/* vfp/vfp.h - ARM VFPv3 emulation unit - SoftFloat lib helper Copyright (C) 2003 Skyeye Develop Group for help please send mail to This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* * The following code is derivative from Linux Android kernel vfp * floating point support. * * Copyright (C) 2004 ARM Limited. * Written by Deep Blue Solutions Limited. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #pragma once #include #include "common/common_types.h" #include "tests/skyeye_interpreter/skyeye_common/armstate.h" #include "tests/skyeye_interpreter/skyeye_common/vfp/asm_vfp.h" #define do_div(n, base) {n/=base;} enum : u32 { FOP_MASK = 0x00b00040, FOP_FMAC = 0x00000000, FOP_FNMAC = 0x00000040, FOP_FMSC = 0x00100000, FOP_FNMSC = 0x00100040, FOP_FMUL = 0x00200000, FOP_FNMUL = 0x00200040, FOP_FADD = 0x00300000, FOP_FSUB = 0x00300040, FOP_FDIV = 0x00800000, FOP_EXT = 0x00b00040 }; #define FOP_TO_IDX(inst) ((inst & 0x00b00000) >> 20 | (inst & (1 << 6)) >> 4) enum : u32 { FEXT_MASK = 0x000f0080, FEXT_FCPY = 0x00000000, FEXT_FABS = 0x00000080, FEXT_FNEG = 0x00010000, FEXT_FSQRT = 0x00010080, FEXT_FCMP = 0x00040000, FEXT_FCMPE = 0x00040080, FEXT_FCMPZ = 0x00050000, FEXT_FCMPEZ = 0x00050080, FEXT_FCVT = 0x00070080, FEXT_FUITO = 0x00080000, FEXT_FSITO = 0x00080080, FEXT_FTOUI = 0x000c0000, FEXT_FTOUIZ = 0x000c0080, FEXT_FTOSI = 0x000d0000, FEXT_FTOSIZ = 0x000d0080 }; #define FEXT_TO_IDX(inst) ((inst & 0x000f0000) >> 15 | (inst & (1 << 7)) >> 7) #define vfp_get_sd(inst) ((inst & 0x0000f000) >> 11 | (inst & (1 << 22)) >> 22) #define vfp_get_dd(inst) ((inst & 0x0000f000) >> 12 | (inst & (1 << 22)) >> 18) #define vfp_get_sm(inst) ((inst & 0x0000000f) << 1 | (inst & (1 << 5)) >> 5) #define vfp_get_dm(inst) ((inst & 0x0000000f) | (inst & (1 << 5)) >> 1) #define vfp_get_sn(inst) ((inst & 0x000f0000) >> 15 | (inst & (1 << 7)) >> 7) #define vfp_get_dn(inst) ((inst & 0x000f0000) >> 16 | (inst & (1 << 7)) >> 3) #define vfp_single(inst) (((inst) & 0x0000f00) == 0xa00) inline u32 vfp_shiftright32jamming(u32 val, unsigned int shift) { if (shift) { if (shift < 32) val = val >> shift | ((val << (32 - shift)) != 0); else val = val != 0; } return val; } inline u64 vfp_shiftright64jamming(u64 val, unsigned int shift) { if (shift) { if (shift < 64) val = val >> shift | ((val << (64 - shift)) != 0); else val = val != 0; } return val; } inline u32 vfp_hi64to32jamming(u64 val) { u32 v; u32 highval = val >> 32; u32 lowval = val & 0xffffffff; if (lowval >= 1) v = highval | 1; else v = highval; return v; } inline void add128(u64* resh, u64* resl, u64 nh, u64 nl, u64 mh, u64 ml) { *resl = nl + ml; *resh = nh + mh; if (*resl < nl) *resh += 1; } inline void sub128(u64* resh, u64* resl, u64 nh, u64 nl, u64 mh, u64 ml) { *resl = nl - ml; *resh = nh - mh; if (*resl > nl) *resh -= 1; } inline void mul64to128(u64* resh, u64* resl, u64 n, u64 m) { u32 nh, nl, mh, ml; u64 rh, rma, rmb, rl; nl = static_cast(n); ml = static_cast(m); rl = (u64)nl * ml; nh = n >> 32; rma = (u64)nh * ml; mh = m >> 32; rmb = (u64)nl * mh; rma += rmb; rh = (u64)nh * mh; rh += ((u64)(rma < rmb) << 32) + (rma >> 32); rma <<= 32; rl += rma; rh += (rl < rma); *resl = rl; *resh = rh; } inline void shift64left(u64* resh, u64* resl, u64 n) { *resh = n >> 63; *resl = n << 1; } inline u64 vfp_hi64multiply64(u64 n, u64 m) { u64 rh, rl; mul64to128(&rh, &rl, n, m); return rh | (rl != 0); } inline u64 vfp_estimate_div128to64(u64 nh, u64 nl, u64 m) { u64 mh, ml, remh, reml, termh, terml, z; if (nh >= m) return ~0ULL; mh = m >> 32; if (mh << 32 <= nh) { z = 0xffffffff00000000ULL; } else { z = nh; do_div(z, mh); z <<= 32; } mul64to128(&termh, &terml, m, z); sub128(&remh, &reml, nh, nl, termh, terml); ml = m << 32; while ((s64)remh < 0) { z -= 0x100000000ULL; add128(&remh, &reml, remh, reml, mh, ml); } remh = (remh << 32) | (reml >> 32); if (mh << 32 <= remh) { z |= 0xffffffff; } else { do_div(remh, mh); z |= remh; } return z; } // Operations on unpacked elements #define vfp_sign_negate(sign) (sign ^ 0x8000) // Single-precision struct vfp_single { s16 exponent; u16 sign; u32 significand; }; // VFP_SINGLE_MANTISSA_BITS - number of bits in the mantissa // VFP_SINGLE_EXPONENT_BITS - number of bits in the exponent // VFP_SINGLE_LOW_BITS - number of low bits in the unpacked significand // which are not propagated to the float upon packing. #define VFP_SINGLE_MANTISSA_BITS (23) #define VFP_SINGLE_EXPONENT_BITS (8) #define VFP_SINGLE_LOW_BITS (32 - VFP_SINGLE_MANTISSA_BITS - 2) #define VFP_SINGLE_LOW_BITS_MASK ((1 << VFP_SINGLE_LOW_BITS) - 1) // The bit in an unpacked float which indicates that it is a quiet NaN #define VFP_SINGLE_SIGNIFICAND_QNAN (1 << (VFP_SINGLE_MANTISSA_BITS - 1 + VFP_SINGLE_LOW_BITS)) // Operations on packed single-precision numbers #define vfp_single_packed_sign(v) ((v) & 0x80000000) #define vfp_single_packed_negate(v) ((v) ^ 0x80000000) #define vfp_single_packed_abs(v) ((v) & ~0x80000000) #define vfp_single_packed_exponent(v) (((v) >> VFP_SINGLE_MANTISSA_BITS) & ((1 << VFP_SINGLE_EXPONENT_BITS) - 1)) #define vfp_single_packed_mantissa(v) ((v) & ((1 << VFP_SINGLE_MANTISSA_BITS) - 1)) enum : u32 { VFP_NUMBER = (1 << 0), VFP_ZERO = (1 << 1), VFP_DENORMAL = (1 << 2), VFP_INFINITY = (1 << 3), VFP_NAN = (1 << 4), VFP_NAN_SIGNAL = (1 << 5), VFP_QNAN = (VFP_NAN), VFP_SNAN = (VFP_NAN|VFP_NAN_SIGNAL) }; inline int vfp_single_type(const vfp_single* s) { int type = VFP_NUMBER; if (s->exponent == 255) { if (s->significand == 0) type = VFP_INFINITY; else if (s->significand & VFP_SINGLE_SIGNIFICAND_QNAN) type = VFP_QNAN; else type = VFP_SNAN; } else if (s->exponent == 0) { if (s->significand == 0) type |= VFP_ZERO; else type |= VFP_DENORMAL; } return type; } // Unpack a single-precision float. Note that this returns the magnitude // of the single-precision float mantissa with the 1. if necessary, // aligned to bit 30. inline void vfp_single_unpack(vfp_single* s, s32 val, u32* fpscr) { s->sign = vfp_single_packed_sign(val) >> 16, s->exponent = vfp_single_packed_exponent(val); u32 significand = ((u32)val << (32 - VFP_SINGLE_MANTISSA_BITS)) >> 2; if (s->exponent && s->exponent != 255) significand |= 0x40000000; s->significand = significand; // If flush-to-zero mode is enabled, turn the denormal into zero. // On a VFPv2 architecture, the sign of the zero is always positive. if ((*fpscr & FPSCR_FLUSH_TO_ZERO) != 0 && (vfp_single_type(s) & VFP_DENORMAL) != 0) { s->sign = 0; s->exponent = 0; s->significand = 0; *fpscr |= FPSCR_IDC; } } // Re-pack a single-precision float. This assumes that the float is // already normalised such that the MSB is bit 30, _not_ bit 31. inline s32 vfp_single_pack(const vfp_single* s) { u32 val = (s->sign << 16) + (s->exponent << VFP_SINGLE_MANTISSA_BITS) + (s->significand >> VFP_SINGLE_LOW_BITS); return (s32)val; } u32 vfp_single_normaliseround(ARMul_State* state, int sd, vfp_single* vs, u32 fpscr, u32 exceptions, const char* func); // Double-precision struct vfp_double { s16 exponent; u16 sign; u64 significand; }; // VFP_REG_ZERO is a special register number for vfp_get_double // which returns (double)0.0. This is useful for the compare with // zero instructions. #ifdef CONFIG_VFPv3 #define VFP_REG_ZERO 32 #else #define VFP_REG_ZERO 16 #endif #define VFP_DOUBLE_MANTISSA_BITS (52) #define VFP_DOUBLE_EXPONENT_BITS (11) #define VFP_DOUBLE_LOW_BITS (64 - VFP_DOUBLE_MANTISSA_BITS - 2) #define VFP_DOUBLE_LOW_BITS_MASK ((1 << VFP_DOUBLE_LOW_BITS) - 1) // The bit in an unpacked double which indicates that it is a quiet NaN #define VFP_DOUBLE_SIGNIFICAND_QNAN (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1 + VFP_DOUBLE_LOW_BITS)) // Operations on packed single-precision numbers #define vfp_double_packed_sign(v) ((v) & (1ULL << 63)) #define vfp_double_packed_negate(v) ((v) ^ (1ULL << 63)) #define vfp_double_packed_abs(v) ((v) & ~(1ULL << 63)) #define vfp_double_packed_exponent(v) (((v) >> VFP_DOUBLE_MANTISSA_BITS) & ((1 << VFP_DOUBLE_EXPONENT_BITS) - 1)) #define vfp_double_packed_mantissa(v) ((v) & ((1ULL << VFP_DOUBLE_MANTISSA_BITS) - 1)) inline int vfp_double_type(const vfp_double* s) { int type = VFP_NUMBER; if (s->exponent == 2047) { if (s->significand == 0) type = VFP_INFINITY; else if (s->significand & VFP_DOUBLE_SIGNIFICAND_QNAN) type = VFP_QNAN; else type = VFP_SNAN; } else if (s->exponent == 0) { if (s->significand == 0) type |= VFP_ZERO; else type |= VFP_DENORMAL; } return type; } // Unpack a double-precision float. Note that this returns the magnitude // of the double-precision float mantissa with the 1. if necessary, // aligned to bit 62. inline void vfp_double_unpack(vfp_double* s, s64 val, u32* fpscr) { s->sign = vfp_double_packed_sign(val) >> 48; s->exponent = vfp_double_packed_exponent(val); u64 significand = ((u64)val << (64 - VFP_DOUBLE_MANTISSA_BITS)) >> 2; if (s->exponent && s->exponent != 2047) significand |= (1ULL << 62); s->significand = significand; // If flush-to-zero mode is enabled, turn the denormal into zero. // On a VFPv2 architecture, the sign of the zero is always positive. if ((*fpscr & FPSCR_FLUSH_TO_ZERO) != 0 && (vfp_double_type(s) & VFP_DENORMAL) != 0) { s->sign = 0; s->exponent = 0; s->significand = 0; *fpscr |= FPSCR_IDC; } } // Re-pack a double-precision float. This assumes that the float is // already normalised such that the MSB is bit 30, _not_ bit 31. inline s64 vfp_double_pack(const vfp_double* s) { u64 val = ((u64)s->sign << 48) + ((u64)s->exponent << VFP_DOUBLE_MANTISSA_BITS) + (s->significand >> VFP_DOUBLE_LOW_BITS); return (s64)val; } u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand); // A special flag to tell the normalisation code not to normalise. #define VFP_NAN_FLAG 0x100 // A bit pattern used to indicate the initial (unset) value of the // exception mask, in case nothing handles an instruction. This // doesn't include the NAN flag, which get masked out before // we check for an error. #define VFP_EXCEPTION_ERROR ((u32)-1 & ~VFP_NAN_FLAG) // A flag to tell vfp instruction type. // OP_SCALAR - This operation always operates in scalar mode // OP_SD - The instruction exceptionally writes to a single precision result. // OP_DD - The instruction exceptionally writes to a double precision result. // OP_SM - The instruction exceptionally reads from a single precision operand. enum : u32 { OP_SCALAR = (1 << 0), OP_SD = (1 << 1), OP_DD = (1 << 1), OP_SM = (1 << 2) }; struct op { u32 (* const fn)(ARMul_State* state, int dd, int dn, int dm, u32 fpscr); u32 flags; }; inline u32 fls(u32 x) { int r = 32; if (!x) return 0; if (!(x & 0xffff0000u)) { x <<= 16; r -= 16; } if (!(x & 0xff000000u)) { x <<= 8; r -= 8; } if (!(x & 0xf0000000u)) { x <<= 4; r -= 4; } if (!(x & 0xc0000000u)) { x <<= 2; r -= 2; } if (!(x & 0x80000000u)) { x <<= 1; r -= 1; } return r; } u32 vfp_double_multiply(vfp_double* vdd, vfp_double* vdn, vfp_double* vdm, u32 fpscr); u32 vfp_double_add(vfp_double* vdd, vfp_double* vdn, vfp_double *vdm, u32 fpscr); u32 vfp_double_normaliseround(ARMul_State* state, int dd, vfp_double* vd, u32 fpscr, u32 exceptions, const char* func);