCode* code, RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst, void (Xbyak::CodeGenerator::*fn)(const Xbyak::Xmm&, const Xbyak::Operand&)) { auto args = reg_alloc.GetArgumentInfo(inst); Xbyak::Xmm result = reg_alloc.UseScratchXmm(args[0]); Xbyak::Reg64 gpr_scratch = reg_alloc.ScratchGpr(); if (block.Location().FPSCR().FTZ()) { DenormalsAreZero64(code, result, gpr_scratch); } (code->*fn)(result, result); if (block.Location().FPSCR().FTZ()) { FlushToZero64(code, result, gpr_scratch); } if (block.Location().FPSCR().DN()) { DefaultNaN64(code, result); } reg_alloc.DefineValue(inst, result); } void EmitX64::EmitTransferFromFP32(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); reg_alloc.DefineValue(inst, args[0]); } void EmitX64::EmitTransferFromFP64(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); reg_alloc.DefineValue(inst, args[0]); } void EmitX64::EmitTransferToFP32(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); if (args[0].IsImmediate() && args[0].GetImmediateU32() == 0) { Xbyak::Xmm result = reg_alloc.ScratchXmm(); code->xorps(result, result); reg_alloc.DefineValue(inst, result); } else { reg_alloc.DefineValue(inst, args[0]); } } void EmitX64::EmitTransferToFP64(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); if (args[0].IsImmediate() && args[0].GetImmediateU64() == 0) { Xbyak::Xmm result = reg_alloc.ScratchXmm(); code->xorps(result, result); reg_alloc.DefineValue(inst, result); } else { reg_alloc.DefineValue(inst, args[0]); } } void EmitX64::EmitFPAbs32(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); Xbyak::Xmm result = reg_alloc.UseScratchXmm(args[0]); code->pand(result, code->MConst(f32_non_sign_mask)); reg_alloc.DefineValue(inst, result); } void EmitX64::EmitFPAbs64(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); Xbyak::Xmm result = reg_alloc.UseScratchXmm(args[0]); code->pand(result, code->MConst(f64_non_sign_mask)); reg_alloc.DefineValue(inst, result); } void EmitX64::EmitFPNeg32(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); Xbyak::Xmm result = reg_alloc.UseScratchXmm(args[0]); code->pxor(result, code->MConst(f32_negative_zero)); reg_alloc.DefineValue(inst, result); } void EmitX64::EmitFPNeg64(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); Xbyak::Xmm result = reg_alloc.UseScratchXmm(args[0]); code->pxor(result, code->MConst(f64_negative_zero)); reg_alloc.DefineValue(inst, result); } void EmitX64::EmitFPAdd32(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) { FPThreeOp32(code, reg_alloc, block, inst, &Xbyak::CodeGenerator::addss); } void EmitX64::EmitFPAdd64(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) { FPThreeOp64(code, reg_alloc, block, inst, &Xbyak::CodeGenerator::addsd); } void EmitX64::EmitFPDiv32(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) { FPThreeOp32(code, reg_alloc, block, inst, &Xbyak::CodeGenerator::divss); } void EmitX64::EmitFPDiv64(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) { FPThreeOp64(code, reg_alloc, block, inst, &Xbyak::CodeGenerator::divsd); } void EmitX64::EmitFPMul32(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) { FPThreeOp32(code, reg_alloc, block, inst, &Xbyak::CodeGenerator::mulss); } void EmitX64::EmitFPMul64(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) { FPThreeOp64(code, reg_alloc, block, inst, &Xbyak::CodeGenerator::mulsd); } void EmitX64::EmitFPSqrt32(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) { FPTwoOp32(code, reg_alloc, block, inst, &Xbyak::CodeGenerator::sqrtss); } void EmitX64::EmitFPSqrt64(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) { FPTwoOp64(code, reg_alloc, block, inst, &Xbyak::CodeGenerator::sqrtsd); } void EmitX64::EmitFPSub32(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) { FPThreeOp32(code, reg_alloc, block, inst, &Xbyak::CodeGenerator::subss); } void EmitX64::EmitFPSub64(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) { FPThreeOp64(code, reg_alloc, block, inst, &Xbyak::CodeGenerator::subsd); } static void SetFpscrNzcvFromFlags(BlockOfCode* code, RegAlloc& reg_alloc) { reg_alloc.ScratchGpr({HostLoc::RAX}); // lahf requires use of ah Xbyak::Reg32 nzcv_imm = reg_alloc.ScratchGpr().cvt32(); Xbyak::Reg32 nzcv = reg_alloc.ScratchGpr().cvt32(); using namespace Xbyak::util; code->lahf(); code->mov(nzcv_imm, 0x30000000); code->cmp(ah, 0b01000111); code->cmove(nzcv, nzcv_imm); code->mov(nzcv_imm, 0x20000000); code->cmp(ah, 0b00000010); code->cmove(nzcv, nzcv_imm); code->mov(nzcv_imm, 0x80000000); code->cmp(ah, 0b00000011); code->cmove(nzcv, nzcv_imm); code->mov(nzcv_imm, 0x60000000); code->cmp(ah, 0b01000010); code->cmove(nzcv, nzcv_imm); code->mov(dword[r15 + offsetof(JitState, FPSCR_nzcv)], nzcv); } void EmitX64::EmitFPCompare32(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); Xbyak::Xmm reg_a = reg_alloc.UseXmm(args[0]); Xbyak::Xmm reg_b = reg_alloc.UseXmm(args[1]); bool exc_on_qnan = args[2].GetImmediateU1(); if (exc_on_qnan) { code->comiss(reg_a, reg_b); } else { code->ucomiss(reg_a, reg_b); } SetFpscrNzcvFromFlags(code, reg_alloc); } void EmitX64::EmitFPCompare64(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); Xbyak::Xmm reg_a = reg_alloc.UseXmm(args[0]); Xbyak::Xmm reg_b = reg_alloc.UseXmm(args[1]); bool exc_on_qnan = args[2].GetImmediateU1(); if (exc_on_qnan) { code->comisd(reg_a, reg_b); } else { code->ucomisd(reg_a, reg_b); } SetFpscrNzcvFromFlags(code, reg_alloc); } void EmitX64::EmitFPSingleToDouble(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); Xbyak::Xmm result = reg_alloc.UseScratchXmm(args[0]); Xbyak::Reg64 gpr_scratch = reg_alloc.ScratchGpr(); if (block.Location().FPSCR().FTZ()) { DenormalsAreZero32(code, result, gpr_scratch.cvt32()); } code->cvtss2sd(result, result); if (block.Location().FPSCR().FTZ()) { FlushToZero64(code, result, gpr_scratch); } if (block.Location().FPSCR().DN()) { DefaultNaN64(code, result); } reg_alloc.DefineValue(inst, result); } void EmitX64::EmitFPDoubleToSingle(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); Xbyak::Xmm result = reg_alloc.UseScratchXmm(args[0]); Xbyak::Reg64 gpr_scratch = reg_alloc.ScratchGpr(); if (block.Location().FPSCR().FTZ()) { DenormalsAreZero64(code, result, gpr_scratch); } code->cvtsd2ss(result, result); if (block.Location().FPSCR().FTZ()) { FlushToZero32(code, result, gpr_scratch.cvt32()); } if (block.Location().FPSCR().DN()) { DefaultNaN32(code, result); } reg_alloc.DefineValue(inst, result); } void EmitX64::EmitFPSingleToS32(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); Xbyak::Xmm from = reg_alloc.UseScratchXmm(args[0]); Xbyak::Reg32 to = reg_alloc.ScratchGpr().cvt32(); Xbyak::Xmm xmm_scratch = reg_alloc.ScratchXmm(); bool round_towards_zero = args[1].GetImmediateU1(); // ARM saturates on conversion; this differs from x64 which returns a sentinel value. // Conversion to double is lossless, and allows for clamping. if (block.Location().FPSCR().FTZ()) { DenormalsAreZero32(code, from, to); } code->cvtss2sd(from, from); // First time is to set flags if (round_towards_zero) { code->cvttsd2si(to, from); // 32 bit gpr } else { code->cvtsd2si(to, from); // 32 bit gpr } // Clamp to output range ZeroIfNaN64(code, from, xmm_scratch); code->minsd(from, code->MConst(f64_max_s32)); code->maxsd(from, code->MConst(f64_min_s32)); // Second time is for real if (round_towards_zero) { code->cvttsd2si(to, from); // 32 bit gpr } else { code->cvtsd2si(to, from); // 32 bit gpr } reg_alloc.DefineValue(inst, to); } void EmitX64::EmitFPSingleToU32(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); Xbyak::Xmm from = reg_alloc.UseScratchXmm(args[0]); Xbyak::Reg32 to = reg_alloc.ScratchGpr().cvt32(); Xbyak::Xmm xmm_scratch = reg_alloc.ScratchXmm(); bool round_towards_zero = args[1].GetImmediateU1(); // ARM saturates on conversion; this differs from x64 which returns a sentinel value. // Conversion to double is lossless, and allows for accurate clamping. // // Since SSE2 doesn't provide an unsigned conversion, we shift the range as appropriate. // // FIXME: Inexact exception not correctly signalled with the below code if (block.Location().FPSCR().RMode() != Arm::FPSCR::RoundingMode::TowardsZero && !round_towards_zero) { if (block.Location().FPSCR().FTZ()) { DenormalsAreZero32(code, from, to); } code->cvtss2sd(from, from); ZeroIfNaN64(code, from, xmm_scratch); // Bring into SSE range code->addsd(from, code->MConst(f64_min_s32)); // First time is to set flags code->cvtsd2si(to, from); // 32 bit gpr // Clamp to output range code->minsd(from, code->MConst(f64_max_s32)); code->maxsd(from, code->MConst(f64_min_s32)); // Actually convert code->cvtsd2si(to, from); // 32 bit gpr // Bring back into original range code->add(to, u32(2147483648u)); } else { Xbyak::Xmm xmm_mask = reg_alloc.ScratchXmm(); Xbyak::Reg32 gpr_mask = reg_alloc.ScratchGpr().cvt32(); if (block.Location().FPSCR().FTZ()) { DenormalsAreZero32(code, from, to); } code->cvtss2sd(from, from); ZeroIfNaN64(code, from, xmm_scratch); // Generate masks if out-of-signed-range code->movaps(xmm_mask, code->MConst(f64_max_s32)); code->cmpltsd(xmm_mask, from); code->movd(gpr_mask, xmm_mask); code->pand(xmm_mask, code->MConst(f64_min_s32)); code->and_(gpr_mask, u32(2147483648u)); // Bring into range if necessary code->addsd(from, xmm_mask); // First time is to set flags code->cvttsd2si(to, from); // 32 bit gpr // Clamp to output range code->minsd(from, code->MConst(f64_max_s32)); code->maxsd(from, code->MConst(f64_min_u32)); // Actually convert code->cvttsd2si(to, from); // 32 bit gpr // Bring back into original range if necessary code->add(to, gpr_mask); } reg_alloc.DefineValue(inst, to); } void EmitX64::EmitFPDoubleToS32(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); Xbyak::Xmm from = reg_alloc.UseScratchXmm(args[0]); Xbyak::Reg32 to = reg_alloc.ScratchGpr().cvt32(); Xbyak::Xmm xmm_scratch = reg_alloc.ScratchXmm(); Xbyak::Reg32 gpr_scratch = reg_alloc.ScratchGpr().cvt32(); bool round_towards_zero = args[1].GetImmediateU1(); // ARM saturates on conversion; this differs from x64 which returns a sentinel value. if (block.Location().FPSCR().FTZ()) { DenormalsAreZero64(code, from, gpr_scratch.cvt64()); } // First time is to set flags if (round_towards_zero) { code->cvttsd2si(gpr_scratch, from); // 32 bit gpr } else { code->cvtsd2si(gpr_scratch, from); // 32 bit gpr } // Clamp to output range ZeroIfNaN64(code, from, xmm_scratch); code->minsd(from, code->MConst(f64_max_s32)); code->maxsd(from, code->MConst(f64_min_s32)); // Second time is for real if (round_towards_zero) { code->cvttsd2si(to, from); // 32 bit gpr } else { code->cvtsd2si(to, from); // 32 bit gpr } reg_alloc.DefineValue(inst, to); } void EmitX64::EmitFPDoubleToU32(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); Xbyak::Xmm from = reg_alloc.UseScratchXmm(args[0]); Xbyak::Reg32 to = reg_alloc.ScratchGpr().cvt32(); Xbyak::Xmm xmm_scratch = reg_alloc.ScratchXmm(); Xbyak::Reg32 gpr_scratch = reg_alloc.ScratchGpr().cvt32(); bool round_towards_zero = args[1].GetImmediateU1(); // ARM saturates on conversion; this differs from x64 which returns a sentinel value. // TODO: Use VCVTPD2UDQ when AVX512VL is available. // FIXME: Inexact exception not correctly signalled with the below code if (block.Location().FPSCR().RMode() != Arm::FPSCR::RoundingMode::TowardsZero && !round_towards_zero) { if (block.Location().FPSCR().FTZ()) { DenormalsAreZero64(code, from, gpr_scratch.cvt64()); } ZeroIfNaN64(code, from, xmm_scratch); // Bring into SSE range code->addsd(from, code->MConst(f64_min_s32)); // First time is to set flags code->cvtsd2si(gpr_scratch, from); // 32 bit gpr // Clamp to output range code->minsd(from, code->MConst(f64_max_s32)); code->maxsd(from, code->MConst(f64_min_s32)); // Actually convert code->cvtsd2si(to, from); // 32 bit gpr // Bring back into original range code->add(to, u32(2147483648u)); } else { Xbyak::Xmm xmm_mask = reg_alloc.ScratchXmm(); Xbyak::Reg32 gpr_mask = reg_alloc.ScratchGpr().cvt32(); if (block.Location().FPSCR().FTZ()) { DenormalsAreZero64(code, from, gpr_scratch.cvt64()); } ZeroIfNaN64(code, from, xmm_scratch); // Generate masks if out-of-signed-range code->movaps(xmm_mask, code->MConst(f64_max_s32)); code->cmpltsd(xmm_mask, from); code->movd(gpr_mask, xmm_mask); code->pand(xmm_mask, code->MConst(f64_min_s32)); code->and_(gpr_mask, u32(2147483648u)); // Bring into range if necessary code->addsd(from, xmm_mask); // First time is to set flags code->cvttsd2si(gpr_scratch, from); // 32 bit gpr // Clamp to output range code->minsd(from, code->MConst(f64_max_s32)); code->maxsd(from, code->MConst(f64_min_u32)); // Actually convert code->cvttsd2si(to, from); // 32 bit gpr // Bring back into original range if necessary code->add(to, gpr_mask); } reg_alloc.DefineValue(inst, to); } void EmitX64::EmitFPS32ToSingle(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); Xbyak::Reg32 from = reg_alloc.UseGpr(args[0]).cvt32(); Xbyak::Xmm to = reg_alloc.ScratchXmm(); bool round_to_nearest = args[1].GetImmediateU1(); ASSERT_MSG(!round_to_nearest, "round_to_nearest unimplemented"); code->cvtsi2ss(to, from); reg_alloc.DefineValue(inst, to); } void EmitX64::EmitFPU32ToSingle(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); Xbyak::Reg64 from = reg_alloc.UseGpr(args[0]); Xbyak::Xmm to = reg_alloc.ScratchXmm(); bool round_to_nearest = args[1].GetImmediateU1(); ASSERT_MSG(!round_to_nearest, "round_to_nearest unimplemented"); // We are using a 64-bit GPR register to ensure we don't end up treating the input as signed code->mov(from.cvt32(), from.cvt32()); // TODO: Verify if this is necessary code->cvtsi2ss(to, from); reg_alloc.DefineValue(inst, to); } void EmitX64::EmitFPS32ToDouble(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); Xbyak::Reg32 from = reg_alloc.UseGpr(args[0]).cvt32(); Xbyak::Xmm to = reg_alloc.ScratchXmm(); bool round_to_nearest = args[1].GetImmediateU1(); ASSERT_MSG(!round_to_nearest, "round_to_nearest unimplemented"); code->cvtsi2sd(to, from); reg_alloc.DefineValue(inst, to); } void EmitX64::EmitFPU32ToDouble(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); Xbyak::Reg64 from = reg_alloc.UseGpr(args[0]); Xbyak::Xmm to = reg_alloc.ScratchXmm(); bool round_to_nearest = args[1].GetImmediateU1(); ASSERT_MSG(!round_to_nearest, "round_to_nearest unimplemented"); // We are using a 64-bit GPR register to ensure we don't end up treating the input as signed code->mov(from.cvt32(), from.cvt32()); // TODO: Verify if this is necessary code->cvtsi2sd(to, from); reg_alloc.DefineValue(inst, to); } void EmitX64::EmitClearExclusive(RegAlloc&, IR::Block&, IR::Inst*) { using namespace Xbyak::util; code->mov(code->byte[r15 + offsetof(JitState, exclusive_state)], u8(0)); } void EmitX64::EmitSetExclusive(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { using namespace Xbyak::util; auto args = reg_alloc.GetArgumentInfo(inst); ASSERT(args[1].IsImmediate()); Xbyak::Reg32 address = reg_alloc.UseGpr(args[0]).cvt32(); code->mov(code->byte[r15 + offsetof(JitState, exclusive_state)], u8(1)); code->mov(dword[r15 + offsetof(JitState, exclusive_address)], address); } template static void ReadMemory(BlockOfCode* code, RegAlloc& reg_alloc, IR::Inst* inst, UserCallbacks& cb, size_t bit_size, FunctionPointer fn) { auto args = reg_alloc.GetArgumentInfo(inst); reg_alloc.HostCall(inst, args[0]); if (!cb.page_table) { code->CallFunction(fn); return; } using namespace Xbyak::util; Xbyak::Reg64 result = code->ABI_RETURN; Xbyak::Reg32 vaddr = code->ABI_PARAM1.cvt32(); Xbyak::Reg64 page_index = code->ABI_PARAM3; Xbyak::Reg64 page_offset = code->ABI_PARAM4; Xbyak::Label abort, end; code->mov(result, reinterpret_cast(cb.page_table)); code->mov(page_index.cvt32(), vaddr); code->shr(page_index.cvt32(), 12); code->mov(result, qword[result + page_index * 8]); code->test(result, result); code->jz(abort); code->mov(page_offset.cvt32(), vaddr); code->and_(page_offset.cvt32(), 4095); switch (bit_size) { case 8: code->movzx(result, code->byte[result + page_offset]); break; case 16: code->movzx(result, word[result + page_offset]); break; case 32: code->mov(result.cvt32(), dword[result + page_offset]); break; case 64: code->mov(result.cvt64(), qword[result + page_offset]); break; default: ASSERT_MSG(false, "Invalid bit_size"); break; } code->jmp(end); code->L(abort); code->call(code->GetMemoryReadCallback(bit_size)); code->L(end); } template static void WriteMemory(BlockOfCode* code, RegAlloc& reg_alloc, IR::Inst* inst, UserCallbacks& cb, size_t bit_size, FunctionPointer fn) { auto args = reg_alloc.GetArgumentInfo(inst); reg_alloc.HostCall(nullptr, args[0], args[1]); if (!cb.page_table) { code->CallFunction(fn); return; } using namespace Xbyak::util; Xbyak::Reg32 vaddr = code->ABI_PARAM1.cvt32(); Xbyak::Reg64 value = code->ABI_PARAM2; Xbyak::Reg64 page_index = code->ABI_PARAM3; Xbyak::Reg64 page_offset = code->ABI_PARAM4; Xbyak::Label abort, end; code->mov(rax, reinterpret_cast(cb.page_table)); code->mov(page_index.cvt32(), vaddr); code->shr(page_index.cvt32(), 12); code->mov(rax, qword[rax + page_index * 8]); code->test(rax, rax); code->jz(abort); code->mov(page_offset.cvt32(), vaddr); code->and_(page_offset.cvt32(), 4095); switch (bit_size) { case 8: code->mov(code->byte[rax + page_offset], value.cvt8()); break; case 16: code->mov(word[rax + page_offset], value.cvt16()); break; case 32: code->mov(dword[rax + page_offset], value.cvt32()); break; case 64: code->mov(qword[rax + page_offset], value.cvt64()); break; default: ASSERT_MSG(false, "Invalid bit_size"); break; } code->jmp(end); code->L(abort); code->call(code->GetMemoryWriteCallback(bit_size)); code->L(end); } void EmitX64::EmitReadMemory8(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { ReadMemory(code, reg_alloc, inst, cb, 8, cb.memory.Read8); } void EmitX64::EmitReadMemory16(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { ReadMemory(code, reg_alloc, inst, cb, 16, cb.memory.Read16); } void EmitX64::EmitReadMemory32(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { ReadMemory(code, reg_alloc, inst, cb, 32, cb.memory.Read32); } void EmitX64::EmitReadMemory64(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { ReadMemory(code, reg_alloc, inst, cb, 64, cb.memory.Read64); } void EmitX64::EmitWriteMemory8(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { WriteMemory(code, reg_alloc, inst, cb, 8, cb.memory.Write8); } void EmitX64::EmitWriteMemory16(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { WriteMemory(code, reg_alloc, inst, cb, 16, cb.memory.Write16); } void EmitX64::EmitWriteMemory32(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { WriteMemory(code, reg_alloc, inst, cb, 32, cb.memory.Write32); } void EmitX64::EmitWriteMemory64(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { WriteMemory(code, reg_alloc, inst, cb, 64, cb.memory.Write64); } template static void ExclusiveWrite(BlockOfCode* code, RegAlloc& reg_alloc, IR::Inst* inst, FunctionPointer fn, bool prepend_high_word) { auto args = reg_alloc.GetArgumentInfo(inst); if (prepend_high_word) { reg_alloc.HostCall(nullptr, args[0], args[1], args[2]); } else { reg_alloc.HostCall(nullptr, args[0], args[1]); } Xbyak::Reg32 passed = reg_alloc.ScratchGpr().cvt32(); Xbyak::Reg32 tmp = code->ABI_RETURN.cvt32(); // Use one of the unusued HostCall registers. using namespace Xbyak::util; Xbyak::Label end; code->mov(passed, u32(1)); code->cmp(code->byte[r15 + offsetof(JitState, exclusive_state)], u8(0)); code->je(end); code->mov(tmp, code->ABI_PARAM1); code->xor_(tmp, dword[r15 + offsetof(JitState, exclusive_address)]); code->test(tmp, JitState::RESERVATION_GRANULE_MASK); code->jne(end); code->mov(code->byte[r15 + offsetof(JitState, exclusive_state)], u8(0)); if (prepend_high_word) { code->mov(code->ABI_PARAM2.cvt32(), code->ABI_PARAM2.cvt32()); // zero extend to 64-bits code->shl(code->ABI_PARAM3, 32); code->or_(code->ABI_PARAM2, code->ABI_PARAM3); } code->CallFunction(fn); code->xor_(passed, passed); code->L(end); reg_alloc.DefineValue(inst, passed); } void EmitX64::EmitExclusiveWriteMemory8(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { ExclusiveWrite(code, reg_alloc, inst, cb.memory.Write8, false); } void EmitX64::EmitExclusiveWriteMemory16(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { ExclusiveWrite(code, reg_alloc, inst, cb.memory.Write16, false); } void EmitX64::EmitExclusiveWriteMemory32(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { ExclusiveWrite(code, reg_alloc, inst, cb.memory.Write32, false); } void EmitX64::EmitExclusiveWriteMemory64(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { ExclusiveWrite(code, reg_alloc, inst, cb.memory.Write64, true); } static void EmitCoprocessorException() { ASSERT_MSG(false, "Should raise coproc exception here"); } static void CallCoprocCallback(BlockOfCode* code, RegAlloc& reg_alloc, Jit* jit_interface, Coprocessor::Callback callback, IR::Inst* inst = nullptr, boost::optional arg0 = {}, boost::optional arg1 = {}) { reg_alloc.HostCall(inst, {}, {}, arg0, arg1); code->mov(code->ABI_PARAM1, reinterpret_cast(jit_interface)); if (callback.user_arg) { code->mov(code->ABI_PARAM2, reinterpret_cast(*callback.user_arg)); } code->CallFunction(callback.function); } void EmitX64::EmitCoprocInternalOperation(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto coproc_info = inst->GetArg(0).GetCoprocInfo(); size_t coproc_num = coproc_info[0]; bool two = coproc_info[1] != 0; unsigned opc1 = static_cast(coproc_info[2]); Arm::CoprocReg CRd = static_cast(coproc_info[3]); Arm::CoprocReg CRn = static_cast(coproc_info[4]); Arm::CoprocReg CRm = static_cast(coproc_info[5]); unsigned opc2 = static_cast(coproc_info[6]); std::shared_ptr coproc = cb.coprocessors[coproc_num]; if (!coproc) { EmitCoprocessorException(); return; } auto action = coproc->CompileInternalOperation(two, opc1, CRd, CRn, CRm, opc2); if (!action) { EmitCoprocessorException(); return; } CallCoprocCallback(code, reg_alloc, jit_interface, *action); } void EmitX64::EmitCoprocSendOneWord(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); auto coproc_info = inst->GetArg(0).GetCoprocInfo(); size_t coproc_num = coproc_info[0]; bool two = coproc_info[1] != 0; unsigned opc1 = static_cast(coproc_info[2]); Arm::CoprocReg CRn = static_cast(coproc_info[3]); Arm::CoprocReg CRm = static_cast(coproc_info[4]); unsigned opc2 = static_cast(coproc_info[5]); std::shared_ptr coproc = cb.coprocessors[coproc_num]; if (!coproc) { EmitCoprocessorException(); return; } auto action = coproc->CompileSendOneWord(two, opc1, CRn, CRm, opc2); switch (action.which()) { case 0: EmitCoprocessorException(); return; case 1: CallCoprocCallback(code, reg_alloc, jit_interface, boost::get(action), nullptr, args[1]); return; case 2: { u32* destination_ptr = boost::get(action); Xbyak::Reg32 reg_word = reg_alloc.UseGpr(args[1]).cvt32(); Xbyak::Reg64 reg_destination_addr = reg_alloc.ScratchGpr(); code->mov(reg_destination_addr, reinterpret_cast(destination_ptr)); code->mov(code->dword[reg_destination_addr], reg_word); return; } default: ASSERT_MSG(false, "Unreachable"); } } void EmitX64::EmitCoprocSendTwoWords(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); auto coproc_info = inst->GetArg(0).GetCoprocInfo(); size_t coproc_num = coproc_info[0]; bool two = coproc_info[1] != 0; unsigned opc = static_cast(coproc_info[2]); Arm::CoprocReg CRm = static_cast(coproc_info[3]); std::shared_ptr coproc = cb.coprocessors[coproc_num]; if (!coproc) { EmitCoprocessorException(); return; } auto action = coproc->CompileSendTwoWords(two, opc, CRm); switch (action.which()) { case 0: EmitCoprocessorException(); return; case 1: CallCoprocCallback(code, reg_alloc, jit_interface, boost::get(action), nullptr, args[1], args[2]); return; case 2: { auto destination_ptrs = boost::get>(action); Xbyak::Reg32 reg_word1 = reg_alloc.UseGpr(args[1]).cvt32(); Xbyak::Reg32 reg_word2 = reg_alloc.UseGpr(args[2]).cvt32(); Xbyak::Reg64 reg_destination_addr = reg_alloc.ScratchGpr(); code->mov(reg_destination_addr, reinterpret_cast(destination_ptrs[0])); code->mov(code->dword[reg_destination_addr], reg_word1); code->mov(reg_destination_addr, reinterpret_cast(destination_ptrs[1])); code->mov(code->dword[reg_destination_addr], reg_word2); return; } default: ASSERT_MSG(false, "Unreachable"); } } void EmitX64::EmitCoprocGetOneWord(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto coproc_info = inst->GetArg(0).GetCoprocInfo(); size_t coproc_num = coproc_info[0]; bool two = coproc_info[1] != 0; unsigned opc1 = static_cast(coproc_info[2]); Arm::CoprocReg CRn = static_cast(coproc_info[3]); Arm::CoprocReg CRm = static_cast(coproc_info[4]); unsigned opc2 = static_cast(coproc_info[5]); std::shared_ptr coproc = cb.coprocessors[coproc_num]; if (!coproc) { EmitCoprocessorException(); return; } auto action = coproc->CompileGetOneWord(two, opc1, CRn, CRm, opc2); switch (action.which()) { case 0: EmitCoprocessorException(); return; case 1: CallCoprocCallback(code, reg_alloc, jit_interface, boost::get(action), inst); return; case 2: { u32* source_ptr = boost::get(action); Xbyak::Reg32 reg_word = reg_alloc.ScratchGpr().cvt32(); Xbyak::Reg64 reg_source_addr = reg_alloc.ScratchGpr(); code->mov(reg_source_addr, reinterpret_cast(source_ptr)); code->mov(reg_word, code->dword[reg_source_addr]); reg_alloc.DefineValue(inst, reg_word); return; } default: ASSERT_MSG(false, "Unreachable"); } } void EmitX64::EmitCoprocGetTwoWords(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto coproc_info = inst->GetArg(0).GetCoprocInfo(); size_t coproc_num = coproc_info[0]; bool two = coproc_info[1] != 0; unsigned opc = coproc_info[2]; Arm::CoprocReg CRm = static_cast(coproc_info[3]); std::shared_ptr coproc = cb.coprocessors[coproc_num]; if (!coproc) { EmitCoprocessorException(); return; } auto action = coproc->CompileGetTwoWords(two, opc, CRm); switch (action.which()) { case 0: EmitCoprocessorException(); return; case 1: CallCoprocCallback(code, reg_alloc, jit_interface, boost::get(action), inst); return; case 2: { auto source_ptrs = boost::get>(action); Xbyak::Reg64 reg_result = reg_alloc.ScratchGpr(); Xbyak::Reg64 reg_destination_addr = reg_alloc.ScratchGpr(); Xbyak::Reg64 reg_tmp = reg_alloc.ScratchGpr(); code->mov(reg_destination_addr, reinterpret_cast(source_ptrs[1])); code->mov(reg_result.cvt32(), code->dword[reg_destination_addr]); code->shl(reg_result, 32); code->mov(reg_destination_addr, reinterpret_cast(source_ptrs[0])); code->mov(reg_tmp.cvt32(), code->dword[reg_destination_addr]); code->or_(reg_result, reg_tmp); reg_alloc.DefineValue(inst, reg_result); return; } default: ASSERT_MSG(false, "Unreachable"); } } void EmitX64::EmitCoprocLoadWords(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); auto coproc_info = inst->GetArg(0).GetCoprocInfo(); size_t coproc_num = coproc_info[0]; bool two = coproc_info[1] != 0; bool long_transfer = coproc_info[2] != 0; Arm::CoprocReg CRd = static_cast(coproc_info[3]); bool has_option = coproc_info[4] != 0; boost::optional option{has_option, coproc_info[5]}; std::shared_ptr coproc = cb.coprocessors[coproc_num]; if (!coproc) { EmitCoprocessorException(); return; } auto action = coproc->CompileLoadWords(two, long_transfer, CRd, option); if (!action) { EmitCoprocessorException(); return; } CallCoprocCallback(code, reg_alloc, jit_interface, *action, nullptr, args[1]); } void EmitX64::EmitCoprocStoreWords(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) { auto args = reg_alloc.GetArgumentInfo(inst); auto coproc_info = inst->GetArg(0).GetCoprocInfo(); size_t coproc_num = coproc_info[0]; bool two = coproc_info[1] != 0; bool long_transfer = coproc_info[2] != 0; Arm::CoprocReg CRd = static_cast(coproc_info[3]); bool has_option = coproc_info[4] != 0; boost::optional option{has_option, coproc_info[5]}; std::shared_ptr coproc = cb.coprocessors[coproc_num]; if (!coproc) { EmitCoprocessorException(); return; } auto action = coproc->CompileStoreWords(two, long_transfer, CRd, option); if (!action) { EmitCoprocessorException(); return; } CallCoprocCallback(code, reg_alloc, jit_interface, *action, nullptr, args[1]); } void EmitX64::EmitAddCycles(size_t cycles) { using namespace Xbyak::util; ASSERT(cycles < std::numeric_limits::max()); code->sub(qword[r15 + offsetof(JitState, cycles_remaining)], static_cast(cycles)); } static Xbyak::Label EmitCond(BlockOfCode* code, Arm::Cond cond) { using namespace Xbyak::util; Xbyak::Label label; const Xbyak::Reg32 cpsr = eax; code->mov(cpsr, MJitStateCpsr()); constexpr size_t n_shift = 31; constexpr size_t z_shift = 30; constexpr size_t c_shift = 29; constexpr size_t v_shift = 28; constexpr u32 n_mask = 1u << n_shift; constexpr u32 z_mask = 1u << z_shift; constexpr u32 c_mask = 1u << c_shift; constexpr u32 v_mask = 1u << v_shift; switch (cond) { case Arm::Cond::EQ: //z code->test(cpsr, z_mask); code->jnz(label); break; case Arm::Cond::NE: //!z code->test(cpsr, z_mask); code->jz(label); break; case Arm::Cond::CS: //c code->test(cpsr, c_mask); code->jnz(label); break; case Arm::Cond::CC: //!c code->test(cpsr, c_mask); code->jz(label); break; case Arm::Cond::MI: //n code->test(cpsr, n_mask); code->jnz(label); break; case Arm::Cond::PL: //!n code->test(cpsr, n_mask); code->jz(label); break; case Arm::Cond::VS: //v code->test(cpsr, v_mask); code->jnz(label); break; case Arm::Cond::VC: //!v code->test(cpsr, v_mask); code->jz(label); break; case Arm::Cond::HI: { //c & !z code->and_(cpsr, z_mask | c_mask); code->cmp(cpsr, c_mask); code->je(label); break; } case Arm::Cond::LS: { //!c | z code->and_(cpsr, z_mask | c_mask); code->cmp(cpsr, c_mask); code->jne(label); break; } case Arm::Cond::GE: { // n == v code->and_(cpsr, n_mask | v_mask); code->jz(label); code->cmp(cpsr, n_mask | v_mask); code->je(label); break; } case Arm::Cond::LT: { // n != v Xbyak::Label fail; code->and_(cpsr, n_mask | v_mask); code->jz(fail); code->cmp(cpsr, n_mask | v_mask); code->jne(label); code->L(fail); break; } case Arm::Cond::GT: { // !z & (n == v) const Xbyak::Reg32 tmp1 = ebx; const Xbyak::Reg32 tmp2 = esi; code->mov(tmp1, cpsr); code->mov(tmp2, cpsr); code->shr(tmp1, n_shift); code->shr(tmp2, v_shift); code->shr(cpsr, z_shift); code->xor_(tmp1, tmp2); code->or_(tmp1, cpsr); code->test(tmp1, 1); code->jz(label); break; } case Arm::Cond::LE: { // z | (n != v) const Xbyak::Reg32 tmp1 = ebx; const Xbyak::Reg32 tmp2 = esi; code->mov(tmp1, cpsr); code->mov(tmp2, cpsr); code->shr(tmp1, n_shift); code->shr(tmp2, v_shift); code->shr(cpsr, z_shift); code->xor_(tmp1, tmp2); code->or_(tmp1, cpsr); code->test(tmp1, 1); code->jnz(label); break; } default: ASSERT_MSG(false, "Unknown cond %zu", static_cast(cond)); break; } return label; } void EmitX64::EmitCondPrelude(const IR::Block& block) { if (block.GetCondition() == Arm::Cond::AL) { ASSERT(!block.HasConditionFailedLocation()); return; } ASSERT(block.HasConditionFailedLocation()); Xbyak::Label pass = EmitCond(code, block.GetCondition()); EmitAddCycles(block.ConditionFailedCycleCount()); EmitTerminal(IR::Term::LinkBlock{block.ConditionFailedLocation()}, block.Location()); code->L(pass); } void EmitX64::EmitTerminal(IR::Terminal terminal, IR::LocationDescriptor initial_location) { Common::VisitVariant(terminal, [this, &initial_location](auto x) { this->EmitTerminal(x, initial_location); }); } void EmitX64::EmitTerminal(IR::Term::Interpret terminal, IR::LocationDescriptor initial_location) { ASSERT_MSG(terminal.next.TFlag() == initial_location.TFlag(), "Unimplemented"); ASSERT_MSG(terminal.next.EFlag() == initial_location.EFlag(), "Unimplemented"); code->mov(code->ABI_PARAM1.cvt32(), terminal.next.PC()); code->mov(code->ABI_PARAM2, reinterpret_cast(jit_interface)); code->mov(code->ABI_PARAM3, reinterpret_cast(cb.user_arg)); code->mov(MJitStateReg(Arm::Reg::PC), code->ABI_PARAM1.cvt32()); code->SwitchMxcsrOnExit(); code->CallFunction(cb.InterpreterFallback); code->ReturnFromRunCode(false); // TODO: Check cycles } void EmitX64::EmitTerminal(IR::Term::ReturnToDispatch, IR::LocationDescriptor) { code->ReturnFromRunCode(); } void EmitX64::EmitTerminal(IR::Term::LinkBlock terminal, IR::LocationDescriptor initial_location) { using namespace Xbyak::util; if (terminal.next.TFlag() != initial_location.TFlag()) { if (terminal.next.TFlag()) { code->or_(MJitStateCpsr(), u32(1 << 5)); } else { code->and_(MJitStateCpsr(), u32(~(1 << 5))); } } if (terminal.next.EFlag() != initial_location.EFlag()) { if (terminal.next.EFlag()) { code->or_(MJitStateCpsr(), u32(1 << 9)); } else { code->and_(MJitStateCpsr(), u32(~(1 << 9))); } } code->cmp(qword[r15 + offsetof(JitState, cycles_remaining)], 0); patch_information[terminal.next.UniqueHash()].jg.emplace_back(code->getCurr()); if (auto next_bb = GetBasicBlock(terminal.next)) { EmitPatchJg(terminal.next, next_bb->entrypoint); } else { EmitPatchJg(terminal.next); } code->mov(MJitStateReg(Arm::Reg::PC), terminal.next.PC()); code->ForceReturnFromRunCode(); // TODO: Check cycles, Properly do a link } void EmitX64::EmitTerminal(IR::Term::LinkBlockFast terminal, IR::LocationDescriptor initial_location) { using namespace Xbyak::util; if (terminal.next.TFlag() != initial_location.TFlag()) { if (terminal.next.TFlag()) { code->or_(MJitStateCpsr(), u32(1 << 5)); } else { code->and_(MJitStateCpsr(), u32(~(1 << 5))); } } if (terminal.next.EFlag() != initial_location.EFlag()) { if (terminal.next.EFlag()) { code->or_(MJitStateCpsr(), u32(1 << 9)); } else { code->and_(MJitStateCpsr(), u32(~(1 << 9))); } } patch_information[terminal.next.UniqueHash()].jmp.emplace_back(code->getCurr()); if (auto next_bb = GetBasicBlock(terminal.next)) { EmitPatchJmp(terminal.next, next_bb->entrypoint); } else { EmitPatchJmp(terminal.next); } } void EmitX64::EmitTerminal(IR::Term::PopRSBHint, IR::LocationDescriptor) { using namespace Xbyak::util; // This calculation has to match up with IREmitter::PushRSB code->mov(ebx, MJitStateCpsr()); code->mov(ecx, MJitStateReg(Arm::Reg::PC)); code->and_(ebx, u32((1 << 5) | (1 << 9))); code->shr(ebx, 2); code->or_(ebx, dword[r15 + offsetof(JitState, FPSCR_mode)]); code->shl(rbx, 32); code->or_(rbx, rcx); code->mov(rax, reinterpret_cast(code->GetReturnFromRunCodeAddress())); for (size_t i = 0; i < JitState::RSBSize; ++i) { code->cmp(rbx, qword[r15 + offsetof(JitState, rsb_location_descriptors) + i * sizeof(u64)]); code->cmove(rax, qword[r15 + offsetof(JitState, rsb_codeptrs) + i * sizeof(u64)]); } code->jmp(rax); } void EmitX64::EmitTerminal(IR::Term::If terminal, IR::LocationDescriptor initial_location) { Xbyak::Label pass = EmitCond(code, terminal.if_); EmitTerminal(terminal.else_, initial_location); code->L(pass); EmitTerminal(terminal.then_, initial_location); } void EmitX64::EmitTerminal(IR::Term::CheckHalt terminal, IR::LocationDescriptor initial_location) { using namespace Xbyak::util; code->cmp(code->byte[r15 + offsetof(JitState, halt_requested)], u8(0)); code->jne(code->GetForceReturnFromRunCodeAddress()); EmitTerminal(terminal.else_, initial_location); } void EmitX64::Patch(const IR::LocationDescriptor& desc, CodePtr bb) { const CodePtr save_code_ptr = code->getCurr(); const PatchInformation& patch_info = patch_information[desc.UniqueHash()]; for (CodePtr location : patch_info.jg) { code->SetCodePtr(location); EmitPatchJg(desc, bb); } for (CodePtr location : patch_info.jmp) { code->SetCodePtr(location); EmitPatchJmp(desc, bb); } for (CodePtr location : patch_info.mov_rcx) { code->SetCodePtr(location); EmitPatchMovRcx(bb); } code->SetCodePtr(save_code_ptr); } void EmitX64::Unpatch(const IR::LocationDescriptor& desc) { Patch(desc, nullptr); } void EmitX64::EmitPatchJg(const IR::LocationDescriptor& target_desc, CodePtr target_code_ptr) { const CodePtr patch_location = code->getCurr(); if (target_code_ptr) { code->jg(target_code_ptr); } else { code->mov(MJitStateReg(Arm::Reg::PC), target_desc.PC()); code->jg(code->GetReturnFromRunCodeAddress()); } code->EnsurePatchLocationSize(patch_location, 14); } void EmitX64::EmitPatchJmp(const IR::LocationDescriptor& target_desc, CodePtr target_code_ptr) { const CodePtr patch_location = code->getCurr(); if (target_code_ptr) { code->jmp(target_code_ptr); } else { code->mov(MJitStateReg(Arm::Reg::PC), target_desc.PC()); code->jmp(code->GetReturnFromRunCodeAddress()); } code->EnsurePatchLocationSize(patch_location, 13); } void EmitX64::EmitPatchMovRcx(CodePtr target_code_ptr) { if (!target_code_ptr) { target_code_ptr = code->GetReturnFromRunCodeAddress(); } const CodePtr patch_location = code->getCurr(); code->mov(code->rcx, reinterpret_cast(target_code_ptr)); code->EnsurePatchLocationSize(patch_location, 10); } void EmitX64::ClearCache() { block_descriptors.clear(); patch_information.clear(); } void EmitX64::InvalidateCacheRange(const Common::AddressRange& range) { // Remove cached block descriptors and patch information overlapping with the given range. for (auto it = block_descriptors.begin(); it != block_descriptors.end();) { IR::LocationDescriptor descriptor = it->second.start_location; u32 start = descriptor.PC(); u32 end = it->second.end_location_pc; if (range.Overlaps(start, end)) { it = block_descriptors.erase(it); if (patch_information.count(descriptor.UniqueHash())) { Unpatch(descriptor); } } else { ++it; } } } } // namespace BackendX64 } // namespace Dynarmic