/* This file is part of the dynarmic project. * Copyright (c) 2016 MerryMage * This software may be used and distributed according to the terms of the GNU * General Public License version 2 or any later version. */ #include #include #include "backend_x64/emit_x64.h" #include "common/x64/abi.h" #include "common/x64/emitter.h" #include "frontend/arm_types.h" // TODO: More optimal use of immediates. // TODO: Have ARM flags in host flags and not have them use up GPR registers unless necessary. // TODO: Actually implement that proper instruction selector you've always wanted to sweetheart. using namespace Gen; namespace Dynarmic { namespace BackendX64 { static OpArg MJitStateReg(Arm::Reg reg) { return MDisp(R15, offsetof(JitState, Reg) + sizeof(u32) * static_cast(reg)); } static OpArg MJitStateCpsr() { return MDisp(R15, offsetof(JitState, Cpsr)); } static IR::Inst* FindUseWithOpcode(IR::Inst* inst, IR::Opcode opcode) { // Gets first found use. auto uses = inst->GetUses(); auto iter = std::find_if(uses.begin(), uses.end(), [opcode](const auto& use){ return use->GetOpcode() == opcode; }); ASSERT(std::count_if(uses.begin(), uses.end(), [opcode](const auto& use){ return use->GetOpcode() == opcode; }) <= 1); return iter == uses.end() ? nullptr : reinterpret_cast(iter->get()); } CodePtr EmitX64::Emit(const Arm::LocationDescriptor descriptor, const Dynarmic::IR::Block& block) { inhibit_emission.clear(); reg_alloc.Reset(); code->INT3(); CodePtr code_ptr = code->GetCodePtr(); basic_blocks[descriptor] = code_ptr; EmitCondPrelude(block.cond, block.cond_failed, block.location); for (const auto& value : block.instructions) { if (inhibit_emission.count(value.get()) != 0) continue; // Call the relevant Emit* member function. switch (value->GetOpcode()) { #define OPCODE(name, type, ...) \ case IR::Opcode::name: \ EmitX64::Emit##name(value.get()); \ break; #include "frontend/ir/opcodes.inc" #undef OPCODE default: ASSERT_MSG(false, "Invalid opcode %zu", static_cast(value->GetOpcode())); break; } reg_alloc.EndOfAllocScope(); } EmitAddCycles(block.cycle_count); EmitTerminal(block.terminal, block.location); reg_alloc.AssertNoMoreUses(); return code_ptr; } void EmitX64::EmitImmU1(IR::Value* value_) { auto value = reinterpret_cast(value_); X64Reg result = reg_alloc.DefRegister(value); code->MOV(32, R(result), Imm32(value->value)); } void EmitX64::EmitImmU8(IR::Value* value_) { auto value = reinterpret_cast(value_); X64Reg result = reg_alloc.DefRegister(value); code->MOV(32, R(result), Imm32(value->value)); } void EmitX64::EmitImmU32(IR::Value* value_) { auto value = reinterpret_cast(value_); X64Reg result = reg_alloc.DefRegister(value); code->MOV(32, R(result), Imm32(value->value)); } void EmitX64::EmitImmRegRef(IR::Value*) { return; // No need to do anything. } void EmitX64::EmitGetRegister(IR::Value* value_) { auto value = reinterpret_cast(value_); auto regref = reinterpret_cast(value->GetArg(0).get()); X64Reg result = reg_alloc.DefRegister(value); code->MOV(32, R(result), MJitStateReg(regref->value)); } void EmitX64::EmitSetRegister(IR::Value* value_) { auto value = reinterpret_cast(value_); auto regref = reinterpret_cast(value->GetArg(0).get()); X64Reg to_store = reg_alloc.UseRegister(value->GetArg(1).get()); code->MOV(32, MJitStateReg(regref->value), R(to_store)); } void EmitX64::EmitGetNFlag(IR::Value* value_) { auto value = reinterpret_cast(value_); X64Reg result = reg_alloc.DefRegister(value); // TODO: Flag optimization code->MOV(32, R(result), MJitStateCpsr()); code->SHR(32, R(result), Imm8(31)); } void EmitX64::EmitSetNFlag(IR::Value* value_) { auto value = reinterpret_cast(value_); X64Reg to_store = reg_alloc.UseRegister(value->GetArg(0).get()); // TODO: Flag optimization code->SHL(32, R(to_store), Imm8(31)); code->AND(32, MJitStateCpsr(), Imm32(~static_cast(1 << 31))); code->OR(32, MJitStateCpsr(), R(to_store)); } void EmitX64::EmitGetZFlag(IR::Value* value_) { auto value = reinterpret_cast(value_); X64Reg result = reg_alloc.DefRegister(value); // TODO: Flag optimization code->MOV(32, R(result), MJitStateCpsr()); code->SHR(32, R(result), Imm8(30)); code->AND(32, R(result), Imm32(1)); } void EmitX64::EmitSetZFlag(IR::Value* value_) { auto value = reinterpret_cast(value_); X64Reg to_store = reg_alloc.UseRegister(value->GetArg(0).get()); // TODO: Flag optimization code->SHL(32, R(to_store), Imm8(30)); code->AND(32, MJitStateCpsr(), Imm32(~static_cast(1 << 30))); code->OR(32, MJitStateCpsr(), R(to_store)); } void EmitX64::EmitGetCFlag(IR::Value* value_) { auto value = reinterpret_cast(value_); X64Reg result = reg_alloc.DefRegister(value); // TODO: Flag optimization code->MOV(32, R(result), MJitStateCpsr()); code->SHR(32, R(result), Imm8(29)); code->AND(32, R(result), Imm32(1)); } void EmitX64::EmitSetCFlag(IR::Value* value_) { auto value = reinterpret_cast(value_); X64Reg to_store = reg_alloc.UseRegister(value->GetArg(0).get()); // TODO: Flag optimization code->SHL(32, R(to_store), Imm8(29)); code->AND(32, MJitStateCpsr(), Imm32(~static_cast(1 << 29))); code->OR(32, MJitStateCpsr(), R(to_store)); } void EmitX64::EmitGetVFlag(IR::Value* value_) { auto value = reinterpret_cast(value_); X64Reg result = reg_alloc.DefRegister(value); // TODO: Flag optimization code->MOV(32, R(result), MJitStateCpsr()); code->SHR(32, R(result), Imm8(28)); code->AND(32, R(result), Imm32(1)); } void EmitX64::EmitSetVFlag(IR::Value* value_) { auto value = reinterpret_cast(value_); X64Reg to_store = reg_alloc.UseRegister(value->GetArg(0).get()); // TODO: Flag optimization code->SHL(32, R(to_store), Imm8(28)); code->AND(32, MJitStateCpsr(), Imm32(~static_cast(1 << 28))); code->OR(32, MJitStateCpsr(), R(to_store)); } void EmitX64::EmitBXWritePC(IR::Value* value_) { auto value = reinterpret_cast(value_); X64Reg new_pc = reg_alloc.UseRegister(value->GetArg(0).get()); X64Reg tmp1 = reg_alloc.ScratchRegister(); X64Reg tmp2 = reg_alloc.ScratchRegister(); // Pseudocode: // if (new_pc & 1) { // new_pc &= 0xFFFFFFFE; // cpsr.T = true; // } else { // new_pc &= 0xFFFFFFFC; // cpsr.T = false; // } code->MOV(32, R(tmp1), MJitStateCpsr()); code->MOV(32, R(tmp2), R(tmp1)); code->AND(32, R(tmp2), Imm32(~(1 << 5))); // CPSR.T = 0 code->OR(32, R(tmp1), Imm32(1 << 5)); // CPSR.T = 1 code->TEST(8, R(new_pc), Imm8(1)); code->CMOVcc(32, tmp1, R(tmp2), CC_E); // CPSR.T = pc & 1 code->MOV(32, MJitStateCpsr(), R(tmp1)); code->LEA(32, tmp2, MComplex(new_pc, new_pc, 1, 0)); code->OR(32, R(tmp2), Imm32(0xFFFFFFFC)); // tmp2 = pc & 1 ? 0xFFFFFFFE : 0xFFFFFFFC code->AND(32, R(new_pc), R(tmp2)); code->MOV(32, MJitStateReg(Arm::Reg::PC), R(new_pc)); } void EmitX64::EmitCallSupervisor(IR::Value* value_) { auto value = reinterpret_cast(value_); auto imm32 = value->GetArg(0).get(); reg_alloc.HostCall(nullptr, imm32); code->ABI_CallFunction(reinterpret_cast(cb.CallSVC)); } void EmitX64::EmitGetCarryFromOp(IR::Value*) { ASSERT_MSG(0, "should never happen"); } void EmitX64::EmitGetOverflowFromOp(IR::Value*) { ASSERT_MSG(0, "should never happen"); } void EmitX64::EmitLeastSignificantHalf(IR::Value* value_) { auto value = reinterpret_cast(value_); // TODO: Optimize reg_alloc.UseDefRegister(value->GetArg(0).get(), value); } void EmitX64::EmitLeastSignificantByte(IR::Value* value_) { auto value = reinterpret_cast(value_); // TODO: Optimize reg_alloc.UseDefRegister(value->GetArg(0).get(), value); } void EmitX64::EmitMostSignificantBit(IR::Value* value_) { auto value = reinterpret_cast(value_); X64Reg result = reg_alloc.UseDefRegister(value->GetArg(0).get(), value); // TODO: Flag optimization code->SHR(32, R(result), Imm8(31)); } void EmitX64::EmitIsZero(IR::Value* value_) { auto value = reinterpret_cast(value_); X64Reg result = reg_alloc.UseDefRegister(value->GetArg(0).get(), value); // TODO: Flag optimization code->TEST(32, R(result), R(result)); code->SETcc(CCFlags::CC_E, R(result)); code->MOVZX(32, 8, result, R(result)); } void EmitX64::EmitLogicalShiftLeft(IR::Value* value_) { auto value = reinterpret_cast(value_); auto carry_inst = FindUseWithOpcode(value, IR::Opcode::GetCarryFromOp); // TODO: Consider using BMI2 instructions like SHLX when arm-in-host flags is implemented. if (!carry_inst) { X64Reg shift = reg_alloc.UseRegister(value->GetArg(1).get(), {HostLoc::RCX}); X64Reg result = reg_alloc.UseDefRegister(value->GetArg(0).get(), value); X64Reg zero = reg_alloc.ScratchRegister(); // The 32-bit x64 SHL instruction masks the shift count by 0x1F before performing the shift. // ARM differs from the behaviour: It does not mask the count, so shifts above 31 result in zeros. code->SHL(32, R(result), R(shift)); code->XOR(32, R(zero), R(zero)); code->CMP(8, R(shift), Imm8(32)); code->CMOVcc(32, result, R(zero), CC_NB); } else { inhibit_emission.insert(carry_inst); X64Reg shift = reg_alloc.UseRegister(value->GetArg(1).get(), {HostLoc::RCX}); X64Reg result = reg_alloc.UseDefRegister(value->GetArg(0).get(), value); X64Reg carry = reg_alloc.UseDefRegister(value->GetArg(2).get(), carry_inst); reg_alloc.DecrementRemainingUses(value); // TODO: Optimize this. code->CMP(8, R(shift), Imm8(32)); auto Rs_gt32 = code->J_CC(CC_A); auto Rs_eq32 = code->J_CC(CC_E); // if (Rs & 0xFF < 32) { code->BT(32, R(carry), Imm8(0)); // Set the carry flag for correct behaviour in the case when Rs & 0xFF == 0 code->SHL(32, R(result), R(shift)); code->SETcc(CC_C, R(carry)); auto jmp_to_end_1 = code->J(); // } else if (Rs & 0xFF > 32) { code->SetJumpTarget(Rs_gt32); code->XOR(32, R(result), R(result)); code->XOR(32, R(carry), R(carry)); auto jmp_to_end_2 = code->J(); // } else if (Rs & 0xFF == 32) { code->SetJumpTarget(Rs_eq32); code->MOV(32, R(carry), R(result)); code->AND(32, R(carry), Imm8(1)); code->XOR(32, R(result), R(result)); // } code->SetJumpTarget(jmp_to_end_1); code->SetJumpTarget(jmp_to_end_2); } } void EmitX64::EmitLogicalShiftRight(IR::Value* value_) { auto value = reinterpret_cast(value_); auto carry_inst = FindUseWithOpcode(value, IR::Opcode::GetCarryFromOp); if (!carry_inst) { X64Reg shift = reg_alloc.UseRegister(value->GetArg(1).get(), {HostLoc::RCX}); X64Reg result = reg_alloc.UseDefRegister(value->GetArg(0).get(), value); X64Reg zero = reg_alloc.ScratchRegister(); // The 32-bit x64 SHR instruction masks the shift count by 0x1F before performing the shift. // ARM differs from the behaviour: It does not mask the count, so shifts above 31 result in zeros. code->SHR(32, R(result), R(shift)); code->XOR(32, R(zero), R(zero)); code->CMP(8, R(shift), Imm8(32)); code->CMOVcc(32, result, R(zero), CC_NB); } else { inhibit_emission.insert(carry_inst); X64Reg shift = reg_alloc.UseRegister(value->GetArg(1).get(), {HostLoc::RCX}); X64Reg result = reg_alloc.UseDefRegister(value->GetArg(0).get(), value); X64Reg carry = reg_alloc.UseDefRegister(value->GetArg(2).get(), carry_inst); reg_alloc.DecrementRemainingUses(value); // TODO: Optimize this. code->CMP(8, R(shift), Imm8(32)); auto Rs_gt32 = code->J_CC(CC_A); auto Rs_eq32 = code->J_CC(CC_E); // if (Rs & 0xFF == 0) goto end; code->TEST(8, R(shift), R(shift)); auto Rs_zero = code->J_CC(CC_Z); // if (Rs & 0xFF < 32) { code->SHR(32, R(result), R(shift)); code->SETcc(CC_C, R(carry)); auto jmp_to_end_1 = code->J(); // } else if (Rs & 0xFF > 32) { code->SetJumpTarget(Rs_gt32); code->MOV(32, R(result), Imm32(0)); code->MOV(8, R(carry), Imm8(0)); auto jmp_to_end_2 = code->J(); // } else if (Rs & 0xFF == 32) { code->SetJumpTarget(Rs_eq32); code->BT(32, R(result), Imm8(31)); code->SETcc(CC_C, R(carry)); code->MOV(32, R(result), Imm32(0)); // } code->SetJumpTarget(jmp_to_end_1); code->SetJumpTarget(jmp_to_end_2); code->SetJumpTarget(Rs_zero); } } void EmitX64::EmitArithmeticShiftRight(IR::Value* value_) { auto value = reinterpret_cast(value_); auto carry_inst = FindUseWithOpcode(value, IR::Opcode::GetCarryFromOp); if (!carry_inst) { X64Reg shift = reg_alloc.UseRegister(value->GetArg(1).get(), {HostLoc::RCX}); X64Reg result = reg_alloc.UseDefRegister(value->GetArg(0).get(), value); X64Reg const31 = reg_alloc.ScratchRegister(); // The 32-bit x64 SAR instruction masks the shift count by 0x1F before performing the shift. // ARM differs from the behaviour: It does not mask the count. // We note that all shift values above 31 have the same behaviour as 31 does, so we saturate `shift` to 31. code->MOV(32, R(const31), Imm32(31)); code->MOVZX(32, 8, shift, R(shift)); code->CMP(32, R(shift), Imm32(31)); code->CMOVcc(32, shift, R(const31), CC_L); code->SAR(32, R(result), R(shift)); } else { inhibit_emission.insert(carry_inst); X64Reg shift = reg_alloc.UseRegister(value->GetArg(1).get(), {HostLoc::RCX}); X64Reg result = reg_alloc.UseDefRegister(value->GetArg(0).get(), value); X64Reg carry = reg_alloc.UseDefRegister(value->GetArg(2).get(), carry_inst); reg_alloc.DecrementRemainingUses(value); // TODO: Optimize this. code->CMP(8, R(shift), Imm8(31)); auto Rs_gt31 = code->J_CC(CC_A); // if (Rs & 0xFF == 0) goto end; code->TEST(8, R(shift), R(shift)); auto Rs_zero = code->J_CC(CC_Z); // if (Rs & 0xFF <= 31) { code->SAR(32, R(result), R(CL)); code->SETcc(CC_C, R(carry)); auto jmp_to_end = code->J(); // } else if (Rs & 0xFF > 31) { code->SetJumpTarget(Rs_gt31); code->SAR(32, R(result), Imm8(31)); // Verified. code->BT(32, R(result), Imm8(31)); code->SETcc(CC_C, R(carry)); // } code->SetJumpTarget(jmp_to_end); code->SetJumpTarget(Rs_zero); } } void EmitX64::EmitRotateRight(IR::Value* value_) { auto value = reinterpret_cast(value_); auto carry_inst = FindUseWithOpcode(value, IR::Opcode::GetCarryFromOp); if (!carry_inst) { X64Reg shift = reg_alloc.UseRegister(value->GetArg(1).get(), {HostLoc::RCX}); X64Reg result = reg_alloc.UseDefRegister(value->GetArg(0).get(), value); // x64 ROR instruction does (shift & 0x1F) for us. code->ROR(32, R(result), R(shift)); } else { inhibit_emission.insert(carry_inst); X64Reg shift = reg_alloc.UseRegister(value->GetArg(1).get(), {HostLoc::RCX}); X64Reg result = reg_alloc.UseDefRegister(value->GetArg(0).get(), value); X64Reg carry = reg_alloc.UseDefRegister(value->GetArg(2).get(), carry_inst); reg_alloc.DecrementRemainingUses(value); // TODO: Optimize // if (Rs & 0xFF == 0) goto end; code->TEST(8, R(shift), R(shift)); auto Rs_zero = code->J_CC(CC_Z); code->AND(32, R(shift), Imm8(0x1F)); auto zero_1F = code->J_CC(CC_Z); // if (Rs & 0x1F != 0) { code->ROR(32, R(result), R(shift)); code->SETcc(CC_C, R(carry)); auto jmp_to_end = code->J(); // } else { code->SetJumpTarget(zero_1F); code->BT(32, R(result), Imm8(31)); code->SETcc(CC_C, R(carry)); // } code->SetJumpTarget(jmp_to_end); code->SetJumpTarget(Rs_zero); } } void EmitX64::EmitAddWithCarry(IR::Value* value_) { auto value = reinterpret_cast(value_); auto carry_inst = FindUseWithOpcode(value, IR::Opcode::GetCarryFromOp); auto overflow_inst = FindUseWithOpcode(value, IR::Opcode::GetOverflowFromOp); X64Reg addend = reg_alloc.UseRegister(value->GetArg(1).get()); X64Reg result = reg_alloc.UseDefRegister(value->GetArg(0).get(), value); X64Reg carry = carry_inst ? reg_alloc.UseDefRegister(value->GetArg(2).get(), carry_inst) : reg_alloc.UseRegister(value->GetArg(2).get()); X64Reg overflow = overflow_inst ? reg_alloc.DefRegister(overflow_inst) : X64Reg::INVALID_REG; // TODO: Consider using LEA. code->BT(32, R(carry), Imm8(0)); // Sets x64 CF appropriately. code->ADC(32, R(result), R(addend)); if (carry_inst) { inhibit_emission.insert(carry_inst); reg_alloc.DecrementRemainingUses(value); code->SETcc(Gen::CC_C, R(carry)); } if (overflow_inst) { inhibit_emission.insert(overflow_inst); reg_alloc.DecrementRemainingUses(value); code->SETcc(Gen::CC_O, R(overflow)); } } void EmitX64::EmitSubWithCarry(IR::Value* value_) { auto value = reinterpret_cast(value_); auto carry_inst = FindUseWithOpcode(value, IR::Opcode::GetCarryFromOp); auto overflow_inst = FindUseWithOpcode(value, IR::Opcode::GetOverflowFromOp); X64Reg addend = reg_alloc.UseRegister(value->GetArg(1).get()); X64Reg result = reg_alloc.UseDefRegister(value->GetArg(0).get(), value); X64Reg carry = carry_inst ? reg_alloc.UseDefRegister(value->GetArg(2).get(), carry_inst) : reg_alloc.UseRegister(value->GetArg(2).get()); X64Reg overflow = overflow_inst ? reg_alloc.DefRegister(overflow_inst) : X64Reg::INVALID_REG; // TODO: Consider using LEA. // TODO: Optimize case when result isn't used but flags are (use a CMP instruction instead). // Note that x64 CF is inverse of what the ARM carry flag is here. code->BT(32, R(carry), Imm8(0)); code->CMC(); code->SBB(32, R(result), R(addend)); if (carry_inst) { inhibit_emission.insert(carry_inst); reg_alloc.DecrementRemainingUses(value); code->SETcc(Gen::CC_NC, R(carry)); } if (overflow_inst) { inhibit_emission.insert(overflow_inst); reg_alloc.DecrementRemainingUses(value); code->SETcc(Gen::CC_O, R(overflow)); } } void EmitX64::EmitAnd(IR::Value* value_) { auto value = reinterpret_cast(value_); X64Reg andend = reg_alloc.UseRegister(value->GetArg(1).get()); X64Reg result = reg_alloc.UseDefRegister(value->GetArg(0).get(), value); code->AND(32, R(result), R(andend)); } void EmitX64::EmitEor(IR::Value* value_) { auto value = reinterpret_cast(value_); X64Reg eorend = reg_alloc.UseRegister(value->GetArg(1).get()); X64Reg result = reg_alloc.UseDefRegister(value->GetArg(0).get(), value); code->XOR(32, R(result), R(eorend)); } void EmitX64::EmitOr(IR::Value* value_) { auto value = reinterpret_cast(value_); X64Reg orend = reg_alloc.UseRegister(value->GetArg(1).get()); X64Reg result = reg_alloc.UseDefRegister(value->GetArg(0).get(), value); code->OR(32, R(result), R(orend)); } void EmitX64::EmitNot(IR::Value* value_) { auto value = reinterpret_cast(value_); X64Reg result = reg_alloc.UseDefRegister(value->GetArg(0).get(), value); code->NOT(32, R(result)); } void EmitX64::EmitSignExtendHalfToWord(IR::Value* value_) { auto value = reinterpret_cast(value_); // TODO: Remove unnecessary mov that may occur here X64Reg result = reg_alloc.UseDefRegister(value->GetArg(0).get(), value); code->MOVSX(32, 16, result, R(result)); } void EmitX64::EmitSignExtendByteToWord(IR::Value* value_) { auto value = reinterpret_cast(value_); // TODO: Remove unnecessary mov that may occur here X64Reg result = reg_alloc.UseDefRegister(value->GetArg(0).get(), value); code->MOVSX(32, 8, result, R(result)); } void EmitX64::EmitZeroExtendHalfToWord(IR::Value* value_) { auto value = reinterpret_cast(value_); // TODO: Remove unnecessary mov that may occur here X64Reg result = reg_alloc.UseDefRegister(value->GetArg(0).get(), value); code->MOVZX(32, 16, result, R(result)); } void EmitX64::EmitZeroExtendByteToWord(IR::Value* value_) { auto value = reinterpret_cast(value_); // TODO: Remove unnecessary mov that may occur here X64Reg result = reg_alloc.UseDefRegister(value->GetArg(0).get(), value); code->MOVZX(32, 8, result, R(result)); } void EmitX64::EmitByteReverseWord(IR::Value* value_) { auto value = reinterpret_cast(value_); X64Reg result = reg_alloc.UseDefRegister(value->GetArg(0).get(), value); code->BSWAP(32, result); } void EmitX64::EmitByteReverseHalf(IR::Value* value_) { auto value = reinterpret_cast(value_); X64Reg result = reg_alloc.UseDefRegister(value->GetArg(0).get(), value); code->ROL(16, R(result), Imm8(8)); } void EmitX64::EmitReadMemory8(IR::Value* value_) { auto value = reinterpret_cast(value_); reg_alloc.HostCall(value, value->GetArg(0).get()); code->ABI_CallFunction(reinterpret_cast(cb.MemoryRead8)); } void EmitX64::EmitReadMemory16(IR::Value* value_) { auto value = reinterpret_cast(value_); reg_alloc.HostCall(value, value->GetArg(0).get()); code->ABI_CallFunction(reinterpret_cast(cb.MemoryRead16)); } void EmitX64::EmitReadMemory32(IR::Value* value_) { auto value = reinterpret_cast(value_); reg_alloc.HostCall(value, value->GetArg(0).get()); code->ABI_CallFunction(reinterpret_cast(cb.MemoryRead32)); } void EmitX64::EmitReadMemory64(IR::Value* value_) { auto value = reinterpret_cast(value_); reg_alloc.HostCall(value, value->GetArg(0).get()); code->ABI_CallFunction(reinterpret_cast(cb.MemoryRead64)); } void EmitX64::EmitWriteMemory8(IR::Value* value_) { auto value = reinterpret_cast(value_); reg_alloc.HostCall(nullptr, value->GetArg(0).get(), value->GetArg(1).get()); code->ABI_CallFunction(reinterpret_cast(cb.MemoryWrite8)); } void EmitX64::EmitWriteMemory16(IR::Value* value_) { auto value = reinterpret_cast(value_); reg_alloc.HostCall(nullptr, value->GetArg(0).get(), value->GetArg(1).get()); code->ABI_CallFunction(reinterpret_cast(cb.MemoryWrite16)); } void EmitX64::EmitWriteMemory32(IR::Value* value_) { auto value = reinterpret_cast(value_); reg_alloc.HostCall(nullptr, value->GetArg(0).get(), value->GetArg(1).get()); code->ABI_CallFunction(reinterpret_cast(cb.MemoryWrite32)); } void EmitX64::EmitWriteMemory64(IR::Value* value_) { auto value = reinterpret_cast(value_); reg_alloc.HostCall(nullptr, value->GetArg(0).get(), value->GetArg(1).get()); code->ABI_CallFunction(reinterpret_cast(cb.MemoryWrite64)); } void EmitX64::EmitAddCycles(size_t cycles) { ASSERT(cycles < std::numeric_limits::max()); code->SUB(64, MDisp(R15, offsetof(JitState, cycles_remaining)), Imm32(static_cast(cycles))); } static CCFlags EmitCond(Gen::XEmitter* code, Arm::Cond cond) { // TODO: This code is a quick copy-paste-and-quickly-modify job from a previous JIT. Clean this up. auto NFlag = [code](X64Reg reg){ code->MOV(32, R(reg), MJitStateCpsr()); code->SHR(32, R(reg), Imm8(31)); code->AND(32, R(reg), Imm32(1)); }; auto ZFlag = [code](X64Reg reg){ code->MOV(32, R(reg), MJitStateCpsr()); code->SHR(32, R(reg), Imm8(30)); code->AND(32, R(reg), Imm32(1)); }; auto CFlag = [code](X64Reg reg){ code->MOV(32, R(reg), MJitStateCpsr()); code->SHR(32, R(reg), Imm8(29)); code->AND(32, R(reg), Imm32(1)); }; auto VFlag = [code](X64Reg reg){ code->MOV(32, R(reg), MJitStateCpsr()); code->SHR(32, R(reg), Imm8(28)); code->AND(32, R(reg), Imm32(1)); }; CCFlags cc; switch (cond) { case Arm::Cond::EQ: //z ZFlag(RAX); code->CMP(8, R(RAX), Imm8(0)); cc = CC_NE; break; case Arm::Cond::NE: //!z ZFlag(RAX); code->CMP(8, R(RAX), Imm8(0)); cc = CC_E; break; case Arm::Cond::CS: //c CFlag(RBX); code->CMP(8, R(RBX), Imm8(0)); cc = CC_NE; break; case Arm::Cond::CC: //!c CFlag(RBX); code->CMP(8, R(RBX), Imm8(0)); cc = CC_E; break; case Arm::Cond::MI: //n NFlag(RCX); code->CMP(8, R(RCX), Imm8(0)); cc = CC_NE; break; case Arm::Cond::PL: //!n NFlag(RCX); code->CMP(8, R(RCX), Imm8(0)); cc = CC_E; break; case Arm::Cond::VS: //v VFlag(RDX); code->CMP(8, R(RDX), Imm8(0)); cc = CC_NE; break; case Arm::Cond::VC: //!v VFlag(RDX); code->CMP(8, R(RDX), Imm8(0)); cc = CC_E; break; case Arm::Cond::HI: { //c & !z const X64Reg tmp = RSI; ZFlag(RAX); code->MOVZX(64, 8, tmp, R(RAX)); CFlag(RBX); code->CMP(8, R(RBX), R(tmp)); cc = CC_A; break; } case Arm::Cond::LS: { //!c | z const X64Reg tmp = RSI; ZFlag(RAX); code->MOVZX(64, 8, tmp, R(RAX)); CFlag(RBX); code->CMP(8, R(RBX), R(tmp)); cc = CC_BE; break; } case Arm::Cond::GE: { // n == v const X64Reg tmp = RSI; VFlag(RDX); code->MOVZX(64, 8, tmp, R(RDX)); NFlag(RCX); code->CMP(8, R(RCX), R(tmp)); cc = CC_E; break; } case Arm::Cond::LT: { // n != v const X64Reg tmp = RSI; VFlag(RDX); code->MOVZX(64, 8, tmp, R(RDX)); NFlag(RCX); code->CMP(8, R(RCX), R(tmp)); cc = CC_NE; break; } case Arm::Cond::GT: { // !z & (n == v) const X64Reg tmp = RSI; NFlag(RCX); code->MOVZX(64, 8, tmp, R(RCX)); VFlag(RDX); code->XOR(8, R(tmp), R(RDX)); ZFlag(RAX); code->OR(8, R(tmp), R(RAX)); code->TEST(8, R(tmp), R(tmp)); cc = CC_Z; break; } case Arm::Cond::LE: { // z | (n != v) X64Reg tmp = RSI; NFlag(RCX); code->MOVZX(64, 8, tmp, R(RCX)); VFlag(RDX); code->XOR(8, R(tmp), R(RDX)); ZFlag(RAX); code->OR(8, R(tmp), R(RAX)); code->TEST(8, R(tmp), R(tmp)); cc = CC_NZ; break; } default: ASSERT_MSG(0, "Unknown cond %zu", static_cast(cond)); break; } return cc; } void EmitX64::EmitCondPrelude(Arm::Cond cond, boost::optional cond_failed, Arm::LocationDescriptor initial_location) { if (cond == Arm::Cond::AL) { ASSERT(!cond_failed.is_initialized()); return; } ASSERT(cond_failed.is_initialized()); CCFlags cc = EmitCond(code, cond); // TODO: Improve, maybe. auto fixup = code->J_CC(cc); EmitAddCycles(1); // TODO: Proper cycle count EmitTerminalLinkBlock(IR::Term::LinkBlock{cond_failed.get()}, initial_location); code->SetJumpTarget(fixup); } void EmitX64::EmitTerminal(IR::Terminal terminal, Arm::LocationDescriptor initial_location) { switch (terminal.which()) { case 1: EmitTerminalInterpret(boost::get(terminal), initial_location); return; case 2: EmitTerminalReturnToDispatch(boost::get(terminal), initial_location); return; case 3: EmitTerminalLinkBlock(boost::get(terminal), initial_location); return; case 4: EmitTerminalLinkBlockFast(boost::get(terminal), initial_location); return; case 5: EmitTerminalPopRSBHint(boost::get(terminal), initial_location); return; case 6: EmitTerminalIf(boost::get(terminal), initial_location); return; default: ASSERT_MSG(0, "Invalid Terminal. Bad programmer."); return; } } void EmitX64::EmitTerminalInterpret(IR::Term::Interpret terminal, Arm::LocationDescriptor initial_location) { ASSERT_MSG(terminal.next.TFlag == initial_location.TFlag, "Unimplemented"); ASSERT_MSG(terminal.next.EFlag == initial_location.EFlag, "Unimplemented"); code->MOV(64, R(ABI_PARAM1), Imm64(terminal.next.arm_pc)); code->MOV(64, R(ABI_PARAM2), Imm64(reinterpret_cast(jit_interface))); code->MOV(32, MJitStateReg(Arm::Reg::PC), R(ABI_PARAM1)); code->MOV(64, R(RSP), MDisp(R15, offsetof(JitState, save_host_RSP))); code->ABI_CallFunction(reinterpret_cast(cb.InterpreterFallback)); routines->GenReturnFromRunCode(code); // TODO: Check cycles } void EmitX64::EmitTerminalReturnToDispatch(IR::Term::ReturnToDispatch, Arm::LocationDescriptor initial_location) { routines->GenReturnFromRunCode(code); } void EmitX64::EmitTerminalLinkBlock(IR::Term::LinkBlock terminal, Arm::LocationDescriptor initial_location) { ASSERT_MSG(terminal.next.EFlag == initial_location.EFlag, "Unimplemented"); code->MOV(32, MJitStateReg(Arm::Reg::PC), Imm32(terminal.next.arm_pc)); if (terminal.next.TFlag != initial_location.TFlag) { if (terminal.next.TFlag) { code->OR(32, MJitStateCpsr(), Imm32(1 << 5)); } else { code->AND(32, MJitStateCpsr(), Imm32(~(1 << 5))); } } routines->GenReturnFromRunCode(code); // TODO: Check cycles, Properly do a link } void EmitX64::EmitTerminalLinkBlockFast(IR::Term::LinkBlockFast terminal, Arm::LocationDescriptor initial_location) { EmitTerminalLinkBlock(IR::Term::LinkBlock{terminal.next}, initial_location); // TODO: Implement } void EmitX64::EmitTerminalPopRSBHint(IR::Term::PopRSBHint, Arm::LocationDescriptor initial_location) { EmitTerminalReturnToDispatch({}, initial_location); // TODO: Implement RSB } void EmitX64::EmitTerminalIf(IR::Term::If terminal, Arm::LocationDescriptor initial_location) { CCFlags cc = EmitCond(code, terminal.if_); auto fixup = code->J_CC(cc); EmitTerminal(terminal.else_, initial_location); code->SetJumpTarget(fixup); EmitTerminal(terminal.then_, initial_location); } void EmitX64::ClearCache() { basic_blocks.clear(); } } // namespace BackendX64 } // namespace Dynarmic