dynarmic/src/frontend/translate/translate_arm/load_store.cpp
2016-08-13 00:10:23 +01:00

554 lines
18 KiB
C++

/* This file is part of the dynarmic project.
* Copyright (c) 2016 MerryMage
* This software may be used and distributed according to the terms of the GNU
* General Public License version 2 or any later version.
*/
#include "translate_arm.h"
namespace Dynarmic {
namespace Arm {
static IR::Value GetAddressingMode(IREmitter& ir, bool P, bool U, bool W, Reg n, IR::Value index) {
IR::Value address;
if (P) {
// Pre-indexed addressing
if (n == Reg::PC && index.IsImmediate()) {
address = U ? ir.Imm32(ir.AlignPC(4) + index.GetU32()) : ir.Imm32(ir.AlignPC(4) - index.GetU32());
} else {
address = U ? ir.Add(ir.GetRegister(n), index) : ir.Sub(ir.GetRegister(n), index);
}
// Wrote calculated address back to the base register
if (W) {
ir.SetRegister(n, address);
}
} else {
// Post-indexed addressing
address = (n == Reg::PC) ? ir.Imm32(ir.AlignPC(4)) : ir.GetRegister(n);
if (U) {
ir.SetRegister(n, ir.Add(ir.GetRegister(n), index));
} else {
ir.SetRegister(n, ir.Sub(ir.GetRegister(n), index));
}
// TODO(bunnei): Handle W=1 mode, which in this scenario does an unprivileged (User mode) access.
}
return address;
}
bool ArmTranslatorVisitor::arm_LDR_imm(Cond cond, bool P, bool U, bool W, Reg n, Reg d, Imm12 imm12) {
if (ConditionPassed(cond)) {
const auto data = ir.ReadMemory32(GetAddressingMode(ir, P, U, W, n, ir.Imm32(imm12)));
if (d == Reg::PC) {
ir.BXWritePC(data);
if (!P && W && n == Reg::R13)
ir.SetTerm(IR::Term::PopRSBHint{});
else
ir.SetTerm(IR::Term::ReturnToDispatch{});
return false;
}
ir.SetRegister(d, data);
}
return true;
}
bool ArmTranslatorVisitor::arm_LDR_reg(Cond cond, bool P, bool U, bool W, Reg n, Reg d, Imm5 imm5, ShiftType shift, Reg m) {
if (ConditionPassed(cond)) {
const auto shifted = EmitImmShift(ir.GetRegister(m), shift, imm5, ir.GetCFlag());
const auto data = ir.ReadMemory32(GetAddressingMode(ir, P, U, W, n, shifted.result));
if (d == Reg::PC) {
ir.BXWritePC(data);
ir.SetTerm(IR::Term::ReturnToDispatch{});
return false;
}
ir.SetRegister(d, data);
}
return true;
}
bool ArmTranslatorVisitor::arm_LDRB_imm(Cond cond, bool P, bool U, bool W, Reg n, Reg d, Imm12 imm12) {
if (ConditionPassed(cond)) {
const auto data = ir.ZeroExtendByteToWord(ir.ReadMemory8(GetAddressingMode(ir, P, U, W, n, ir.Imm32(imm12))));
if (d == Reg::PC) {
ir.ALUWritePC(ir.Add(data, ir.Imm32(4)));
ir.SetTerm(IR::Term::ReturnToDispatch{});
return false;
}
ir.SetRegister(d, data);
}
return true;
}
bool ArmTranslatorVisitor::arm_LDRB_reg(Cond cond, bool P, bool U, bool W, Reg n, Reg d, Imm5 imm5, ShiftType shift, Reg m) {
if (ConditionPassed(cond)) {
const auto shifted = EmitImmShift(ir.GetRegister(m), shift, imm5, ir.GetCFlag());
const auto data = ir.ZeroExtendByteToWord(ir.ReadMemory8(GetAddressingMode(ir, P, U, W, n, shifted.result)));
if (d == Reg::PC) {
ir.ALUWritePC(ir.Add(data, ir.Imm32(4)));
ir.SetTerm(IR::Term::ReturnToDispatch{});
return false;
}
ir.SetRegister(d, data);
}
return true;
}
bool ArmTranslatorVisitor::arm_LDRBT() {
return InterpretThisInstruction();
}
bool ArmTranslatorVisitor::arm_LDRD_imm(Cond cond, bool P, bool U, bool W, Reg n, Reg d, Imm4 imm8a, Imm4 imm8b) {
if (ConditionPassed(cond)) {
const auto address_a = GetAddressingMode(ir, P, U, W, n, ir.Imm32(imm8a << 4 | imm8b));
const auto address_b = ir.Add(address_a, ir.Imm32(4));
auto data_a = ir.ReadMemory32(address_a);
auto data_b = ir.ReadMemory32(address_b);
switch (d) {
case Reg::PC:
data_a = ir.Add(data_a, ir.Imm32(4));
break;
case Reg::LR:
data_b = ir.Add(data_b, ir.Imm32(4));
break;
default:
break;
}
if (d == Reg::PC) {
ir.ALUWritePC(data_a);
} else {
ir.SetRegister(d, data_a);
}
const Reg reg_b = static_cast<Reg>(std::min(d + 1, Reg::R15));
if (reg_b == Reg::PC) {
ir.ALUWritePC(data_b);
} else {
ir.SetRegister(reg_b, data_b);
}
if (d == Reg::PC || reg_b == Reg::PC) {
ir.SetTerm(IR::Term::ReturnToDispatch{});
return false;
}
}
return true;
}
bool ArmTranslatorVisitor::arm_LDRD_reg(Cond cond, bool P, bool U, bool W, Reg n, Reg d, Reg m) {
if (ConditionPassed(cond)) {
const auto address_a = GetAddressingMode(ir, P, U, W, n, ir.GetRegister(m));
const auto address_b = ir.Add(address_a, ir.Imm32(4));
auto data_a = ir.ReadMemory32(address_a);
auto data_b = ir.ReadMemory32(address_b);
switch (d) {
case Reg::PC:
data_a = ir.Add(data_a, ir.Imm32(4));
break;
case Reg::LR:
data_b = ir.Add(data_b, ir.Imm32(4));
break;
default:
break;
}
if (d == Reg::PC) {
ir.ALUWritePC(data_a);
} else {
ir.SetRegister(d, data_a);
}
const Reg reg_b = static_cast<Reg>(std::min(d + 1, Reg::R15));
if (reg_b == Reg::PC) {
ir.ALUWritePC(data_b);
} else {
ir.SetRegister(reg_b, data_b);
}
if (d == Reg::PC || reg_b == Reg::PC) {
ir.SetTerm(IR::Term::ReturnToDispatch{});
return false;
}
}
return true;
}
bool ArmTranslatorVisitor::arm_LDRH_imm(Cond cond, bool P, bool U, bool W, Reg n, Reg d, Imm4 imm8a, Imm4 imm8b) {
if (ConditionPassed(cond)) {
const auto data = ir.ZeroExtendHalfToWord(ir.ReadMemory16(GetAddressingMode(ir, P, U, W, n, ir.Imm32(imm8a << 4 | imm8b))));
if (d == Reg::PC) {
ir.ALUWritePC(ir.Add(data, ir.Imm32(4)));
ir.SetTerm(IR::Term::ReturnToDispatch{});
return false;
}
ir.SetRegister(d, data);
}
return true;
}
bool ArmTranslatorVisitor::arm_LDRH_reg(Cond cond, bool P, bool U, bool W, Reg n, Reg d, Reg m) {
if (ConditionPassed(cond)) {
const auto data = ir.ZeroExtendHalfToWord(ir.ReadMemory16(GetAddressingMode(ir, P, U, W, n, ir.GetRegister(m))));
if (d == Reg::PC) {
ir.ALUWritePC(ir.Add(data, ir.Imm32(4)));
ir.SetTerm(IR::Term::ReturnToDispatch{});
return false;
}
ir.SetRegister(d, data);
}
return true;
}
bool ArmTranslatorVisitor::arm_LDRHT() {
return InterpretThisInstruction();
}
bool ArmTranslatorVisitor::arm_LDRSB_imm(Cond cond, bool P, bool U, bool W, Reg n, Reg d, Imm4 imm8a, Imm4 imm8b) {
if (ConditionPassed(cond)) {
const auto data = ir.SignExtendByteToWord(ir.ReadMemory8(GetAddressingMode(ir, P, U, W, n, ir.Imm32(imm8a << 4 | imm8b))));
if (d == Reg::PC) {
ir.ALUWritePC(ir.Add(data, ir.Imm32(4)));
ir.SetTerm(IR::Term::ReturnToDispatch{});
return false;
}
ir.SetRegister(d, data);
}
return true;
}
bool ArmTranslatorVisitor::arm_LDRSB_reg(Cond cond, bool P, bool U, bool W, Reg n, Reg d, Reg m) {
if (ConditionPassed(cond)) {
const auto data = ir.SignExtendByteToWord(ir.ReadMemory8(GetAddressingMode(ir, P, U, W, n, ir.GetRegister(m))));
if (d == Reg::PC) {
ir.ALUWritePC(ir.Add(data, ir.Imm32(4)));
ir.SetTerm(IR::Term::ReturnToDispatch{});
return false;
}
ir.SetRegister(d, data);
}
return true;
}
bool ArmTranslatorVisitor::arm_LDRSBT() {
return InterpretThisInstruction();
}
bool ArmTranslatorVisitor::arm_LDRSH_imm(Cond cond, bool P, bool U, bool W, Reg n, Reg d, Imm4 imm8a, Imm4 imm8b) {
if (ConditionPassed(cond)) {
const auto data = ir.SignExtendHalfToWord(ir.ReadMemory16(GetAddressingMode(ir, P, U, W, n, ir.Imm32(imm8a << 4 | imm8b))));
if (d == Reg::PC) {
ir.ALUWritePC(ir.Add(data, ir.Imm32(4)));
ir.SetTerm(IR::Term::ReturnToDispatch{});
return false;
}
ir.SetRegister(d, data);
}
return true;
}
bool ArmTranslatorVisitor::arm_LDRSH_reg(Cond cond, bool P, bool U, bool W, Reg n, Reg d, Reg m) {
if (ConditionPassed(cond)) {
const auto data = ir.SignExtendHalfToWord(ir.ReadMemory16(GetAddressingMode(ir, P, U, W, n, ir.GetRegister(m))));
if (d == Reg::PC) {
ir.ALUWritePC(ir.Add(data, ir.Imm32(4)));
ir.SetTerm(IR::Term::ReturnToDispatch{});
return false;
}
ir.SetRegister(d, data);
}
return true;
}
bool ArmTranslatorVisitor::arm_LDRSHT() {
return InterpretThisInstruction();
}
bool ArmTranslatorVisitor::arm_LDRT() {
return InterpretThisInstruction();
}
bool ArmTranslatorVisitor::arm_STR_imm(Cond cond, bool P, bool U, bool W, Reg n, Reg d, Imm12 imm12) {
if (ConditionPassed(cond)) {
const auto address = GetAddressingMode(ir, P, U, W, n, ir.Imm32(imm12));
ir.WriteMemory32(address, ir.GetRegister(d));
}
return true;
}
bool ArmTranslatorVisitor::arm_STR_reg(Cond cond, bool P, bool U, bool W, Reg n, Reg d, Imm5 imm5, ShiftType shift, Reg m) {
if (ConditionPassed(cond)) {
const auto shifted = EmitImmShift(ir.GetRegister(m), shift, imm5, ir.GetCFlag());
const auto address = GetAddressingMode(ir, P, U, W, n, shifted.result);
ir.WriteMemory32(address, ir.GetRegister(d));
}
return true;
}
bool ArmTranslatorVisitor::arm_STRB_imm(Cond cond, bool P, bool U, bool W, Reg n, Reg d, Imm12 imm12) {
if (ConditionPassed(cond)) {
const auto address = GetAddressingMode(ir, P, U, W, n, ir.Imm32(imm12));
const auto value = (d == Reg::PC) ? ir.Imm8(ir.PC() - 8) : ir.GetRegister(d);
ir.WriteMemory8(address, ir.LeastSignificantByte(value));
}
return true;
}
bool ArmTranslatorVisitor::arm_STRB_reg(Cond cond, bool P, bool U, bool W, Reg n, Reg d, Imm5 imm5, ShiftType shift, Reg m) {
if (ConditionPassed(cond)) {
const auto shifted = EmitImmShift(ir.GetRegister(m), shift, imm5, ir.GetCFlag());
const auto address = GetAddressingMode(ir, P, U, W, n, shifted.result);
const auto value = (d == Reg::PC) ? ir.Imm8(ir.PC() - 8) : ir.GetRegister(d);
ir.WriteMemory8(address, ir.LeastSignificantByte(value));
}
return true;
}
bool ArmTranslatorVisitor::arm_STRBT() {
return InterpretThisInstruction();
}
bool ArmTranslatorVisitor::arm_STRD_imm(Cond cond, bool P, bool U, bool W, Reg n, Reg d, Imm4 imm8a, Imm4 imm8b) {
if (ConditionPassed(cond)) {
const auto address_a = GetAddressingMode(ir, P, U, W, n, ir.Imm32(imm8a << 4 | imm8b));
const auto address_b = ir.Add(address_a, ir.Imm32(4));
const auto value_a = (d == Reg::PC) ? ir.Imm32(ir.PC() - 8) : ir.GetRegister(d);
const Reg reg_b = static_cast<Reg>(std::min(d + 1, Reg::R15));
const auto value_b = (reg_b == Reg::PC) ? ir.Imm32(ir.PC() - 8) : ir.GetRegister(reg_b);
ir.WriteMemory32(address_a, value_a);
ir.WriteMemory32(address_b, value_b);
}
return true;
}
bool ArmTranslatorVisitor::arm_STRD_reg(Cond cond, bool P, bool U, bool W, Reg n, Reg d, Reg m) {
if (ConditionPassed(cond)) {
const auto address_a = GetAddressingMode(ir, P, U, W, n, ir.GetRegister(m));
const auto address_b = ir.Add(address_a, ir.Imm32(4));
const auto value_a = (d == Reg::PC) ? ir.Imm32(ir.PC() - 8) : ir.GetRegister(d);
const Reg reg_b = static_cast<Reg>(std::min(d + 1, Reg::R15));
const auto value_b = (reg_b == Reg::PC) ? ir.Imm32(ir.PC() - 8) : ir.GetRegister(reg_b);
ir.WriteMemory32(address_a, value_a);
ir.WriteMemory32(address_b, value_b);
}
return true;
}
bool ArmTranslatorVisitor::arm_STRH_imm(Cond cond, bool P, bool U, bool W, Reg n, Reg d, Imm4 imm8a, Imm4 imm8b) {
if (ConditionPassed(cond)) {
const auto address = GetAddressingMode(ir, P, U, W, n, ir.Imm32(imm8a << 4 | imm8b));
const auto value = (d == Reg::PC) ? ir.Imm32(ir.PC() - 8) : ir.GetRegister(d);
ir.WriteMemory16(address, ir.LeastSignificantHalf(value));
}
return true;
}
bool ArmTranslatorVisitor::arm_STRH_reg(Cond cond, bool P, bool U, bool W, Reg n, Reg d, Reg m) {
if (ConditionPassed(cond)) {
const auto address = GetAddressingMode(ir, P, U, W, n, ir.GetRegister(m));
const auto value = (d == Reg::PC) ? ir.Imm32(ir.PC() - 8) : ir.GetRegister(d);
ir.WriteMemory16(address, ir.LeastSignificantHalf(value));
}
return true;
}
bool ArmTranslatorVisitor::arm_STRHT() {
return InterpretThisInstruction();
}
bool ArmTranslatorVisitor::arm_STRT() {
return InterpretThisInstruction();
}
static bool LDMHelper(IREmitter& ir, bool W, Reg n, RegList list, IR::Value start_address, IR::Value writeback_address) {
auto address = start_address;
for (size_t i = 0; i <= 14; i++) {
if (Common::Bit(i, list)) {
ir.SetRegister(static_cast<Reg>(i), ir.ReadMemory32(address));
address = ir.Add(address, ir.Imm32(4));
}
}
if (W) {
ir.SetRegister(n, writeback_address);
}
if (Common::Bit<15>(list)) {
ir.LoadWritePC(ir.ReadMemory32(address));
if (n == Reg::R13)
ir.SetTerm(IR::Term::PopRSBHint{});
else
ir.SetTerm(IR::Term::ReturnToDispatch{});
return false;
}
return true;
}
bool ArmTranslatorVisitor::arm_LDM(Cond cond, bool W, Reg n, RegList list) {
if (n == Reg::PC || Common::BitCount(list) < 1)
return UnpredictableInstruction();
// LDM <Rn>{!}, <reg_list>
if (ConditionPassed(cond)) {
auto start_address = ir.GetRegister(n);
auto writeback_address = ir.Add(start_address, ir.Imm32(u32(Common::BitCount(list) * 4)));
return LDMHelper(ir, W, n, list, start_address, writeback_address);
}
return true;
}
bool ArmTranslatorVisitor::arm_LDMDA(Cond cond, bool W, Reg n, RegList list) {
if (n == Reg::PC || Common::BitCount(list) < 1)
return UnpredictableInstruction();
// LDMDA <Rn>{!}, <reg_list>
if (ConditionPassed(cond)) {
auto start_address = ir.Sub(ir.GetRegister(n), ir.Imm32(u32(4 * Common::BitCount(list) - 4)));
auto writeback_address = ir.Add(start_address, ir.Imm32(4));
return LDMHelper(ir, W, n, list, start_address, writeback_address);
}
return true;
}
bool ArmTranslatorVisitor::arm_LDMDB(Cond cond, bool W, Reg n, RegList list) {
if (n == Reg::PC || Common::BitCount(list) < 1)
return UnpredictableInstruction();
// LDMDB <Rn>{!}, <reg_list>
if (ConditionPassed(cond)) {
auto start_address = ir.Sub(ir.GetRegister(n), ir.Imm32(u32(4 * Common::BitCount(list))));
auto writeback_address = start_address;
return LDMHelper(ir, W, n, list, start_address, writeback_address);
}
return true;
}
bool ArmTranslatorVisitor::arm_LDMIB(Cond cond, bool W, Reg n, RegList list) {
if (n == Reg::PC || Common::BitCount(list) < 1)
return UnpredictableInstruction();
// LDMIB <Rn>{!}, <reg_list>
if (ConditionPassed(cond)) {
auto start_address = ir.Add(ir.GetRegister(n), ir.Imm32(4));
auto writeback_address = ir.Add(ir.GetRegister(n), ir.Imm32(u32(4 * Common::BitCount(list))));
return LDMHelper(ir, W, n, list, start_address, writeback_address);
}
return true;
}
bool ArmTranslatorVisitor::arm_LDM_usr() {
return InterpretThisInstruction();
}
bool ArmTranslatorVisitor::arm_LDM_eret() {
return InterpretThisInstruction();
}
static bool STMHelper(IREmitter& ir, bool W, Reg n, RegList list, IR::Value start_address, IR::Value writeback_address) {
auto address = start_address;
for (size_t i = 0; i <= 14; i++) {
if (Common::Bit(i, list)) {
ir.WriteMemory32(address, ir.GetRegister(static_cast<Reg>(i)));
address = ir.Add(address, ir.Imm32(4));
}
}
if (W) {
ir.SetRegister(n, writeback_address);
}
if (Common::Bit<15>(list)) {
ir.WriteMemory32(address, ir.Imm32(ir.PC()));
}
return true;
}
bool ArmTranslatorVisitor::arm_STM(Cond cond, bool W, Reg n, RegList list) {
if (n == Reg::PC || Common::BitCount(list) < 1)
return UnpredictableInstruction();
// STM <Rn>{!}, <reg_list>
if (ConditionPassed(cond)) {
auto start_address = ir.GetRegister(n);
auto writeback_address = ir.Add(start_address, ir.Imm32(u32(Common::BitCount(list) * 4)));
return STMHelper(ir, W, n, list, start_address, writeback_address);
}
return true;
}
bool ArmTranslatorVisitor::arm_STMDA(Cond cond, bool W, Reg n, RegList list) {
if (n == Reg::PC || Common::BitCount(list) < 1)
return UnpredictableInstruction();
// STMDA <Rn>{!}, <reg_list>
if (ConditionPassed(cond)) {
auto start_address = ir.Sub(ir.GetRegister(n), ir.Imm32(u32(4 * Common::BitCount(list) - 4)));
auto writeback_address = ir.Add(start_address, ir.Imm32(4));
return STMHelper(ir, W, n, list, start_address, writeback_address);
}
return true;
}
bool ArmTranslatorVisitor::arm_STMDB(Cond cond, bool W, Reg n, RegList list) {
if (n == Reg::PC || Common::BitCount(list) < 1)
return UnpredictableInstruction();
// STMDB <Rn>{!}, <reg_list>
if (ConditionPassed(cond)) {
auto start_address = ir.Sub(ir.GetRegister(n), ir.Imm32(u32(4 * Common::BitCount(list))));
auto writeback_address = start_address;
return STMHelper(ir, W, n, list, start_address, writeback_address);
}
return true;
}
bool ArmTranslatorVisitor::arm_STMIB(Cond cond, bool W, Reg n, RegList list) {
if (n == Reg::PC || Common::BitCount(list) < 1)
return UnpredictableInstruction();
// STMIB <Rn>{!}, <reg_list>
if (ConditionPassed(cond)) {
auto start_address = ir.Add(ir.GetRegister(n), ir.Imm32(4));
auto writeback_address = ir.Add(ir.GetRegister(n), ir.Imm32(u32(4 * Common::BitCount(list))));
return STMHelper(ir, W, n, list, start_address, writeback_address);
}
return true;
}
bool ArmTranslatorVisitor::arm_STM_usr() {
return InterpretThisInstruction();
}
} // namespace Arm
} // namespace Dynarmic