1330 lines
37 KiB
C++
1330 lines
37 KiB
C++
/*
|
|
vfp/vfpsingle.c - ARM VFPv3 emulation unit - SoftFloat single instruction
|
|
Copyright (C) 2003 Skyeye Develop Group
|
|
for help please send mail to <skyeye-developer@lists.gro.clinux.org>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
/*
|
|
* This code is derived in part from :
|
|
* - Android kernel
|
|
* - John R. Housers softfloat library, which
|
|
* carries the following notice:
|
|
*
|
|
* ===========================================================================
|
|
* This C source file is part of the SoftFloat IEC/IEEE Floating-point
|
|
* Arithmetic Package, Release 2.
|
|
*
|
|
* Written by John R. Hauser. This work was made possible in part by the
|
|
* International Computer Science Institute, located at Suite 600, 1947 Center
|
|
* Street, Berkeley, California 94704. Funding was partially provided by the
|
|
* National Science Foundation under grant MIP-9311980. The original version
|
|
* of this code was written as part of a project to build a fixed-point vector
|
|
* processor in collaboration with the University of California at Berkeley,
|
|
* overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
|
* is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
|
|
* arithmetic/softfloat.html'.
|
|
*
|
|
* THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
|
|
* has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
|
|
* TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
|
|
* PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
|
|
* AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
|
|
*
|
|
* Derivative works are acceptable, even for commercial purposes, so long as
|
|
* (1) they include prominent notice that the work is derivative, and (2) they
|
|
* include prominent notice akin to these three paragraphs for those parts of
|
|
* this code that are retained.
|
|
* ===========================================================================
|
|
*/
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma warning(disable : 4100 4244 4245)
|
|
#endif
|
|
|
|
#include <algorithm>
|
|
#include <cinttypes>
|
|
#include <common/assert.h>
|
|
|
|
//#include "common/common_funcs.h"
|
|
#include "common/common_types.h"
|
|
//#include "common/logging/log.h"
|
|
|
|
#include "skyeye_interpreter/skyeye_common/vfp/vfp_helper.h"
|
|
#include "skyeye_interpreter/skyeye_common/vfp/asm_vfp.h"
|
|
#include "skyeye_interpreter/skyeye_common/vfp/vfp.h"
|
|
|
|
#define LOG_INFO(...) do{}while(0)
|
|
#define LOG_TRACE(...) do{}while(0)
|
|
#define LOG_WARNING(...) do{}while(0)
|
|
|
|
static struct vfp_single vfp_single_default_qnan = {
|
|
255,
|
|
0,
|
|
VFP_SINGLE_SIGNIFICAND_QNAN,
|
|
};
|
|
|
|
static void vfp_single_dump(const char *str, struct vfp_single *s)
|
|
{
|
|
LOG_TRACE(Core_ARM11, "%s: sign=%d exponent=%d significand=%08x",
|
|
str, s->sign != 0, s->exponent, s->significand);
|
|
}
|
|
|
|
static void vfp_single_normalise_denormal(struct vfp_single *vs)
|
|
{
|
|
int bits = 31 - fls(vs->significand);
|
|
|
|
vfp_single_dump("normalise_denormal: in", vs);
|
|
|
|
if (bits) {
|
|
vs->exponent -= bits - 1;
|
|
vs->significand <<= bits;
|
|
}
|
|
|
|
vfp_single_dump("normalise_denormal: out", vs);
|
|
}
|
|
|
|
|
|
u32 vfp_single_normaliseround(ARMul_State* state, int sd, struct vfp_single *vs, u32 fpscr, const char *func)
|
|
{
|
|
u32 significand, incr, rmode;
|
|
int exponent, shift, underflow;
|
|
u32 exceptions = 0;
|
|
|
|
vfp_single_dump("pack: in", vs);
|
|
|
|
/*
|
|
* Infinities and NaNs are a special case.
|
|
*/
|
|
if (vs->exponent == 255 && (vs->significand == 0 || exceptions))
|
|
goto pack;
|
|
|
|
/*
|
|
* Special-case zero.
|
|
*/
|
|
if (vs->significand == 0) {
|
|
vs->exponent = 0;
|
|
goto pack;
|
|
}
|
|
|
|
exponent = vs->exponent;
|
|
significand = vs->significand;
|
|
|
|
/*
|
|
* Normalise first. Note that we shift the significand up to
|
|
* bit 31, so we have VFP_SINGLE_LOW_BITS + 1 below the least
|
|
* significant bit.
|
|
*/
|
|
shift = 32 - fls(significand);
|
|
if (shift < 32 && shift) {
|
|
exponent -= shift;
|
|
significand <<= shift;
|
|
}
|
|
|
|
#if 1
|
|
vs->exponent = exponent;
|
|
vs->significand = significand;
|
|
vfp_single_dump("pack: normalised", vs);
|
|
#endif
|
|
|
|
/*
|
|
* Tiny number?
|
|
*/
|
|
underflow = exponent < 0;
|
|
if (underflow) {
|
|
significand = vfp_shiftright32jamming(significand, -exponent);
|
|
exponent = 0;
|
|
#if 1
|
|
vs->exponent = exponent;
|
|
vs->significand = significand;
|
|
vfp_single_dump("pack: tiny number", vs);
|
|
#endif
|
|
if (!(significand & ((1 << (VFP_SINGLE_LOW_BITS + 1)) - 1)))
|
|
underflow = 0;
|
|
}
|
|
|
|
/*
|
|
* Select rounding increment.
|
|
*/
|
|
incr = 0;
|
|
rmode = fpscr & FPSCR_RMODE_MASK;
|
|
|
|
if (rmode == FPSCR_ROUND_NEAREST) {
|
|
incr = 1 << VFP_SINGLE_LOW_BITS;
|
|
if ((significand & (1 << (VFP_SINGLE_LOW_BITS + 1))) == 0)
|
|
incr -= 1;
|
|
} else if (rmode == FPSCR_ROUND_TOZERO) {
|
|
incr = 0;
|
|
} else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vs->sign != 0))
|
|
incr = (1 << (VFP_SINGLE_LOW_BITS + 1)) - 1;
|
|
|
|
LOG_TRACE(Core_ARM11, "rounding increment = 0x%08x", incr);
|
|
|
|
/*
|
|
* Is our rounding going to overflow?
|
|
*/
|
|
if ((significand + incr) < significand) {
|
|
exponent += 1;
|
|
significand = (significand >> 1) | (significand & 1);
|
|
incr >>= 1;
|
|
#if 1
|
|
vs->exponent = exponent;
|
|
vs->significand = significand;
|
|
vfp_single_dump("pack: overflow", vs);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* If any of the low bits (which will be shifted out of the
|
|
* number) are non-zero, the result is inexact.
|
|
*/
|
|
if (significand & ((1 << (VFP_SINGLE_LOW_BITS + 1)) - 1))
|
|
exceptions |= FPSCR_IXC;
|
|
|
|
/*
|
|
* Do our rounding.
|
|
*/
|
|
significand += incr;
|
|
|
|
/*
|
|
* Infinity?
|
|
*/
|
|
if (exponent >= 254) {
|
|
exceptions |= FPSCR_OFC | FPSCR_IXC;
|
|
if (incr == 0) {
|
|
vs->exponent = 253;
|
|
vs->significand = 0x7fffffff;
|
|
} else {
|
|
vs->exponent = 255; /* infinity */
|
|
vs->significand = 0;
|
|
}
|
|
} else {
|
|
if (significand >> (VFP_SINGLE_LOW_BITS + 1) == 0)
|
|
exponent = 0;
|
|
if (exponent || significand > 0x80000000)
|
|
underflow = 0;
|
|
if (underflow)
|
|
exceptions |= FPSCR_UFC;
|
|
vs->exponent = exponent;
|
|
vs->significand = significand >> 1;
|
|
}
|
|
|
|
pack:
|
|
vfp_single_dump("pack: final", vs);
|
|
{
|
|
s32 d = vfp_single_pack(vs);
|
|
LOG_TRACE(Core_ARM11, "%s: d(s%d)=%08x exceptions=%08x", func,
|
|
sd, d, exceptions);
|
|
vfp_put_float(state, d, sd);
|
|
}
|
|
|
|
return exceptions;
|
|
}
|
|
|
|
/*
|
|
* Propagate the NaN, setting exceptions if it is signalling.
|
|
* 'n' is always a NaN. 'm' may be a number, NaN or infinity.
|
|
*/
|
|
static u32
|
|
vfp_propagate_nan(struct vfp_single *vsd, struct vfp_single *vsn,
|
|
struct vfp_single *vsm, u32 fpscr)
|
|
{
|
|
struct vfp_single *nan;
|
|
int tn, tm = 0;
|
|
|
|
tn = vfp_single_type(vsn);
|
|
|
|
if (vsm)
|
|
tm = vfp_single_type(vsm);
|
|
|
|
if (fpscr & FPSCR_DEFAULT_NAN)
|
|
/*
|
|
* Default NaN mode - always returns a quiet NaN
|
|
*/
|
|
nan = &vfp_single_default_qnan;
|
|
else {
|
|
/*
|
|
* Contemporary mode - select the first signalling
|
|
* NAN, or if neither are signalling, the first
|
|
* quiet NAN.
|
|
*/
|
|
if (tn == VFP_SNAN || (tm != VFP_SNAN && tn == VFP_QNAN))
|
|
nan = vsn;
|
|
else
|
|
nan = vsm;
|
|
/*
|
|
* Make the NaN quiet.
|
|
*/
|
|
nan->significand |= VFP_SINGLE_SIGNIFICAND_QNAN;
|
|
}
|
|
|
|
*vsd = *nan;
|
|
|
|
/*
|
|
* If one was a signalling NAN, raise invalid operation.
|
|
*/
|
|
return (tn == VFP_SNAN || tm == VFP_SNAN) ? u32(FPSCR_IOC) : u32(VFP_NAN_FLAG);
|
|
}
|
|
|
|
|
|
/*
|
|
* Extended operations
|
|
*/
|
|
static u32 vfp_single_fabs(ARMul_State* state, int sd, int unused, s32 m, u32 fpscr)
|
|
{
|
|
vfp_put_float(state, vfp_single_packed_abs(m), sd);
|
|
return 0;
|
|
}
|
|
|
|
static u32 vfp_single_fcpy(ARMul_State* state, int sd, int unused, s32 m, u32 fpscr)
|
|
{
|
|
vfp_put_float(state, m, sd);
|
|
return 0;
|
|
}
|
|
|
|
static u32 vfp_single_fneg(ARMul_State* state, int sd, int unused, s32 m, u32 fpscr)
|
|
{
|
|
vfp_put_float(state, vfp_single_packed_negate(m), sd);
|
|
return 0;
|
|
}
|
|
|
|
static const u16 sqrt_oddadjust[] = {
|
|
0x0004, 0x0022, 0x005d, 0x00b1, 0x011d, 0x019f, 0x0236, 0x02e0,
|
|
0x039c, 0x0468, 0x0545, 0x0631, 0x072b, 0x0832, 0x0946, 0x0a67
|
|
};
|
|
|
|
static const u16 sqrt_evenadjust[] = {
|
|
0x0a2d, 0x08af, 0x075a, 0x0629, 0x051a, 0x0429, 0x0356, 0x029e,
|
|
0x0200, 0x0179, 0x0109, 0x00af, 0x0068, 0x0034, 0x0012, 0x0002
|
|
};
|
|
|
|
u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand)
|
|
{
|
|
int index;
|
|
u32 z, a;
|
|
|
|
if ((significand & 0xc0000000) != 0x40000000) {
|
|
LOG_TRACE(Core_ARM11, "invalid significand");
|
|
}
|
|
|
|
a = significand << 1;
|
|
index = (a >> 27) & 15;
|
|
if (exponent & 1) {
|
|
z = 0x4000 + (a >> 17) - sqrt_oddadjust[index];
|
|
z = ((a / z) << 14) + (z << 15);
|
|
a >>= 1;
|
|
} else {
|
|
z = 0x8000 + (a >> 17) - sqrt_evenadjust[index];
|
|
z = a / z + z;
|
|
z = (z >= 0x20000) ? 0xffff8000 : (z << 15);
|
|
if (z <= a)
|
|
return (s32)a >> 1;
|
|
}
|
|
{
|
|
u64 v = (u64)a << 31;
|
|
do_div(v, z);
|
|
return (u32)(v + (z >> 1));
|
|
}
|
|
}
|
|
|
|
static u32 vfp_single_fsqrt(ARMul_State* state, int sd, int unused, s32 m, u32 fpscr)
|
|
{
|
|
struct vfp_single vsm, vsd, *vsp;
|
|
int ret, tm;
|
|
u32 exceptions = 0;
|
|
|
|
exceptions |= vfp_single_unpack(&vsm, m, fpscr);
|
|
tm = vfp_single_type(&vsm);
|
|
if (tm & (VFP_NAN|VFP_INFINITY)) {
|
|
vsp = &vsd;
|
|
|
|
if (tm & VFP_NAN)
|
|
ret = vfp_propagate_nan(vsp, &vsm, nullptr, fpscr);
|
|
else if (vsm.sign == 0) {
|
|
sqrt_copy:
|
|
vsp = &vsm;
|
|
ret = 0;
|
|
} else {
|
|
sqrt_invalid:
|
|
vsp = &vfp_single_default_qnan;
|
|
ret = FPSCR_IOC;
|
|
}
|
|
vfp_put_float(state, vfp_single_pack(vsp), sd);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* sqrt(+/- 0) == +/- 0
|
|
*/
|
|
if (tm & VFP_ZERO)
|
|
goto sqrt_copy;
|
|
|
|
/*
|
|
* Normalise a denormalised number
|
|
*/
|
|
if (tm & VFP_DENORMAL)
|
|
vfp_single_normalise_denormal(&vsm);
|
|
|
|
/*
|
|
* sqrt(<0) = invalid
|
|
*/
|
|
if (vsm.sign)
|
|
goto sqrt_invalid;
|
|
|
|
vfp_single_dump("sqrt", &vsm);
|
|
|
|
/*
|
|
* Estimate the square root.
|
|
*/
|
|
vsd.sign = 0;
|
|
vsd.exponent = ((vsm.exponent - 127) >> 1) + 127;
|
|
vsd.significand = vfp_estimate_sqrt_significand(vsm.exponent, vsm.significand) + 2;
|
|
|
|
vfp_single_dump("sqrt estimate", &vsd);
|
|
|
|
/*
|
|
* And now adjust.
|
|
*/
|
|
if ((vsd.significand & VFP_SINGLE_LOW_BITS_MASK) <= 5) {
|
|
if (vsd.significand < 2) {
|
|
vsd.significand = 0xffffffff;
|
|
} else {
|
|
u64 term;
|
|
s64 rem;
|
|
vsm.significand <<= static_cast<u32>((vsm.exponent & 1) == 0);
|
|
term = (u64)vsd.significand * vsd.significand;
|
|
rem = ((u64)vsm.significand << 32) - term;
|
|
|
|
LOG_TRACE(Core_ARM11, "term=%016" PRIx64 "rem=%016" PRIx64, term, rem);
|
|
|
|
while (rem < 0) {
|
|
vsd.significand -= 1;
|
|
rem += ((u64)vsd.significand << 1) | 1;
|
|
}
|
|
vsd.significand |= rem != 0;
|
|
}
|
|
}
|
|
vsd.significand = vfp_shiftright32jamming(vsd.significand, 1);
|
|
|
|
exceptions |= vfp_single_normaliseround(state, sd, &vsd, fpscr, "fsqrt");
|
|
return exceptions;
|
|
}
|
|
|
|
/*
|
|
* Equal := ZC
|
|
* Less than := N
|
|
* Greater than := C
|
|
* Unordered := CV
|
|
*/
|
|
static u32 vfp_compare(ARMul_State* state, int sd, int signal_on_qnan, s32 m, u32 fpscr)
|
|
{
|
|
s32 d;
|
|
u32 ret = 0;
|
|
|
|
d = vfp_get_float(state, sd);
|
|
if (vfp_single_packed_exponent(m) == 255 && vfp_single_packed_mantissa(m)) {
|
|
ret |= FPSCR_CFLAG | FPSCR_VFLAG;
|
|
if (signal_on_qnan || !(vfp_single_packed_mantissa(m) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1))))
|
|
/*
|
|
* Signalling NaN, or signalling on quiet NaN
|
|
*/
|
|
ret |= FPSCR_IOC;
|
|
}
|
|
|
|
if (vfp_single_packed_exponent(d) == 255 && vfp_single_packed_mantissa(d)) {
|
|
ret |= FPSCR_CFLAG | FPSCR_VFLAG;
|
|
if (signal_on_qnan || !(vfp_single_packed_mantissa(d) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1))))
|
|
/*
|
|
* Signalling NaN, or signalling on quiet NaN
|
|
*/
|
|
ret |= FPSCR_IOC;
|
|
}
|
|
|
|
if (ret == 0) {
|
|
if (d == m || vfp_single_packed_abs(d | m) == 0) {
|
|
/*
|
|
* equal
|
|
*/
|
|
ret |= FPSCR_ZFLAG | FPSCR_CFLAG;
|
|
} else if (vfp_single_packed_sign(d ^ m)) {
|
|
/*
|
|
* different signs
|
|
*/
|
|
if (vfp_single_packed_sign(d))
|
|
/*
|
|
* d is negative, so d < m
|
|
*/
|
|
ret |= FPSCR_NFLAG;
|
|
else
|
|
/*
|
|
* d is positive, so d > m
|
|
*/
|
|
ret |= FPSCR_CFLAG;
|
|
} else if ((vfp_single_packed_sign(d) != 0) ^ (d < m)) {
|
|
/*
|
|
* d < m
|
|
*/
|
|
ret |= FPSCR_NFLAG;
|
|
} else if ((vfp_single_packed_sign(d) != 0) ^ (d > m)) {
|
|
/*
|
|
* d > m
|
|
*/
|
|
ret |= FPSCR_CFLAG;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static u32 vfp_single_fcmp(ARMul_State* state, int sd, int unused, s32 m, u32 fpscr)
|
|
{
|
|
return vfp_compare(state, sd, 0, m, fpscr);
|
|
}
|
|
|
|
static u32 vfp_single_fcmpe(ARMul_State* state, int sd, int unused, s32 m, u32 fpscr)
|
|
{
|
|
return vfp_compare(state, sd, 1, m, fpscr);
|
|
}
|
|
|
|
static u32 vfp_single_fcmpz(ARMul_State* state, int sd, int unused, s32 m, u32 fpscr)
|
|
{
|
|
return vfp_compare(state, sd, 0, 0, fpscr);
|
|
}
|
|
|
|
static u32 vfp_single_fcmpez(ARMul_State* state, int sd, int unused, s32 m, u32 fpscr)
|
|
{
|
|
return vfp_compare(state, sd, 1, 0, fpscr);
|
|
}
|
|
|
|
static u32 vfp_single_fcvtd(ARMul_State* state, int dd, int unused, s32 m, u32 fpscr)
|
|
{
|
|
struct vfp_single vsm;
|
|
struct vfp_double vdd;
|
|
int tm;
|
|
u32 exceptions = 0;
|
|
|
|
exceptions |= vfp_single_unpack(&vsm, m, fpscr);
|
|
|
|
tm = vfp_single_type(&vsm);
|
|
|
|
/*
|
|
* If we have a signalling NaN, signal invalid operation.
|
|
*/
|
|
if (tm == VFP_SNAN)
|
|
exceptions |= FPSCR_IOC;
|
|
|
|
if (tm & VFP_DENORMAL)
|
|
vfp_single_normalise_denormal(&vsm);
|
|
|
|
vdd.sign = vsm.sign;
|
|
vdd.significand = (u64)vsm.significand << 32;
|
|
|
|
/*
|
|
* If we have an infinity or NaN, the exponent must be 2047.
|
|
*/
|
|
if (tm & (VFP_INFINITY|VFP_NAN)) {
|
|
vdd.exponent = 2047;
|
|
if (tm == VFP_QNAN)
|
|
vdd.significand |= VFP_DOUBLE_SIGNIFICAND_QNAN;
|
|
goto pack_nan;
|
|
} else if (tm & VFP_ZERO)
|
|
vdd.exponent = 0;
|
|
else
|
|
vdd.exponent = vsm.exponent + (1023 - 127);
|
|
|
|
exceptions |= vfp_double_normaliseround(state, dd, &vdd, fpscr, "fcvtd");
|
|
return exceptions;
|
|
|
|
pack_nan:
|
|
vfp_put_double(state, vfp_double_pack(&vdd), dd);
|
|
return exceptions;
|
|
}
|
|
|
|
static u32 vfp_single_fuito(ARMul_State* state, int sd, int unused, s32 m, u32 fpscr)
|
|
{
|
|
struct vfp_single vs;
|
|
u32 exceptions = 0;
|
|
|
|
vs.sign = 0;
|
|
vs.exponent = 127 + 31 - 1;
|
|
vs.significand = (u32)m;
|
|
|
|
exceptions |= vfp_single_normaliseround(state, sd, &vs, fpscr, "fuito");
|
|
return exceptions;
|
|
}
|
|
|
|
static u32 vfp_single_fsito(ARMul_State* state, int sd, int unused, s32 m, u32 fpscr)
|
|
{
|
|
struct vfp_single vs;
|
|
u32 exceptions = 0;
|
|
|
|
vs.sign = (m & 0x80000000) >> 16;
|
|
vs.exponent = 127 + 31 - 1;
|
|
vs.significand = vs.sign ? -m : m;
|
|
|
|
exceptions |= vfp_single_normaliseround(state, sd, &vs, fpscr, "fsito");
|
|
return exceptions;
|
|
}
|
|
|
|
static u32 vfp_single_ftoui(ARMul_State* state, int sd, int unused, s32 m, u32 fpscr)
|
|
{
|
|
struct vfp_single vsm;
|
|
u32 d, exceptions = 0;
|
|
int rmode = fpscr & FPSCR_RMODE_MASK;
|
|
int tm;
|
|
|
|
exceptions |= vfp_single_unpack(&vsm, m, fpscr);
|
|
vfp_single_dump("VSM", &vsm);
|
|
|
|
/*
|
|
* Do we have a denormalised number?
|
|
*/
|
|
tm = vfp_single_type(&vsm);
|
|
if (tm & VFP_DENORMAL)
|
|
exceptions |= FPSCR_IDC;
|
|
|
|
if (tm & VFP_NAN)
|
|
vsm.sign = 1;
|
|
|
|
if (vsm.exponent >= 127 + 32) {
|
|
d = vsm.sign ? 0 : 0xffffffff;
|
|
exceptions |= FPSCR_IOC;
|
|
} else if (vsm.exponent >= 127) {
|
|
int shift = 127 + 31 - vsm.exponent;
|
|
u32 rem, incr = 0;
|
|
|
|
/*
|
|
* 2^0 <= m < 2^32-2^8
|
|
*/
|
|
d = (vsm.significand << 1) >> shift;
|
|
if (shift > 0) {
|
|
rem = (vsm.significand << 1) << (32 - shift);
|
|
} else {
|
|
rem = 0;
|
|
}
|
|
|
|
if (rmode == FPSCR_ROUND_NEAREST) {
|
|
incr = 0x80000000;
|
|
if ((d & 1) == 0)
|
|
incr -= 1;
|
|
} else if (rmode == FPSCR_ROUND_TOZERO) {
|
|
incr = 0;
|
|
} else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vsm.sign != 0)) {
|
|
incr = ~0;
|
|
}
|
|
|
|
if ((rem + incr) < rem) {
|
|
if (d < 0xffffffff)
|
|
d += 1;
|
|
else
|
|
exceptions |= FPSCR_IOC;
|
|
}
|
|
|
|
if (d && vsm.sign) {
|
|
d = 0;
|
|
exceptions |= FPSCR_IOC;
|
|
} else if (rem)
|
|
exceptions |= FPSCR_IXC;
|
|
} else {
|
|
d = 0;
|
|
if (vsm.exponent | vsm.significand) {
|
|
if (rmode == FPSCR_ROUND_NEAREST) {
|
|
if (vsm.exponent >= 126) {
|
|
d = vsm.sign ? 0 : 1;
|
|
exceptions |= vsm.sign ? FPSCR_IOC : FPSCR_IXC;
|
|
} else {
|
|
exceptions |= FPSCR_IXC;
|
|
}
|
|
} else if (rmode == FPSCR_ROUND_PLUSINF && vsm.sign == 0) {
|
|
d = 1;
|
|
exceptions |= FPSCR_IXC;
|
|
} else if (rmode == FPSCR_ROUND_MINUSINF) {
|
|
exceptions |= vsm.sign ? FPSCR_IOC : FPSCR_IXC;
|
|
} else {
|
|
exceptions |= FPSCR_IXC;
|
|
}
|
|
}
|
|
}
|
|
|
|
LOG_TRACE(Core_ARM11, "ftoui: d(s%d)=%08x exceptions=%08x", sd, d, exceptions);
|
|
|
|
vfp_put_float(state, d, sd);
|
|
|
|
return exceptions;
|
|
}
|
|
|
|
static u32 vfp_single_ftouiz(ARMul_State* state, int sd, int unused, s32 m, u32 fpscr)
|
|
{
|
|
return vfp_single_ftoui(state, sd, unused, m, (fpscr & ~FPSCR_RMODE_MASK) | FPSCR_ROUND_TOZERO);
|
|
}
|
|
|
|
static u32 vfp_single_ftosi(ARMul_State* state, int sd, int unused, s32 m, u32 fpscr)
|
|
{
|
|
struct vfp_single vsm;
|
|
u32 d, exceptions = 0;
|
|
int rmode = fpscr & FPSCR_RMODE_MASK;
|
|
int tm;
|
|
|
|
exceptions |= vfp_single_unpack(&vsm, m, fpscr);
|
|
vfp_single_dump("VSM", &vsm);
|
|
|
|
/*
|
|
* Do we have a denormalised number?
|
|
*/
|
|
tm = vfp_single_type(&vsm);
|
|
if (vfp_single_type(&vsm) & VFP_DENORMAL)
|
|
exceptions |= FPSCR_IDC;
|
|
|
|
if (tm & VFP_NAN) {
|
|
d = 0;
|
|
exceptions |= FPSCR_IOC;
|
|
} else if (vsm.exponent >= 127 + 31) {
|
|
/*
|
|
* m >= 2^31-2^7: invalid
|
|
*/
|
|
d = 0x7fffffff;
|
|
if (vsm.sign)
|
|
d = ~d;
|
|
exceptions |= FPSCR_IOC;
|
|
} else if (vsm.exponent >= 127) {
|
|
int shift = 127 + 31 - vsm.exponent;
|
|
u32 rem, incr = 0;
|
|
|
|
/* 2^0 <= m <= 2^31-2^7 */
|
|
d = (vsm.significand << 1) >> shift;
|
|
rem = (vsm.significand << 1) << (32 - shift);
|
|
|
|
if (rmode == FPSCR_ROUND_NEAREST) {
|
|
incr = 0x80000000;
|
|
if ((d & 1) == 0)
|
|
incr -= 1;
|
|
} else if (rmode == FPSCR_ROUND_TOZERO) {
|
|
incr = 0;
|
|
} else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vsm.sign != 0)) {
|
|
incr = ~0;
|
|
}
|
|
|
|
if ((rem + incr) < rem && d < 0xffffffff)
|
|
d += 1;
|
|
if (d > (0x7fffffffu + (vsm.sign != 0))) {
|
|
d = (0x7fffffffu + (vsm.sign != 0));
|
|
exceptions |= FPSCR_IOC;
|
|
} else if (rem)
|
|
exceptions |= FPSCR_IXC;
|
|
|
|
if (vsm.sign)
|
|
d = (~d + 1);
|
|
} else {
|
|
d = 0;
|
|
if (vsm.exponent | vsm.significand) {
|
|
exceptions |= FPSCR_IXC;
|
|
if (rmode == FPSCR_ROUND_NEAREST) {
|
|
if (vsm.exponent >= 126)
|
|
d = vsm.sign ? 0xffffffff : 1;
|
|
} else if (rmode == FPSCR_ROUND_PLUSINF && vsm.sign == 0) {
|
|
d = 1;
|
|
} else if (rmode == FPSCR_ROUND_MINUSINF && vsm.sign) {
|
|
d = 0xffffffff;
|
|
}
|
|
}
|
|
}
|
|
|
|
LOG_TRACE(Core_ARM11, "ftosi: d(s%d)=%08x exceptions=%08x", sd, d, exceptions);
|
|
|
|
vfp_put_float(state, (s32)d, sd);
|
|
|
|
return exceptions;
|
|
}
|
|
|
|
static u32 vfp_single_ftosiz(ARMul_State* state, int sd, int unused, s32 m, u32 fpscr)
|
|
{
|
|
return vfp_single_ftosi(state, sd, unused, m, (fpscr & ~FPSCR_RMODE_MASK) | FPSCR_ROUND_TOZERO);
|
|
}
|
|
|
|
static struct op fops_ext[] = {
|
|
{ vfp_single_fcpy, 0 }, //0x00000000 - FEXT_FCPY
|
|
{ vfp_single_fabs, 0 }, //0x00000001 - FEXT_FABS
|
|
{ vfp_single_fneg, 0 }, //0x00000002 - FEXT_FNEG
|
|
{ vfp_single_fsqrt, 0 }, //0x00000003 - FEXT_FSQRT
|
|
{ nullptr, 0 },
|
|
{ nullptr, 0 },
|
|
{ nullptr, 0 },
|
|
{ nullptr, 0 },
|
|
{ vfp_single_fcmp, OP_SCALAR }, //0x00000008 - FEXT_FCMP
|
|
{ vfp_single_fcmpe, OP_SCALAR }, //0x00000009 - FEXT_FCMPE
|
|
{ vfp_single_fcmpz, OP_SCALAR }, //0x0000000A - FEXT_FCMPZ
|
|
{ vfp_single_fcmpez, OP_SCALAR }, //0x0000000B - FEXT_FCMPEZ
|
|
{ nullptr, 0 },
|
|
{ nullptr, 0 },
|
|
{ nullptr, 0 },
|
|
{ vfp_single_fcvtd, OP_SCALAR|OP_DD }, //0x0000000F - FEXT_FCVT
|
|
{ vfp_single_fuito, OP_SCALAR }, //0x00000010 - FEXT_FUITO
|
|
{ vfp_single_fsito, OP_SCALAR }, //0x00000011 - FEXT_FSITO
|
|
{ nullptr, 0 },
|
|
{ nullptr, 0 },
|
|
{ nullptr, 0 },
|
|
{ nullptr, 0 },
|
|
{ nullptr, 0 },
|
|
{ nullptr, 0 },
|
|
{ vfp_single_ftoui, OP_SCALAR }, //0x00000018 - FEXT_FTOUI
|
|
{ vfp_single_ftouiz, OP_SCALAR }, //0x00000019 - FEXT_FTOUIZ
|
|
{ vfp_single_ftosi, OP_SCALAR }, //0x0000001A - FEXT_FTOSI
|
|
{ vfp_single_ftosiz, OP_SCALAR }, //0x0000001B - FEXT_FTOSIZ
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
static u32
|
|
vfp_single_fadd_nonnumber(struct vfp_single *vsd, struct vfp_single *vsn,
|
|
struct vfp_single *vsm, u32 fpscr)
|
|
{
|
|
struct vfp_single *vsp;
|
|
u32 exceptions = 0;
|
|
int tn, tm;
|
|
|
|
tn = vfp_single_type(vsn);
|
|
tm = vfp_single_type(vsm);
|
|
|
|
if (tn & tm & VFP_INFINITY) {
|
|
/*
|
|
* Two infinities. Are they different signs?
|
|
*/
|
|
if (vsn->sign ^ vsm->sign) {
|
|
/*
|
|
* different signs -> invalid
|
|
*/
|
|
exceptions |= FPSCR_IOC;
|
|
vsp = &vfp_single_default_qnan;
|
|
} else {
|
|
/*
|
|
* same signs -> valid
|
|
*/
|
|
vsp = vsn;
|
|
}
|
|
} else if (tn & VFP_INFINITY && tm & VFP_NUMBER) {
|
|
/*
|
|
* One infinity and one number -> infinity
|
|
*/
|
|
vsp = vsn;
|
|
} else {
|
|
/*
|
|
* 'n' is a NaN of some type
|
|
*/
|
|
return vfp_propagate_nan(vsd, vsn, vsm, fpscr);
|
|
}
|
|
*vsd = *vsp;
|
|
return exceptions;
|
|
}
|
|
|
|
static u32
|
|
vfp_single_add(struct vfp_single *vsd, struct vfp_single *vsn,
|
|
struct vfp_single *vsm, u32 fpscr)
|
|
{
|
|
u32 exp_diff, m_sig;
|
|
|
|
if (vsn->significand & 0x80000000 ||
|
|
vsm->significand & 0x80000000) {
|
|
LOG_WARNING(Core_ARM11, "bad FP values");
|
|
vfp_single_dump("VSN", vsn);
|
|
vfp_single_dump("VSM", vsm);
|
|
}
|
|
|
|
/*
|
|
* Ensure that 'n' is the largest magnitude number. Note that
|
|
* if 'n' and 'm' have equal exponents, we do not swap them.
|
|
* This ensures that NaN propagation works correctly.
|
|
*/
|
|
if (vsn->exponent < vsm->exponent) {
|
|
std::swap(vsm, vsn);
|
|
}
|
|
|
|
/*
|
|
* Is 'n' an infinity or a NaN? Note that 'm' may be a number,
|
|
* infinity or a NaN here.
|
|
*/
|
|
if (vsn->exponent == 255)
|
|
return vfp_single_fadd_nonnumber(vsd, vsn, vsm, fpscr);
|
|
|
|
/*
|
|
* We have two proper numbers, where 'vsn' is the larger magnitude.
|
|
*
|
|
* Copy 'n' to 'd' before doing the arithmetic.
|
|
*/
|
|
*vsd = *vsn;
|
|
|
|
/*
|
|
* Align both numbers.
|
|
*/
|
|
exp_diff = vsn->exponent - vsm->exponent;
|
|
m_sig = vfp_shiftright32jamming(vsm->significand, exp_diff);
|
|
|
|
/*
|
|
* If the signs are different, we are really subtracting.
|
|
*/
|
|
if (vsn->sign ^ vsm->sign) {
|
|
m_sig = vsn->significand - m_sig;
|
|
if ((s32)m_sig < 0) {
|
|
vsd->sign = vfp_sign_negate(vsd->sign);
|
|
m_sig = (~m_sig + 1);
|
|
} else if (m_sig == 0) {
|
|
vsd->sign = (fpscr & FPSCR_RMODE_MASK) ==
|
|
FPSCR_ROUND_MINUSINF ? 0x8000 : 0;
|
|
}
|
|
} else {
|
|
m_sig = vsn->significand + m_sig;
|
|
}
|
|
vsd->significand = m_sig;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u32
|
|
vfp_single_multiply(struct vfp_single *vsd, struct vfp_single *vsn, struct vfp_single *vsm, u32 fpscr)
|
|
{
|
|
vfp_single_dump("VSN", vsn);
|
|
vfp_single_dump("VSM", vsm);
|
|
|
|
/*
|
|
* Ensure that 'n' is the largest magnitude number. Note that
|
|
* if 'n' and 'm' have equal exponents, we do not swap them.
|
|
* This ensures that NaN propagation works correctly.
|
|
*/
|
|
if (vsn->exponent < vsm->exponent) {
|
|
std::swap(vsm, vsn);
|
|
LOG_TRACE(Core_ARM11, "swapping M <-> N");
|
|
}
|
|
|
|
vsd->sign = vsn->sign ^ vsm->sign;
|
|
|
|
/*
|
|
* If 'n' is an infinity or NaN, handle it. 'm' may be anything.
|
|
*/
|
|
if (vsn->exponent == 255) {
|
|
if (vsn->significand || (vsm->exponent == 255 && vsm->significand))
|
|
return vfp_propagate_nan(vsd, vsn, vsm, fpscr);
|
|
if ((vsm->exponent | vsm->significand) == 0) {
|
|
*vsd = vfp_single_default_qnan;
|
|
return FPSCR_IOC;
|
|
}
|
|
vsd->exponent = vsn->exponent;
|
|
vsd->significand = 0;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If 'm' is zero, the result is always zero. In this case,
|
|
* 'n' may be zero or a number, but it doesn't matter which.
|
|
*/
|
|
if ((vsm->exponent | vsm->significand) == 0) {
|
|
vsd->exponent = 0;
|
|
vsd->significand = 0;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* We add 2 to the destination exponent for the same reason as
|
|
* the addition case - though this time we have +1 from each
|
|
* input operand.
|
|
*/
|
|
vsd->exponent = vsn->exponent + vsm->exponent - 127 + 2;
|
|
vsd->significand = vfp_hi64to32jamming((u64)vsn->significand * vsm->significand);
|
|
|
|
vfp_single_dump("VSD", vsd);
|
|
return 0;
|
|
}
|
|
|
|
#define NEG_MULTIPLY (1 << 0)
|
|
#define NEG_SUBTRACT (1 << 1)
|
|
|
|
static u32
|
|
vfp_single_multiply_accumulate(ARMul_State* state, int sd, int sn, s32 m, u32 fpscr, u32 negate, const char *func)
|
|
{
|
|
vfp_single vsd, vsp, vsn, vsm;
|
|
u32 exceptions = 0;
|
|
s32 v;
|
|
|
|
v = vfp_get_float(state, sn);
|
|
LOG_TRACE(Core_ARM11, "s%u = %08x", sn, v);
|
|
exceptions |= vfp_single_unpack(&vsn, v, fpscr);
|
|
if (vsn.exponent == 0 && vsn.significand)
|
|
vfp_single_normalise_denormal(&vsn);
|
|
|
|
exceptions |= vfp_single_unpack(&vsm, m, fpscr);
|
|
if (vsm.exponent == 0 && vsm.significand)
|
|
vfp_single_normalise_denormal(&vsm);
|
|
|
|
exceptions |= vfp_single_multiply(&vsp, &vsn, &vsm, fpscr);
|
|
|
|
if (negate & NEG_MULTIPLY)
|
|
vsp.sign = vfp_sign_negate(vsp.sign);
|
|
|
|
v = vfp_get_float(state, sd);
|
|
LOG_TRACE(Core_ARM11, "s%u = %08x", sd, v);
|
|
exceptions |= vfp_single_unpack(&vsn, v, fpscr);
|
|
if (vsn.exponent == 0 && vsn.significand != 0)
|
|
vfp_single_normalise_denormal(&vsn);
|
|
|
|
if (negate & NEG_SUBTRACT)
|
|
vsn.sign = vfp_sign_negate(vsn.sign);
|
|
|
|
exceptions |= vfp_single_add(&vsd, &vsn, &vsp, fpscr);
|
|
|
|
exceptions |= vfp_single_normaliseround(state, sd, &vsd, fpscr, func);
|
|
return exceptions;
|
|
}
|
|
|
|
/*
|
|
* Standard operations
|
|
*/
|
|
|
|
/*
|
|
* sd = sd + (sn * sm)
|
|
*/
|
|
static u32 vfp_single_fmac(ARMul_State* state, int sd, int sn, s32 m, u32 fpscr)
|
|
{
|
|
u32 exceptions = 0;
|
|
LOG_TRACE(Core_ARM11, "s%u = %08x", sn, sd);
|
|
exceptions |= vfp_single_multiply_accumulate(state, sd, sn, m, fpscr, 0, "fmac");
|
|
return exceptions;
|
|
}
|
|
|
|
/*
|
|
* sd = sd - (sn * sm)
|
|
*/
|
|
static u32 vfp_single_fnmac(ARMul_State* state, int sd, int sn, s32 m, u32 fpscr)
|
|
{
|
|
// TODO: this one has its arguments inverted, investigate.
|
|
LOG_TRACE(Core_ARM11, "s%u = %08x", sd, sn);
|
|
return vfp_single_multiply_accumulate(state, sd, sn, m, fpscr, NEG_MULTIPLY, "fnmac");
|
|
}
|
|
|
|
/*
|
|
* sd = -sd + (sn * sm)
|
|
*/
|
|
static u32 vfp_single_fmsc(ARMul_State* state, int sd, int sn, s32 m, u32 fpscr)
|
|
{
|
|
LOG_TRACE(Core_ARM11, "s%u = %08x", sn, sd);
|
|
return vfp_single_multiply_accumulate(state, sd, sn, m, fpscr, NEG_SUBTRACT, "fmsc");
|
|
}
|
|
|
|
/*
|
|
* sd = -sd - (sn * sm)
|
|
*/
|
|
static u32 vfp_single_fnmsc(ARMul_State* state, int sd, int sn, s32 m, u32 fpscr)
|
|
{
|
|
LOG_TRACE(Core_ARM11, "s%u = %08x", sn, sd);
|
|
return vfp_single_multiply_accumulate(state, sd, sn, m, fpscr, NEG_SUBTRACT | NEG_MULTIPLY, "fnmsc");
|
|
}
|
|
|
|
/*
|
|
* sd = sn * sm
|
|
*/
|
|
static u32 vfp_single_fmul(ARMul_State* state, int sd, int sn, s32 m, u32 fpscr)
|
|
{
|
|
struct vfp_single vsd, vsn, vsm;
|
|
u32 exceptions = 0;
|
|
s32 n = vfp_get_float(state, sn);
|
|
|
|
LOG_TRACE(Core_ARM11, "s%u = %08x", sn, n);
|
|
|
|
exceptions |= vfp_single_unpack(&vsn, n, fpscr);
|
|
if (vsn.exponent == 0 && vsn.significand)
|
|
vfp_single_normalise_denormal(&vsn);
|
|
|
|
exceptions |= vfp_single_unpack(&vsm, m, fpscr);
|
|
if (vsm.exponent == 0 && vsm.significand)
|
|
vfp_single_normalise_denormal(&vsm);
|
|
|
|
exceptions |= vfp_single_multiply(&vsd, &vsn, &vsm, fpscr);
|
|
|
|
exceptions |= vfp_single_normaliseround(state, sd, &vsd, fpscr, "fmul");
|
|
return exceptions;
|
|
}
|
|
|
|
/*
|
|
* sd = -(sn * sm)
|
|
*/
|
|
static u32 vfp_single_fnmul(ARMul_State* state, int sd, int sn, s32 m, u32 fpscr)
|
|
{
|
|
struct vfp_single vsd, vsn, vsm;
|
|
u32 exceptions = 0;
|
|
s32 n = vfp_get_float(state, sn);
|
|
|
|
LOG_TRACE(Core_ARM11, "s%u = %08x", sn, n);
|
|
|
|
exceptions |= vfp_single_unpack(&vsn, n, fpscr);
|
|
if (vsn.exponent == 0 && vsn.significand)
|
|
vfp_single_normalise_denormal(&vsn);
|
|
|
|
exceptions |= vfp_single_unpack(&vsm, m, fpscr);
|
|
if (vsm.exponent == 0 && vsm.significand)
|
|
vfp_single_normalise_denormal(&vsm);
|
|
|
|
exceptions |= vfp_single_multiply(&vsd, &vsn, &vsm, fpscr);
|
|
vsd.sign = vfp_sign_negate(vsd.sign);
|
|
|
|
exceptions |= vfp_single_normaliseround(state, sd, &vsd, fpscr, "fnmul");
|
|
return exceptions;
|
|
}
|
|
|
|
/*
|
|
* sd = sn + sm
|
|
*/
|
|
static u32 vfp_single_fadd(ARMul_State* state, int sd, int sn, s32 m, u32 fpscr)
|
|
{
|
|
struct vfp_single vsd, vsn, vsm;
|
|
u32 exceptions = 0;
|
|
s32 n = vfp_get_float(state, sn);
|
|
|
|
LOG_TRACE(Core_ARM11, "s%u = %08x", sn, n);
|
|
|
|
/*
|
|
* Unpack and normalise denormals.
|
|
*/
|
|
exceptions |= vfp_single_unpack(&vsn, n, fpscr);
|
|
if (vsn.exponent == 0 && vsn.significand)
|
|
vfp_single_normalise_denormal(&vsn);
|
|
|
|
exceptions |= vfp_single_unpack(&vsm, m, fpscr);
|
|
if (vsm.exponent == 0 && vsm.significand)
|
|
vfp_single_normalise_denormal(&vsm);
|
|
|
|
exceptions |= vfp_single_add(&vsd, &vsn, &vsm, fpscr);
|
|
|
|
exceptions |= vfp_single_normaliseround(state, sd, &vsd, fpscr, "fadd");
|
|
return exceptions;
|
|
}
|
|
|
|
/*
|
|
* sd = sn - sm
|
|
*/
|
|
static u32 vfp_single_fsub(ARMul_State* state, int sd, int sn, s32 m, u32 fpscr)
|
|
{
|
|
LOG_TRACE(Core_ARM11, "s%u = %08x", sn, sd);
|
|
/*
|
|
* Subtraction is addition with one sign inverted.
|
|
*/
|
|
if (m != 0x7FC00000) // Only negate if m isn't NaN.
|
|
m = vfp_single_packed_negate(m);
|
|
|
|
return vfp_single_fadd(state, sd, sn, m, fpscr);
|
|
}
|
|
|
|
/*
|
|
* sd = sn / sm
|
|
*/
|
|
static u32 vfp_single_fdiv(ARMul_State* state, int sd, int sn, s32 m, u32 fpscr)
|
|
{
|
|
struct vfp_single vsd, vsn, vsm;
|
|
u32 exceptions = 0;
|
|
s32 n = vfp_get_float(state, sn);
|
|
int tm, tn;
|
|
|
|
LOG_TRACE(Core_ARM11, "s%u = %08x", sn, n);
|
|
|
|
exceptions |= vfp_single_unpack(&vsn, n, fpscr);
|
|
exceptions |= vfp_single_unpack(&vsm, m, fpscr);
|
|
|
|
vsd.sign = vsn.sign ^ vsm.sign;
|
|
|
|
tn = vfp_single_type(&vsn);
|
|
tm = vfp_single_type(&vsm);
|
|
|
|
/*
|
|
* Is n a NAN?
|
|
*/
|
|
if (tn & VFP_NAN)
|
|
goto vsn_nan;
|
|
|
|
/*
|
|
* Is m a NAN?
|
|
*/
|
|
if (tm & VFP_NAN)
|
|
goto vsm_nan;
|
|
|
|
/*
|
|
* If n and m are infinity, the result is invalid
|
|
* If n and m are zero, the result is invalid
|
|
*/
|
|
if (tm & tn & (VFP_INFINITY|VFP_ZERO))
|
|
goto invalid;
|
|
|
|
/*
|
|
* If n is infinity, the result is infinity
|
|
*/
|
|
if (tn & VFP_INFINITY)
|
|
goto infinity;
|
|
|
|
/*
|
|
* If m is zero, raise div0 exception
|
|
*/
|
|
if (tm & VFP_ZERO)
|
|
goto divzero;
|
|
|
|
/*
|
|
* If m is infinity, or n is zero, the result is zero
|
|
*/
|
|
if (tm & VFP_INFINITY || tn & VFP_ZERO)
|
|
goto zero;
|
|
|
|
if (tn & VFP_DENORMAL)
|
|
vfp_single_normalise_denormal(&vsn);
|
|
if (tm & VFP_DENORMAL)
|
|
vfp_single_normalise_denormal(&vsm);
|
|
|
|
/*
|
|
* Ok, we have two numbers, we can perform division.
|
|
*/
|
|
vsd.exponent = vsn.exponent - vsm.exponent + 127 - 1;
|
|
vsm.significand <<= 1;
|
|
if (vsm.significand <= (2 * vsn.significand)) {
|
|
vsn.significand >>= 1;
|
|
vsd.exponent++;
|
|
}
|
|
{
|
|
u64 significand = (u64)vsn.significand << 32;
|
|
do_div(significand, vsm.significand);
|
|
vsd.significand = (u32)significand;
|
|
}
|
|
if ((vsd.significand & 0x3f) == 0)
|
|
vsd.significand |= ((u64)vsm.significand * vsd.significand != (u64)vsn.significand << 32);
|
|
|
|
exceptions |= vfp_single_normaliseround(state, sd, &vsd, fpscr, "fdiv");
|
|
return exceptions;
|
|
|
|
vsn_nan:
|
|
exceptions |= vfp_propagate_nan(&vsd, &vsn, &vsm, fpscr);
|
|
pack:
|
|
vfp_put_float(state, vfp_single_pack(&vsd), sd);
|
|
return exceptions;
|
|
|
|
vsm_nan:
|
|
exceptions |= vfp_propagate_nan(&vsd, &vsm, &vsn, fpscr);
|
|
goto pack;
|
|
|
|
zero:
|
|
vsd.exponent = 0;
|
|
vsd.significand = 0;
|
|
goto pack;
|
|
|
|
divzero:
|
|
exceptions |= FPSCR_DZC;
|
|
infinity:
|
|
vsd.exponent = 255;
|
|
vsd.significand = 0;
|
|
goto pack;
|
|
|
|
invalid:
|
|
vfp_put_float(state, vfp_single_pack(&vfp_single_default_qnan), sd);
|
|
exceptions |= FPSCR_IOC;
|
|
return exceptions;
|
|
}
|
|
|
|
static struct op fops[] = {
|
|
{ vfp_single_fmac, 0 },
|
|
{ vfp_single_fmsc, 0 },
|
|
{ vfp_single_fmul, 0 },
|
|
{ vfp_single_fadd, 0 },
|
|
{ vfp_single_fnmac, 0 },
|
|
{ vfp_single_fnmsc, 0 },
|
|
{ vfp_single_fnmul, 0 },
|
|
{ vfp_single_fsub, 0 },
|
|
{ vfp_single_fdiv, 0 },
|
|
};
|
|
|
|
#define FREG_BANK(x) ((x) & 0x18)
|
|
#define FREG_IDX(x) ((x) & 7)
|
|
|
|
u32 vfp_single_cpdo(ARMul_State* state, u32 inst, u32 fpscr)
|
|
{
|
|
u32 op = inst & FOP_MASK;
|
|
u32 exceptions = 0;
|
|
unsigned int dest;
|
|
unsigned int sn = vfp_get_sn(inst);
|
|
unsigned int sm = vfp_get_sm(inst);
|
|
unsigned int vecitr, veclen, vecstride;
|
|
struct op *fop;
|
|
|
|
vecstride = 1 + ((fpscr & FPSCR_STRIDE_MASK) == FPSCR_STRIDE_MASK);
|
|
|
|
fop = (op == FOP_EXT) ? &fops_ext[FEXT_TO_IDX(inst)] : &fops[FOP_TO_IDX(op)];
|
|
|
|
/*
|
|
* fcvtsd takes a dN register number as destination, not sN.
|
|
* Technically, if bit 0 of dd is set, this is an invalid
|
|
* instruction. However, we ignore this for efficiency.
|
|
* It also only operates on scalars.
|
|
*/
|
|
if (fop->flags & OP_DD)
|
|
dest = vfp_get_dd(inst);
|
|
else
|
|
dest = vfp_get_sd(inst);
|
|
|
|
/*
|
|
* If destination bank is zero, vector length is always '1'.
|
|
* ARM DDI0100F C5.1.3, C5.3.2.
|
|
*/
|
|
if ((fop->flags & OP_SCALAR) || FREG_BANK(dest) == 0)
|
|
veclen = 0;
|
|
else
|
|
veclen = fpscr & FPSCR_LENGTH_MASK;
|
|
|
|
LOG_TRACE(Core_ARM11, "vecstride=%u veclen=%u", vecstride,
|
|
(veclen >> FPSCR_LENGTH_BIT) + 1);
|
|
|
|
if (!fop->fn) {
|
|
// LOG_CRITICAL(Core_ARM11, "could not find single op %d, inst=0x%x@0x%x", FEXT_TO_IDX(inst), inst, state->Reg[15]);
|
|
// Crash();
|
|
ASSERT_MSG(false, "could not find single op %d, inst=0x%x@0x%x", FEXT_TO_IDX(inst), inst, state->Reg[15]);
|
|
goto invalid;
|
|
}
|
|
|
|
for (vecitr = 0; vecitr <= veclen; vecitr += 1 << FPSCR_LENGTH_BIT) {
|
|
s32 m = vfp_get_float(state, sm);
|
|
u32 except;
|
|
// char type;
|
|
|
|
// type = (fop->flags & OP_DD) ? 'd' : 's';
|
|
if (op == FOP_EXT)
|
|
LOG_TRACE(Core_ARM11, "itr%d (%c%u) = op[%u] (s%u=%08x)",
|
|
vecitr >> FPSCR_LENGTH_BIT, type, dest, sn,
|
|
sm, m);
|
|
else
|
|
LOG_TRACE(Core_ARM11, "itr%d (%c%u) = (s%u) op[%u] (s%u=%08x)",
|
|
vecitr >> FPSCR_LENGTH_BIT, type, dest, sn,
|
|
FOP_TO_IDX(op), sm, m);
|
|
|
|
except = fop->fn(state, dest, sn, m, fpscr);
|
|
LOG_TRACE(Core_ARM11, "itr%d: exceptions=%08x",
|
|
vecitr >> FPSCR_LENGTH_BIT, except);
|
|
|
|
exceptions |= except;
|
|
|
|
/*
|
|
* CHECK: It appears to be undefined whether we stop when
|
|
* we encounter an exception. We continue.
|
|
*/
|
|
dest = FREG_BANK(dest) + ((FREG_IDX(dest) + vecstride) & 7);
|
|
sn = FREG_BANK(sn) + ((FREG_IDX(sn) + vecstride) & 7);
|
|
if (FREG_BANK(sm) != 0)
|
|
sm = FREG_BANK(sm) + ((FREG_IDX(sm) + vecstride) & 7);
|
|
}
|
|
return exceptions;
|
|
|
|
invalid:
|
|
return (u32)-1;
|
|
}
|