dynarmic/src/backend_x64/emit_x64.cpp

3552 lines
121 KiB
C++

/* This file is part of the dynarmic project.
* Copyright (c) 2016 MerryMage
* This software may be used and distributed according to the terms of the GNU
* General Public License version 2 or any later version.
*/
#include <unordered_map>
#include <dynarmic/coprocessor.h>
#include "backend_x64/abi.h"
#include "backend_x64/block_of_code.h"
#include "backend_x64/emit_x64.h"
#include "backend_x64/jitstate.h"
#include "common/address_range.h"
#include "common/assert.h"
#include "common/bit_util.h"
#include "common/common_types.h"
#include "common/variant_util.h"
#include "frontend/arm/types.h"
#include "frontend/ir/basic_block.h"
#include "frontend/ir/location_descriptor.h"
#include "frontend/ir/microinstruction.h"
#include "frontend/ir/opcodes.h"
// TODO: Have ARM flags in host flags and not have them use up GPR registers unless necessary.
// TODO: Actually implement that proper instruction selector you've always wanted to sweetheart.
namespace Dynarmic {
namespace BackendX64 {
constexpr u64 f32_negative_zero = 0x80000000u;
constexpr u64 f32_nan = 0x7fc00000u;
constexpr u64 f32_non_sign_mask = 0x7fffffffu;
constexpr u64 f64_negative_zero = 0x8000000000000000u;
constexpr u64 f64_nan = 0x7ff8000000000000u;
constexpr u64 f64_non_sign_mask = 0x7fffffffffffffffu;
constexpr u64 f64_penultimate_positive_denormal = 0x000ffffffffffffeu;
constexpr u64 f64_min_s32 = 0xc1e0000000000000u; // -2147483648 as a double
constexpr u64 f64_max_s32 = 0x41dfffffffc00000u; // 2147483647 as a double
constexpr u64 f64_min_u32 = 0x0000000000000000u; // 0 as a double
static Xbyak::Address MJitStateReg(Arm::Reg reg) {
using namespace Xbyak::util;
return dword[r15 + offsetof(JitState, Reg) + sizeof(u32) * static_cast<size_t>(reg)];
}
static Xbyak::Address MJitStateExtReg(Arm::ExtReg reg) {
using namespace Xbyak::util;
if (Arm::IsSingleExtReg(reg)) {
size_t index = static_cast<size_t>(reg) - static_cast<size_t>(Arm::ExtReg::S0);
return dword[r15 + offsetof(JitState, ExtReg) + sizeof(u32) * index];
}
if (Arm::IsDoubleExtReg(reg)) {
size_t index = static_cast<size_t>(reg) - static_cast<size_t>(Arm::ExtReg::D0);
return qword[r15 + offsetof(JitState, ExtReg) + sizeof(u64) * index];
}
ASSERT_MSG(false, "Should never happen.");
}
static Xbyak::Address MJitStateCpsr() {
using namespace Xbyak::util;
return dword[r15 + offsetof(JitState, Cpsr)];
}
static void EraseInstruction(IR::Block& block, IR::Inst* inst) {
block.Instructions().erase(inst);
inst->Invalidate();
}
EmitX64::EmitX64(BlockOfCode* code, UserCallbacks cb, Jit* jit_interface)
: code(code), cb(cb), jit_interface(jit_interface) {
}
EmitX64::BlockDescriptor EmitX64::Emit(IR::Block& block) {
code->align();
const u8* const entrypoint = code->getCurr();
// Start emitting.
EmitCondPrelude(block);
RegAlloc reg_alloc{code};
for (auto iter = block.begin(); iter != block.end(); ++iter) {
IR::Inst* inst = &*iter;
// Call the relevant Emit* member function.
switch (inst->GetOpcode()) {
#define OPCODE(name, type, ...) \
case IR::Opcode::name: \
EmitX64::Emit##name(reg_alloc, block, inst); \
break;
#include "frontend/ir/opcodes.inc"
#undef OPCODE
default:
ASSERT_MSG(false, "Invalid opcode %zu", static_cast<size_t>(inst->GetOpcode()));
break;
}
reg_alloc.EndOfAllocScope();
}
reg_alloc.AssertNoMoreUses();
EmitAddCycles(block.CycleCount());
EmitTerminal(block.GetTerminal(), block.Location());
code->int3();
const IR::LocationDescriptor descriptor = block.Location();
Patch(descriptor, entrypoint);
const size_t size = static_cast<size_t>(code->getCurr() - entrypoint);
EmitX64::BlockDescriptor block_desc{entrypoint, size, block.Location(), block.EndLocation().PC()};
block_descriptors.emplace(descriptor.UniqueHash(), block_desc);
return block_desc;
}
boost::optional<EmitX64::BlockDescriptor> EmitX64::GetBasicBlock(IR::LocationDescriptor descriptor) const {
auto iter = block_descriptors.find(descriptor.UniqueHash());
if (iter == block_descriptors.end())
return boost::none;
return boost::make_optional<BlockDescriptor>(iter->second);
}
void EmitX64::EmitVoid(RegAlloc&, IR::Block&, IR::Inst*) {
}
void EmitX64::EmitBreakpoint(RegAlloc&, IR::Block&, IR::Inst*) {
code->int3();
}
void EmitX64::EmitIdentity(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
if (!args[0].IsImmediate()) {
reg_alloc.DefineValue(inst, args[0]);
}
}
void EmitX64::EmitGetRegister(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
Arm::Reg reg = inst->GetArg(0).GetRegRef();
Xbyak::Reg32 result = reg_alloc.ScratchGpr().cvt32();
code->mov(result, MJitStateReg(reg));
reg_alloc.DefineValue(inst, result);
}
void EmitX64::EmitGetExtendedRegister32(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
Arm::ExtReg reg = inst->GetArg(0).GetExtRegRef();
ASSERT(Arm::IsSingleExtReg(reg));
Xbyak::Xmm result = reg_alloc.ScratchXmm();
code->movss(result, MJitStateExtReg(reg));
reg_alloc.DefineValue(inst, result);
}
void EmitX64::EmitGetExtendedRegister64(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
Arm::ExtReg reg = inst->GetArg(0).GetExtRegRef();
ASSERT(Arm::IsDoubleExtReg(reg));
Xbyak::Xmm result = reg_alloc.ScratchXmm();
code->movsd(result, MJitStateExtReg(reg));
reg_alloc.DefineValue(inst, result);
}
void EmitX64::EmitSetRegister(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
Arm::Reg reg = inst->GetArg(0).GetRegRef();
if (args[1].IsImmediate()) {
code->mov(MJitStateReg(reg), args[1].GetImmediateU32());
} else {
Xbyak::Reg32 to_store = reg_alloc.UseGpr(args[1]).cvt32();
code->mov(MJitStateReg(reg), to_store);
}
}
void EmitX64::EmitSetExtendedRegister32(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
Arm::ExtReg reg = inst->GetArg(0).GetExtRegRef();
ASSERT(Arm::IsSingleExtReg(reg));
Xbyak::Xmm source = reg_alloc.UseXmm(args[1]);
code->movss(MJitStateExtReg(reg), source);
}
void EmitX64::EmitSetExtendedRegister64(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
Arm::ExtReg reg = inst->GetArg(0).GetExtRegRef();
ASSERT(Arm::IsDoubleExtReg(reg));
Xbyak::Xmm source = reg_alloc.UseXmm(args[1]);
code->movsd(MJitStateExtReg(reg), source);
}
void EmitX64::EmitGetCpsr(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
Xbyak::Reg32 result = reg_alloc.ScratchGpr().cvt32();
code->mov(result, MJitStateCpsr());
reg_alloc.DefineValue(inst, result);
}
void EmitX64::EmitSetCpsr(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
Xbyak::Reg32 arg = reg_alloc.UseGpr(args[0]).cvt32();
code->mov(MJitStateCpsr(), arg);
}
void EmitX64::EmitGetNFlag(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
Xbyak::Reg32 result = reg_alloc.ScratchGpr().cvt32();
code->mov(result, MJitStateCpsr());
code->shr(result, 31);
reg_alloc.DefineValue(inst, result);
}
void EmitX64::EmitSetNFlag(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
constexpr size_t flag_bit = 31;
constexpr u32 flag_mask = 1u << flag_bit;
auto args = reg_alloc.GetArgumentInfo(inst);
if (args[0].IsImmediate()) {
if (args[0].GetImmediateU1()) {
code->or_(MJitStateCpsr(), flag_mask);
} else {
code->and_(MJitStateCpsr(), ~flag_mask);
}
} else {
Xbyak::Reg32 to_store = reg_alloc.UseScratchGpr(args[0]).cvt32();
code->shl(to_store, flag_bit);
code->and_(MJitStateCpsr(), ~flag_mask);
code->or_(MJitStateCpsr(), to_store);
}
}
void EmitX64::EmitGetZFlag(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
Xbyak::Reg32 result = reg_alloc.ScratchGpr().cvt32();
code->mov(result, MJitStateCpsr());
code->shr(result, 30);
code->and_(result, 1);
reg_alloc.DefineValue(inst, result);
}
void EmitX64::EmitSetZFlag(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
constexpr size_t flag_bit = 30;
constexpr u32 flag_mask = 1u << flag_bit;
auto args = reg_alloc.GetArgumentInfo(inst);
if (args[0].IsImmediate()) {
if (args[0].GetImmediateU1()) {
code->or_(MJitStateCpsr(), flag_mask);
} else {
code->and_(MJitStateCpsr(), ~flag_mask);
}
} else {
Xbyak::Reg32 to_store = reg_alloc.UseScratchGpr(args[0]).cvt32();
code->shl(to_store, flag_bit);
code->and_(MJitStateCpsr(), ~flag_mask);
code->or_(MJitStateCpsr(), to_store);
}
}
void EmitX64::EmitGetCFlag(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
Xbyak::Reg32 result = reg_alloc.ScratchGpr().cvt32();
code->mov(result, MJitStateCpsr());
code->shr(result, 29);
code->and_(result, 1);
reg_alloc.DefineValue(inst, result);
}
void EmitX64::EmitSetCFlag(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
constexpr size_t flag_bit = 29;
constexpr u32 flag_mask = 1u << flag_bit;
auto args = reg_alloc.GetArgumentInfo(inst);
if (args[0].IsImmediate()) {
if (args[0].GetImmediateU1()) {
code->or_(MJitStateCpsr(), flag_mask);
} else {
code->and_(MJitStateCpsr(), ~flag_mask);
}
} else {
Xbyak::Reg32 to_store = reg_alloc.UseScratchGpr(args[0]).cvt32();
code->shl(to_store, flag_bit);
code->and_(MJitStateCpsr(), ~flag_mask);
code->or_(MJitStateCpsr(), to_store);
}
}
void EmitX64::EmitGetVFlag(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
Xbyak::Reg32 result = reg_alloc.ScratchGpr().cvt32();
code->mov(result, MJitStateCpsr());
code->shr(result, 28);
code->and_(result, 1);
reg_alloc.DefineValue(inst, result);
}
void EmitX64::EmitSetVFlag(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
constexpr size_t flag_bit = 28;
constexpr u32 flag_mask = 1u << flag_bit;
auto args = reg_alloc.GetArgumentInfo(inst);
if (args[0].IsImmediate()) {
if (args[0].GetImmediateU1()) {
code->or_(MJitStateCpsr(), flag_mask);
} else {
code->and_(MJitStateCpsr(), ~flag_mask);
}
} else {
Xbyak::Reg32 to_store = reg_alloc.UseScratchGpr(args[0]).cvt32();
code->shl(to_store, flag_bit);
code->and_(MJitStateCpsr(), ~flag_mask);
code->or_(MJitStateCpsr(), to_store);
}
}
void EmitX64::EmitOrQFlag(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
constexpr size_t flag_bit = 27;
constexpr u32 flag_mask = 1u << flag_bit;
auto args = reg_alloc.GetArgumentInfo(inst);
if (args[0].IsImmediate()) {
if (args[0].GetImmediateU1())
code->or_(MJitStateCpsr(), flag_mask);
} else {
Xbyak::Reg32 to_store = reg_alloc.UseScratchGpr(args[0]).cvt32();
code->shl(to_store, flag_bit);
code->or_(MJitStateCpsr(), to_store);
}
}
void EmitX64::EmitGetGEFlags(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
Xbyak::Reg32 result = reg_alloc.ScratchGpr().cvt32();
code->mov(result, MJitStateCpsr());
code->shr(result, 16);
code->and_(result, 0xF);
reg_alloc.DefineValue(inst, result);
}
void EmitX64::EmitSetGEFlags(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
constexpr size_t flag_bit = 16;
constexpr u32 flag_mask = 0xFu << flag_bit;
auto args = reg_alloc.GetArgumentInfo(inst);
if (args[0].IsImmediate()) {
u32 imm = (args[0].GetImmediateU32() << flag_bit) & flag_mask;
code->and_(MJitStateCpsr(), ~flag_mask);
code->or_(MJitStateCpsr(), imm);
} else {
Xbyak::Reg32 to_store = reg_alloc.UseScratchGpr(args[0]).cvt32();
code->shl(to_store, flag_bit);
code->and_(to_store, flag_mask);
code->and_(MJitStateCpsr(), ~flag_mask);
code->or_(MJitStateCpsr(), to_store);
}
}
void EmitX64::EmitBXWritePC(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
auto& arg = args[0];
const u32 T_bit = 1 << 5;
// Pseudocode:
// if (new_pc & 1) {
// new_pc &= 0xFFFFFFFE;
// cpsr.T = true;
// } else {
// new_pc &= 0xFFFFFFFC;
// cpsr.T = false;
// }
if (arg.IsImmediate()) {
u32 new_pc = arg.GetImmediateU32();
if (Common::Bit<0>(new_pc)) {
new_pc &= 0xFFFFFFFE;
code->mov(MJitStateReg(Arm::Reg::PC), new_pc);
code->or_(MJitStateCpsr(), T_bit);
} else {
new_pc &= 0xFFFFFFFC;
code->mov(MJitStateReg(Arm::Reg::PC), new_pc);
code->and_(MJitStateCpsr(), ~T_bit);
}
} else {
using Xbyak::util::ptr;
Xbyak::Reg64 new_pc = reg_alloc.UseScratchGpr(arg);
Xbyak::Reg64 tmp1 = reg_alloc.ScratchGpr();
Xbyak::Reg64 tmp2 = reg_alloc.ScratchGpr();
code->mov(tmp1, MJitStateCpsr());
code->mov(tmp2, tmp1);
code->and_(tmp2, u32(~T_bit)); // CPSR.T = 0
code->or_(tmp1, u32(T_bit)); // CPSR.T = 1
code->test(new_pc, u32(1));
code->cmove(tmp1, tmp2); // CPSR.T = pc & 1
code->mov(MJitStateCpsr(), tmp1);
code->lea(tmp2, ptr[new_pc + new_pc * 1]);
code->or_(tmp2, u32(0xFFFFFFFC)); // tmp2 = pc & 1 ? 0xFFFFFFFE : 0xFFFFFFFC
code->and_(new_pc, tmp2);
code->mov(MJitStateReg(Arm::Reg::PC), new_pc);
}
}
void EmitX64::EmitCallSupervisor(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
reg_alloc.HostCall(nullptr, args[0]);
code->SwitchMxcsrOnExit();
code->CallFunction(cb.CallSVC);
code->SwitchMxcsrOnEntry();
}
static u32 GetFpscrImpl(JitState* jit_state) {
return jit_state->Fpscr();
}
void EmitX64::EmitGetFpscr(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
reg_alloc.HostCall(inst);
code->mov(code->ABI_PARAM1, code->r15);
code->SwitchMxcsrOnExit();
code->CallFunction(&GetFpscrImpl);
code->SwitchMxcsrOnEntry();
}
static void SetFpscrImpl(u32 value, JitState* jit_state) {
jit_state->SetFpscr(value);
}
void EmitX64::EmitSetFpscr(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
reg_alloc.HostCall(nullptr, args[0]);
code->mov(code->ABI_PARAM2, code->r15);
code->SwitchMxcsrOnExit();
code->CallFunction(&SetFpscrImpl);
code->SwitchMxcsrOnEntry();
}
void EmitX64::EmitGetFpscrNZCV(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
using namespace Xbyak::util;
Xbyak::Reg32 result = reg_alloc.ScratchGpr().cvt32();
code->mov(result, dword[r15 + offsetof(JitState, FPSCR_nzcv)]);
reg_alloc.DefineValue(inst, result);
}
void EmitX64::EmitSetFpscrNZCV(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
using namespace Xbyak::util;
auto args = reg_alloc.GetArgumentInfo(inst);
Xbyak::Reg32 value = reg_alloc.UseGpr(args[0]).cvt32();
code->mov(dword[r15 + offsetof(JitState, FPSCR_nzcv)], value);
}
void EmitX64::EmitPushRSB(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
using namespace Xbyak::util;
auto args = reg_alloc.GetArgumentInfo(inst);
ASSERT(args[0].IsImmediate());
u64 unique_hash_of_target = args[0].GetImmediateU64();
auto iter = block_descriptors.find(unique_hash_of_target);
CodePtr target_code_ptr = iter != block_descriptors.end()
? iter->second.entrypoint
: code->GetReturnFromRunCodeAddress();
Xbyak::Reg64 code_ptr_reg = reg_alloc.ScratchGpr({HostLoc::RCX});
Xbyak::Reg64 loc_desc_reg = reg_alloc.ScratchGpr();
Xbyak::Reg32 index_reg = reg_alloc.ScratchGpr().cvt32();
code->mov(index_reg, dword[r15 + offsetof(JitState, rsb_ptr)]);
code->add(index_reg, 1);
code->and_(index_reg, u32(JitState::RSBSize - 1));
code->mov(loc_desc_reg, unique_hash_of_target);
patch_information[unique_hash_of_target].mov_rcx.emplace_back(code->getCurr());
EmitPatchMovRcx(target_code_ptr);
Xbyak::Label label;
for (size_t i = 0; i < JitState::RSBSize; ++i) {
code->cmp(loc_desc_reg, qword[r15 + offsetof(JitState, rsb_location_descriptors) + i * sizeof(u64)]);
code->je(label, code->T_SHORT);
}
code->mov(dword[r15 + offsetof(JitState, rsb_ptr)], index_reg);
code->mov(qword[r15 + index_reg.cvt64() * 8 + offsetof(JitState, rsb_location_descriptors)], loc_desc_reg);
code->mov(qword[r15 + index_reg.cvt64() * 8 + offsetof(JitState, rsb_codeptrs)], code_ptr_reg);
code->L(label);
}
void EmitX64::EmitGetCarryFromOp(RegAlloc&, IR::Block&, IR::Inst*) {
ASSERT_MSG(false, "should never happen");
}
void EmitX64::EmitGetOverflowFromOp(RegAlloc&, IR::Block&, IR::Inst*) {
ASSERT_MSG(false, "should never happen");
}
void EmitX64::EmitGetGEFromOp(RegAlloc&, IR::Block&, IR::Inst*) {
ASSERT_MSG(false, "should never happen");
}
void EmitX64::EmitPack2x32To1x64(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
Xbyak::Reg64 lo = reg_alloc.UseScratchGpr(args[0]);
Xbyak::Reg64 hi = reg_alloc.UseScratchGpr(args[1]);
code->shl(hi, 32);
code->mov(lo.cvt32(), lo.cvt32()); // Zero extend to 64-bits
code->or_(lo, hi);
reg_alloc.DefineValue(inst, lo);
}
void EmitX64::EmitLeastSignificantWord(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
reg_alloc.DefineValue(inst, args[0]);
}
void EmitX64::EmitMostSignificantWord(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
Xbyak::Reg64 result = reg_alloc.UseScratchGpr(args[0]);
code->shr(result, 32);
reg_alloc.DefineValue(inst, result);
auto carry_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetCarryFromOp);
if (carry_inst) {
EraseInstruction(block, carry_inst);
Xbyak::Reg64 carry = reg_alloc.ScratchGpr();
code->setc(carry.cvt8());
reg_alloc.DefineValue(carry_inst, carry);
}
}
void EmitX64::EmitLeastSignificantHalf(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
reg_alloc.DefineValue(inst, args[0]);
}
void EmitX64::EmitLeastSignificantByte(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
reg_alloc.DefineValue(inst, args[0]);
}
void EmitX64::EmitMostSignificantBit(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
Xbyak::Reg64 result = reg_alloc.UseScratchGpr(args[0]);
// TODO: Flag optimization
code->shr(result, 31);
reg_alloc.DefineValue(inst, result);
}
void EmitX64::EmitIsZero(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
Xbyak::Reg64 result = reg_alloc.UseScratchGpr(args[0]);
// TODO: Flag optimization
code->test(result, result);
code->sete(result.cvt8());
code->movzx(result, result.cvt8());
reg_alloc.DefineValue(inst, result);
}
void EmitX64::EmitIsZero64(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
Xbyak::Reg64 result = reg_alloc.UseScratchGpr(args[0]);
// TODO: Flag optimization
code->test(result, result);
code->sete(result.cvt8());
code->movzx(result, result.cvt8());
reg_alloc.DefineValue(inst, result);
}
void EmitX64::EmitLogicalShiftLeft(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) {
auto carry_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetCarryFromOp);
auto args = reg_alloc.GetArgumentInfo(inst);
auto& operand_arg = args[0];
auto& shift_arg = args[1];
auto& carry_arg = args[2];
// TODO: Consider using BMI2 instructions like SHLX when arm-in-host flags is implemented.
if (!carry_inst) {
if (shift_arg.IsImmediate()) {
Xbyak::Reg32 result = reg_alloc.UseScratchGpr(operand_arg).cvt32();
u8 shift = shift_arg.GetImmediateU8();
if (shift <= 31) {
code->shl(result, shift);
} else {
code->xor_(result, result);
}
reg_alloc.DefineValue(inst, result);
} else {
reg_alloc.Use(shift_arg, HostLoc::RCX);
Xbyak::Reg32 result = reg_alloc.UseScratchGpr(operand_arg).cvt32();
Xbyak::Reg32 zero = reg_alloc.ScratchGpr().cvt32();
// The 32-bit x64 SHL instruction masks the shift count by 0x1F before performing the shift.
// ARM differs from the behaviour: It does not mask the count, so shifts above 31 result in zeros.
code->shl(result, code->cl);
code->xor_(zero, zero);
code->cmp(code->cl, 32);
code->cmovnb(result, zero);
reg_alloc.DefineValue(inst, result);
}
} else {
EraseInstruction(block, carry_inst);
if (shift_arg.IsImmediate()) {
u8 shift = shift_arg.GetImmediateU8();
Xbyak::Reg32 result = reg_alloc.UseScratchGpr(operand_arg).cvt32();
Xbyak::Reg32 carry = reg_alloc.UseScratchGpr(carry_arg).cvt32();
if (shift == 0) {
// There is nothing more to do.
} else if (shift < 32) {
code->bt(carry.cvt32(), 0);
code->shl(result, shift);
code->setc(carry.cvt8());
} else if (shift > 32) {
code->xor_(result, result);
code->xor_(carry, carry);
} else {
code->mov(carry, result);
code->xor_(result, result);
code->and_(carry, 1);
}
reg_alloc.DefineValue(inst, result);
reg_alloc.DefineValue(carry_inst, carry);
} else {
reg_alloc.Use(shift_arg, HostLoc::RCX);
Xbyak::Reg32 result = reg_alloc.UseScratchGpr(operand_arg).cvt32();
Xbyak::Reg32 carry = reg_alloc.UseScratchGpr(carry_arg).cvt32();
// TODO: Optimize this.
code->inLocalLabel();
code->cmp(code->cl, 32);
code->ja(".Rs_gt32");
code->je(".Rs_eq32");
// if (Rs & 0xFF < 32) {
code->bt(carry.cvt32(), 0); // Set the carry flag for correct behaviour in the case when Rs & 0xFF == 0
code->shl(result, code->cl);
code->setc(carry.cvt8());
code->jmp(".end");
// } else if (Rs & 0xFF > 32) {
code->L(".Rs_gt32");
code->xor_(result, result);
code->xor_(carry, carry);
code->jmp(".end");
// } else if (Rs & 0xFF == 32) {
code->L(".Rs_eq32");
code->mov(carry, result);
code->and_(carry, 1);
code->xor_(result, result);
// }
code->L(".end");
code->outLocalLabel();
reg_alloc.DefineValue(inst, result);
reg_alloc.DefineValue(carry_inst, carry);
}
}
}
void EmitX64::EmitLogicalShiftRight(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) {
auto carry_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetCarryFromOp);
auto args = reg_alloc.GetArgumentInfo(inst);
auto& operand_arg = args[0];
auto& shift_arg = args[1];
auto& carry_arg = args[2];
if (!carry_inst) {
if (shift_arg.IsImmediate()) {
Xbyak::Reg32 result = reg_alloc.UseScratchGpr(operand_arg).cvt32();
u8 shift = shift_arg.GetImmediateU8();
if (shift <= 31) {
code->shr(result, shift);
} else {
code->xor_(result, result);
}
reg_alloc.DefineValue(inst, result);
} else {
reg_alloc.Use(shift_arg, HostLoc::RCX);
Xbyak::Reg32 result = reg_alloc.UseScratchGpr(operand_arg).cvt32();
Xbyak::Reg32 zero = reg_alloc.ScratchGpr().cvt32();
// The 32-bit x64 SHR instruction masks the shift count by 0x1F before performing the shift.
// ARM differs from the behaviour: It does not mask the count, so shifts above 31 result in zeros.
code->shr(result, code->cl);
code->xor_(zero, zero);
code->cmp(code->cl, 32);
code->cmovnb(result, zero);
reg_alloc.DefineValue(inst, result);
}
} else {
EraseInstruction(block, carry_inst);
if (shift_arg.IsImmediate()) {
u8 shift = shift_arg.GetImmediateU8();
Xbyak::Reg32 result = reg_alloc.UseScratchGpr(operand_arg).cvt32();
Xbyak::Reg32 carry = reg_alloc.UseScratchGpr(carry_arg).cvt32();
if (shift == 0) {
// There is nothing more to do.
} else if (shift < 32) {
code->shr(result, shift);
code->setc(carry.cvt8());
} else if (shift == 32) {
code->bt(result, 31);
code->setc(carry.cvt8());
code->mov(result, 0);
} else {
code->xor_(result, result);
code->xor_(carry, carry);
}
reg_alloc.DefineValue(inst, result);
reg_alloc.DefineValue(carry_inst, carry);
} else {
reg_alloc.Use(shift_arg, HostLoc::RCX);
Xbyak::Reg32 result = reg_alloc.UseScratchGpr(operand_arg).cvt32();
Xbyak::Reg32 carry = reg_alloc.UseScratchGpr(carry_arg).cvt32();
// TODO: Optimize this.
code->inLocalLabel();
code->cmp(code->cl, 32);
code->ja(".Rs_gt32");
code->je(".Rs_eq32");
// if (Rs & 0xFF == 0) goto end;
code->test(code->cl, code->cl);
code->jz(".end");
// if (Rs & 0xFF < 32) {
code->shr(result, code->cl);
code->setc(carry.cvt8());
code->jmp(".end");
// } else if (Rs & 0xFF > 32) {
code->L(".Rs_gt32");
code->xor_(result, result);
code->xor_(carry, carry);
code->jmp(".end");
// } else if (Rs & 0xFF == 32) {
code->L(".Rs_eq32");
code->bt(result, 31);
code->setc(carry.cvt8());
code->xor_(result, result);
// }
code->L(".end");
code->outLocalLabel();
reg_alloc.DefineValue(inst, result);
reg_alloc.DefineValue(carry_inst, carry);
}
}
}
void EmitX64::EmitLogicalShiftRight64(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
auto& operand_arg = args[0];
auto& shift_arg = args[1];
ASSERT_MSG(shift_arg.IsImmediate(), "variable 64 bit shifts are not implemented");
ASSERT_MSG(shift_arg.GetImmediateU8() < 64, "shift width clamping is not implemented");
Xbyak::Reg64 result = reg_alloc.UseScratchGpr(operand_arg);
u8 shift = shift_arg.GetImmediateU8();
code->shr(result.cvt64(), shift);
reg_alloc.DefineValue(inst, result);
}
void EmitX64::EmitArithmeticShiftRight(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) {
auto carry_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetCarryFromOp);
auto args = reg_alloc.GetArgumentInfo(inst);
auto& operand_arg = args[0];
auto& shift_arg = args[1];
auto& carry_arg = args[2];
if (!carry_inst) {
if (shift_arg.IsImmediate()) {
u8 shift = shift_arg.GetImmediateU8();
Xbyak::Reg32 result = reg_alloc.UseScratchGpr(operand_arg).cvt32();
code->sar(result, u8(shift < 31 ? shift : 31));
reg_alloc.DefineValue(inst, result);
} else {
reg_alloc.UseScratch(shift_arg, HostLoc::RCX);
Xbyak::Reg32 result = reg_alloc.UseScratchGpr(operand_arg).cvt32();
Xbyak::Reg32 const31 = reg_alloc.ScratchGpr().cvt32();
// The 32-bit x64 SAR instruction masks the shift count by 0x1F before performing the shift.
// ARM differs from the behaviour: It does not mask the count.
// We note that all shift values above 31 have the same behaviour as 31 does, so we saturate `shift` to 31.
code->mov(const31, 31);
code->movzx(code->ecx, code->cl);
code->cmp(code->ecx, u32(31));
code->cmovg(code->ecx, const31);
code->sar(result, code->cl);
reg_alloc.DefineValue(inst, result);
}
} else {
EraseInstruction(block, carry_inst);
if (shift_arg.IsImmediate()) {
u8 shift = shift_arg.GetImmediateU8();
Xbyak::Reg32 result = reg_alloc.UseScratchGpr(operand_arg).cvt32();
Xbyak::Reg8 carry = reg_alloc.UseScratchGpr(carry_arg).cvt8();
if (shift == 0) {
// There is nothing more to do.
} else if (shift <= 31) {
code->sar(result, shift);
code->setc(carry);
} else {
code->sar(result, 31);
code->bt(result, 31);
code->setc(carry);
}
reg_alloc.DefineValue(inst, result);
reg_alloc.DefineValue(carry_inst, carry);
} else {
reg_alloc.Use(shift_arg, HostLoc::RCX);
Xbyak::Reg32 result = reg_alloc.UseScratchGpr(operand_arg).cvt32();
Xbyak::Reg8 carry = reg_alloc.UseScratchGpr(carry_arg).cvt8();
// TODO: Optimize this.
code->inLocalLabel();
code->cmp(code->cl, u32(31));
code->ja(".Rs_gt31");
// if (Rs & 0xFF == 0) goto end;
code->test(code->cl, code->cl);
code->jz(".end");
// if (Rs & 0xFF <= 31) {
code->sar(result, code->cl);
code->setc(carry);
code->jmp(".end");
// } else if (Rs & 0xFF > 31) {
code->L(".Rs_gt31");
code->sar(result, 31); // 31 produces the same results as anything above 31
code->bt(result, 31);
code->setc(carry);
// }
code->L(".end");
code->outLocalLabel();
reg_alloc.DefineValue(inst, result);
reg_alloc.DefineValue(carry_inst, carry);
}
}
}
void EmitX64::EmitRotateRight(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) {
auto carry_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetCarryFromOp);
auto args = reg_alloc.GetArgumentInfo(inst);
auto& operand_arg = args[0];
auto& shift_arg = args[1];
auto& carry_arg = args[2];
if (!carry_inst) {
if (shift_arg.IsImmediate()) {
u8 shift = shift_arg.GetImmediateU8();
Xbyak::Reg32 result = reg_alloc.UseScratchGpr(operand_arg).cvt32();
code->ror(result, u8(shift & 0x1F));
reg_alloc.DefineValue(inst, result);
} else {
reg_alloc.Use(shift_arg, HostLoc::RCX);
Xbyak::Reg32 result = reg_alloc.UseScratchGpr(operand_arg).cvt32();
// x64 ROR instruction does (shift & 0x1F) for us.
code->ror(result, code->cl);
reg_alloc.DefineValue(inst, result);
}
} else {
EraseInstruction(block, carry_inst);
if (shift_arg.IsImmediate()) {
u8 shift = shift_arg.GetImmediateU8();
Xbyak::Reg32 result = reg_alloc.UseScratchGpr(operand_arg).cvt32();
Xbyak::Reg8 carry = reg_alloc.UseScratchGpr(carry_arg).cvt8();
if (shift == 0) {
// There is nothing more to do.
} else if ((shift & 0x1F) == 0) {
code->bt(result, u8(31));
code->setc(carry);
} else {
code->ror(result, shift);
code->setc(carry);
}
reg_alloc.DefineValue(inst, result);
reg_alloc.DefineValue(carry_inst, carry);
} else {
reg_alloc.UseScratch(shift_arg, HostLoc::RCX);
Xbyak::Reg32 result = reg_alloc.UseScratchGpr(operand_arg).cvt32();
Xbyak::Reg8 carry = reg_alloc.UseScratchGpr(carry_arg).cvt8();
// TODO: Optimize
code->inLocalLabel();
// if (Rs & 0xFF == 0) goto end;
code->test(code->cl, code->cl);
code->jz(".end");
code->and_(code->ecx, u32(0x1F));
code->jz(".zero_1F");
// if (Rs & 0x1F != 0) {
code->ror(result, code->cl);
code->setc(carry);
code->jmp(".end");
// } else {
code->L(".zero_1F");
code->bt(result, u8(31));
code->setc(carry);
// }
code->L(".end");
code->outLocalLabel();
reg_alloc.DefineValue(inst, result);
reg_alloc.DefineValue(carry_inst, carry);
}
}
}
void EmitX64::EmitRotateRightExtended(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) {
auto carry_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetCarryFromOp);
auto args = reg_alloc.GetArgumentInfo(inst);
Xbyak::Reg32 result = reg_alloc.UseScratchGpr(args[0]).cvt32();
Xbyak::Reg8 carry = reg_alloc.UseScratchGpr(args[1]).cvt8();
code->bt(carry.cvt32(), 0);
code->rcr(result, 1);
reg_alloc.DefineValue(inst, result);
if (carry_inst) {
EraseInstruction(block, carry_inst);
code->setc(carry);
reg_alloc.DefineValue(carry_inst, carry);
}
}
const Xbyak::Reg64 INVALID_REG = Xbyak::Reg64(-1);
static Xbyak::Reg8 DoCarry(RegAlloc& reg_alloc, Argument& carry_in, IR::Inst* carry_out) {
if (carry_in.IsImmediate()) {
return carry_out ? reg_alloc.ScratchGpr().cvt8() : INVALID_REG.cvt8();
} else {
return carry_out ? reg_alloc.UseScratchGpr(carry_in).cvt8() : reg_alloc.UseGpr(carry_in).cvt8();
}
}
void EmitX64::EmitAddWithCarry(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) {
auto carry_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetCarryFromOp);
auto overflow_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetOverflowFromOp);
auto args = reg_alloc.GetArgumentInfo(inst);
auto& carry_in = args[2];
Xbyak::Reg32 result = reg_alloc.UseScratchGpr(args[0]).cvt32();
Xbyak::Reg8 carry = DoCarry(reg_alloc, carry_in, carry_inst);
Xbyak::Reg8 overflow = overflow_inst ? reg_alloc.ScratchGpr().cvt8() : INVALID_REG.cvt8();
// TODO: Consider using LEA.
if (args[1].IsImmediate()) {
u32 op_arg = args[1].GetImmediateU32();
if (carry_in.IsImmediate()) {
if (carry_in.GetImmediateU1()) {
code->stc();
code->adc(result, op_arg);
} else {
code->add(result, op_arg);
}
} else {
code->bt(carry.cvt32(), 0);
code->adc(result, op_arg);
}
} else {
OpArg op_arg = reg_alloc.UseOpArg(args[1]);
op_arg.setBit(32);
if (carry_in.IsImmediate()) {
if (carry_in.GetImmediateU1()) {
code->stc();
code->adc(result, *op_arg);
} else {
code->add(result, *op_arg);
}
} else {
code->bt(carry.cvt32(), 0);
code->adc(result, *op_arg);
}
}
reg_alloc.DefineValue(inst, result);
if (carry_inst) {
EraseInstruction(block, carry_inst);
code->setc(carry);
reg_alloc.DefineValue(carry_inst, carry);
}
if (overflow_inst) {
EraseInstruction(block, overflow_inst);
code->seto(overflow);
reg_alloc.DefineValue(overflow_inst, overflow);
}
}
void EmitX64::EmitAdd64(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
Xbyak::Reg64 result = reg_alloc.UseScratchGpr(args[0]);
Xbyak::Reg64 op_arg = reg_alloc.UseGpr(args[1]);
code->add(result, op_arg);
reg_alloc.DefineValue(inst, result);
}
void EmitX64::EmitSubWithCarry(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) {
auto carry_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetCarryFromOp);
auto overflow_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetOverflowFromOp);
auto args = reg_alloc.GetArgumentInfo(inst);
auto& carry_in = args[2];
Xbyak::Reg32 result = reg_alloc.UseScratchGpr(args[0]).cvt32();
Xbyak::Reg8 carry = DoCarry(reg_alloc, carry_in, carry_inst);
Xbyak::Reg8 overflow = overflow_inst ? reg_alloc.ScratchGpr().cvt8() : INVALID_REG.cvt8();
// TODO: Consider using LEA.
// TODO: Optimize CMP case.
// Note that x64 CF is inverse of what the ARM carry flag is here.
if (args[1].IsImmediate()) {
u32 op_arg = args[1].GetImmediateU32();
if (carry_in.IsImmediate()) {
if (carry_in.GetImmediateU1()) {
code->sub(result, op_arg);
} else {
code->stc();
code->sbb(result, op_arg);
}
} else {
code->bt(carry.cvt32(), 0);
code->cmc();
code->sbb(result, op_arg);
}
} else {
OpArg op_arg = reg_alloc.UseOpArg(args[1]);
op_arg.setBit(32);
if (carry_in.IsImmediate()) {
if (carry_in.GetImmediateU1()) {
code->sub(result, *op_arg);
} else {
code->stc();
code->sbb(result, *op_arg);
}
} else {
code->bt(carry.cvt32(), 0);
code->cmc();
code->sbb(result, *op_arg);
}
}
reg_alloc.DefineValue(inst, result);
if (carry_inst) {
EraseInstruction(block, carry_inst);
code->setnc(carry);
reg_alloc.DefineValue(carry_inst, carry);
}
if (overflow_inst) {
EraseInstruction(block, overflow_inst);
code->seto(overflow);
reg_alloc.DefineValue(overflow_inst, overflow);
}
}
void EmitX64::EmitSub64(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
Xbyak::Reg64 result = reg_alloc.UseScratchGpr(args[0]);
Xbyak::Reg64 op_arg = reg_alloc.UseGpr(args[1]);
code->sub(result, op_arg);
reg_alloc.DefineValue(inst, result);
}
void EmitX64::EmitMul(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
Xbyak::Reg32 result = reg_alloc.UseScratchGpr(args[0]).cvt32();
if (args[1].IsImmediate()) {
code->imul(result, result, args[1].GetImmediateU32());
} else {
OpArg op_arg = reg_alloc.UseOpArg(args[1]);
op_arg.setBit(32);
code->imul(result, *op_arg);
}
reg_alloc.DefineValue(inst, result);
}
void EmitX64::EmitMul64(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
Xbyak::Reg64 result = reg_alloc.UseScratchGpr(args[0]);
OpArg op_arg = reg_alloc.UseOpArg(args[1]);
code->imul(result, *op_arg);
reg_alloc.DefineValue(inst, result);
}
void EmitX64::EmitAnd(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
Xbyak::Reg32 result = reg_alloc.UseScratchGpr(args[0]).cvt32();
if (args[1].IsImmediate()) {
u32 op_arg = args[1].GetImmediateU32();
code->and_(result, op_arg);
} else {
OpArg op_arg = reg_alloc.UseOpArg(args[1]);
op_arg.setBit(32);
code->and_(result, *op_arg);
}
reg_alloc.DefineValue(inst, result);
}
void EmitX64::EmitEor(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
Xbyak::Reg32 result = reg_alloc.UseScratchGpr(args[0]).cvt32();
if (args[1].IsImmediate()) {
u32 op_arg = args[1].GetImmediateU32();
code->xor_(result, op_arg);
} else {
OpArg op_arg = reg_alloc.UseOpArg(args[1]);
op_arg.setBit(32);
code->xor_(result, *op_arg);
}
reg_alloc.DefineValue(inst, result);
}
void EmitX64::EmitOr(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
Xbyak::Reg32 result = reg_alloc.UseScratchGpr(args[0]).cvt32();
if (args[1].IsImmediate()) {
u32 op_arg = args[1].GetImmediateU32();
code->or_(result, op_arg);
} else {
OpArg op_arg = reg_alloc.UseOpArg(args[1]);
op_arg.setBit(32);
code->or_(result, *op_arg);
}
reg_alloc.DefineValue(inst, result);
}
void EmitX64::EmitNot(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
Xbyak::Reg32 result;
if (args[0].IsImmediate()) {
result = reg_alloc.ScratchGpr().cvt32();
code->mov(result, u32(~args[0].GetImmediateU32()));
} else {
result = reg_alloc.UseScratchGpr(args[0]).cvt32();
code->not_(result);
}
reg_alloc.DefineValue(inst, result);
}
void EmitX64::EmitSignExtendWordToLong(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
Xbyak::Reg64 result = reg_alloc.UseScratchGpr(args[0]);
code->movsxd(result.cvt64(), result.cvt32());
reg_alloc.DefineValue(inst, result);
}
void EmitX64::EmitSignExtendHalfToWord(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
Xbyak::Reg64 result = reg_alloc.UseScratchGpr(args[0]);
code->movsx(result.cvt32(), result.cvt16());
reg_alloc.DefineValue(inst, result);
}
void EmitX64::EmitSignExtendByteToWord(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
Xbyak::Reg64 result = reg_alloc.UseScratchGpr(args[0]);
code->movsx(result.cvt32(), result.cvt8());
reg_alloc.DefineValue(inst, result);
}
void EmitX64::EmitZeroExtendWordToLong(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
Xbyak::Reg64 result = reg_alloc.UseScratchGpr(args[0]);
code->mov(result.cvt32(), result.cvt32()); // x64 zeros upper 32 bits on a 32-bit move
reg_alloc.DefineValue(inst, result);
}
void EmitX64::EmitZeroExtendHalfToWord(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
Xbyak::Reg64 result = reg_alloc.UseScratchGpr(args[0]);
code->movzx(result.cvt32(), result.cvt16());
reg_alloc.DefineValue(inst, result);
}
void EmitX64::EmitZeroExtendByteToWord(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
Xbyak::Reg64 result = reg_alloc.UseScratchGpr(args[0]);
code->movzx(result.cvt32(), result.cvt8());
reg_alloc.DefineValue(inst, result);
}
void EmitX64::EmitByteReverseWord(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
Xbyak::Reg32 result = reg_alloc.UseScratchGpr(args[0]).cvt32();
code->bswap(result);
reg_alloc.DefineValue(inst, result);
}
void EmitX64::EmitByteReverseHalf(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
Xbyak::Reg16 result = reg_alloc.UseScratchGpr(args[0]).cvt16();
code->rol(result, 8);
reg_alloc.DefineValue(inst, result);
}
void EmitX64::EmitByteReverseDual(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
Xbyak::Reg64 result = reg_alloc.UseScratchGpr(args[0]);
code->bswap(result);
reg_alloc.DefineValue(inst, result);
}
void EmitX64::EmitCountLeadingZeros(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
if (code->DoesCpuSupport(Xbyak::util::Cpu::tLZCNT)) {
Xbyak::Reg32 source = reg_alloc.UseGpr(args[0]).cvt32();
Xbyak::Reg32 result = reg_alloc.ScratchGpr().cvt32();
code->lzcnt(result, source);
reg_alloc.DefineValue(inst, result);
} else {
Xbyak::Reg32 source = reg_alloc.UseScratchGpr(args[0]).cvt32();
Xbyak::Reg32 result = reg_alloc.ScratchGpr().cvt32();
// The result of a bsr of zero is undefined, but zf is set after it.
code->bsr(result, source);
code->mov(source, 0xFFFFFFFF);
code->cmovz(result, source);
code->neg(result);
code->add(result, 31);
reg_alloc.DefineValue(inst, result);
}
}
void EmitX64::EmitSignedSaturatedAdd(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) {
auto overflow_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetOverflowFromOp);
auto args = reg_alloc.GetArgumentInfo(inst);
Xbyak::Reg32 result = reg_alloc.UseScratchGpr(args[0]).cvt32();
Xbyak::Reg32 addend = reg_alloc.UseGpr(args[1]).cvt32();
Xbyak::Reg32 overflow = reg_alloc.ScratchGpr().cvt32();
code->mov(overflow, result);
code->shr(overflow, 31);
code->add(overflow, 0x7FFFFFFF);
// overflow now contains 0x7FFFFFFF if a was positive, or 0x80000000 if a was negative
code->add(result, addend);
code->cmovo(result, overflow);
reg_alloc.DefineValue(inst, result);
if (overflow_inst) {
EraseInstruction(block, overflow_inst);
code->seto(overflow.cvt8());
reg_alloc.DefineValue(overflow_inst, overflow);
}
}
void EmitX64::EmitSignedSaturatedSub(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) {
auto overflow_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetOverflowFromOp);
auto args = reg_alloc.GetArgumentInfo(inst);
Xbyak::Reg32 result = reg_alloc.UseScratchGpr(args[0]).cvt32();
Xbyak::Reg32 subend = reg_alloc.UseGpr(args[1]).cvt32();
Xbyak::Reg32 overflow = reg_alloc.ScratchGpr().cvt32();
code->mov(overflow, result);
code->shr(overflow, 31);
code->add(overflow, 0x7FFFFFFF);
// overflow now contains 0x7FFFFFFF if a was positive, or 0x80000000 if a was negative
code->sub(result, subend);
code->cmovo(result, overflow);
reg_alloc.DefineValue(inst, result);
if (overflow_inst) {
EraseInstruction(block, overflow_inst);
code->seto(overflow.cvt8());
reg_alloc.DefineValue(overflow_inst, overflow);
}
}
void EmitX64::EmitUnsignedSaturation(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) {
auto overflow_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetOverflowFromOp);
auto args = reg_alloc.GetArgumentInfo(inst);
size_t N = args[1].GetImmediateU8();
ASSERT(N <= 31);
u32 saturated_value = (1u << N) - 1;
Xbyak::Reg32 result = reg_alloc.ScratchGpr().cvt32();
Xbyak::Reg32 reg_a = reg_alloc.UseGpr(args[0]).cvt32();
Xbyak::Reg32 overflow = reg_alloc.ScratchGpr().cvt32();
// Pseudocode: result = clamp(reg_a, 0, saturated_value);
code->xor_(overflow, overflow);
code->cmp(reg_a, saturated_value);
code->mov(result, saturated_value);
code->cmovle(result, overflow);
code->cmovbe(result, reg_a);
reg_alloc.DefineValue(inst, result);
if (overflow_inst) {
EraseInstruction(block, overflow_inst);
code->seta(overflow.cvt8());
reg_alloc.DefineValue(overflow_inst, overflow);
}
}
void EmitX64::EmitSignedSaturation(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) {
auto overflow_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetOverflowFromOp);
auto args = reg_alloc.GetArgumentInfo(inst);
size_t N = args[1].GetImmediateU8();
ASSERT(N >= 1 && N <= 32);
if (N == 32) {
reg_alloc.DefineValue(inst, args[0]);
if (overflow_inst) {
auto no_overflow = IR::Value(false);
overflow_inst->ReplaceUsesWith(no_overflow);
}
return;
}
u32 mask = (1u << N) - 1;
u32 positive_saturated_value = (1u << (N - 1)) - 1;
u32 negative_saturated_value = 1u << (N - 1);
u32 sext_negative_satured_value = Common::SignExtend(N, negative_saturated_value);
Xbyak::Reg32 result = reg_alloc.ScratchGpr().cvt32();
Xbyak::Reg32 reg_a = reg_alloc.UseGpr(args[0]).cvt32();
Xbyak::Reg32 overflow = reg_alloc.ScratchGpr().cvt32();
Xbyak::Reg32 tmp = reg_alloc.ScratchGpr().cvt32();
// overflow now contains a value between 0 and mask if it was originally between {negative,positive}_saturated_value.
code->lea(overflow, code->ptr[reg_a.cvt64() + negative_saturated_value]);
// Put the appropriate saturated value in result
code->cmp(reg_a, positive_saturated_value);
code->mov(tmp, positive_saturated_value);
code->mov(result, sext_negative_satured_value);
code->cmovg(result, tmp);
// Do the saturation
code->cmp(overflow, mask);
code->cmovbe(result, reg_a);
reg_alloc.DefineValue(inst, result);
if (overflow_inst) {
EraseInstruction(block, overflow_inst);
code->seta(overflow.cvt8());
reg_alloc.DefineValue(overflow_inst, overflow);
}
}
/**
* Extracts the most significant bits from each of the packed bytes, and packs them together.
*
* value before: a-------b-------c-------d-------
* value after: 0000000000000000000000000000abcd
*
* @param value The register containing the value to operate on. Result will be stored in the same register.
* @param a_tmp A register which can be used as a scratch register.
*/
static void ExtractMostSignificantBitFromPackedBytes(BlockOfCode* code, RegAlloc& reg_alloc, Xbyak::Reg32 value, boost::optional<Xbyak::Reg32> a_tmp = boost::none) {
if (code->DoesCpuSupport(Xbyak::util::Cpu::tBMI2)) {
Xbyak::Reg32 tmp = a_tmp ? *a_tmp : reg_alloc.ScratchGpr().cvt32();
code->mov(tmp, 0x80808080);
code->pext(value, value, tmp);
} else {
code->and_(value, 0x80808080);
code->imul(value, value, 0x00204081);
code->shr(value, 28);
}
}
/**
* Extracts the most significant bits from each of the packed words, duplicates them, and packs them together.
*
* value before: a---------------b---------------
* value after: 0000000000000000000000000000aabb
*
* @param value The register containing the value to operate on. Result will be stored in the same register.
*/
static void ExtractAndDuplicateMostSignificantBitFromPackedWords(BlockOfCode* code, Xbyak::Reg32 value) {
code->and_(value, 0x80008000);
code->shr(value, 1);
code->imul(value, value, 0xC003);
code->shr(value, 28);
}
void EmitX64::EmitPackedAddU8(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
auto ge_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetGEFromOp);
Xbyak::Xmm xmm_a = reg_alloc.UseScratchXmm(args[0]);
Xbyak::Xmm xmm_b = reg_alloc.UseXmm(args[1]);
code->paddb(xmm_a, xmm_b);
if (ge_inst) {
EraseInstruction(block, ge_inst);
Xbyak::Reg32 reg_ge = reg_alloc.ScratchGpr().cvt32();
Xbyak::Xmm tmp = reg_alloc.ScratchXmm();
code->movdqa(tmp, xmm_a);
code->pminub(tmp, xmm_b);
code->pcmpeqb(tmp, xmm_b);
code->movd(reg_ge, tmp);
code->not_(reg_ge);
ExtractMostSignificantBitFromPackedBytes(code, reg_alloc, reg_ge);
reg_alloc.DefineValue(ge_inst, reg_ge);
}
reg_alloc.DefineValue(inst, xmm_a);
}
void EmitX64::EmitPackedAddS8(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
auto ge_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetGEFromOp);
Xbyak::Reg32 reg_ge;
Xbyak::Xmm xmm_a = reg_alloc.UseScratchXmm(args[0]);
Xbyak::Xmm xmm_b = reg_alloc.UseXmm(args[1]);
if (ge_inst) {
EraseInstruction(block, ge_inst);
Xbyak::Xmm saturated_sum = reg_alloc.ScratchXmm();
reg_ge = reg_alloc.ScratchGpr().cvt32();
code->movdqa(saturated_sum, xmm_a);
code->paddsb(saturated_sum, xmm_b);
code->movd(reg_ge, saturated_sum);
}
code->paddb(xmm_a, xmm_b);
if (ge_inst) {
code->not_(reg_ge);
ExtractMostSignificantBitFromPackedBytes(code, reg_alloc, reg_ge);
reg_alloc.DefineValue(ge_inst, reg_ge);
}
reg_alloc.DefineValue(inst, xmm_a);
}
void EmitX64::EmitPackedAddU16(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
auto ge_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetGEFromOp);
Xbyak::Xmm xmm_a = reg_alloc.UseScratchXmm(args[0]);
Xbyak::Xmm xmm_b = reg_alloc.UseXmm(args[1]);
code->paddw(xmm_a, xmm_b);
if (ge_inst) {
EraseInstruction(block, ge_inst);
Xbyak::Reg32 reg_ge = reg_alloc.ScratchGpr().cvt32();
Xbyak::Xmm tmp = reg_alloc.ScratchXmm();
code->movdqa(tmp, xmm_a);
code->pminuw(tmp, xmm_b);
code->pcmpeqw(tmp, xmm_b);
code->movd(reg_ge, tmp);
code->not_(reg_ge);
ExtractMostSignificantBitFromPackedBytes(code, reg_alloc, reg_ge);
reg_alloc.DefineValue(ge_inst, reg_ge);
}
reg_alloc.DefineValue(inst, xmm_a);
}
void EmitX64::EmitPackedAddS16(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
auto ge_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetGEFromOp);
Xbyak::Xmm xmm_a = reg_alloc.UseScratchXmm(args[0]);
Xbyak::Xmm xmm_b = reg_alloc.UseXmm(args[1]);
Xbyak::Reg32 reg_ge;
if (ge_inst) {
EraseInstruction(block, ge_inst);
reg_ge = reg_alloc.ScratchGpr().cvt32();
Xbyak::Xmm saturated_sum = reg_alloc.ScratchXmm();
code->movdqa(saturated_sum, xmm_a);
code->paddsw(saturated_sum, xmm_b);
code->movd(reg_ge, saturated_sum);
}
code->paddw(xmm_a, xmm_b);
if (ge_inst) {
code->not_(reg_ge);
ExtractAndDuplicateMostSignificantBitFromPackedWords(code, reg_ge);
reg_alloc.DefineValue(ge_inst, reg_ge);
}
reg_alloc.DefineValue(inst, xmm_a);
}
void EmitX64::EmitPackedSubU8(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
auto ge_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetGEFromOp);
Xbyak::Xmm xmm_a = reg_alloc.UseScratchXmm(args[0]);
Xbyak::Xmm xmm_b = reg_alloc.UseXmm(args[1]);
Xbyak::Reg32 reg_ge;
if (ge_inst) {
EraseInstruction(block, ge_inst);
Xbyak::Xmm xmm_ge = reg_alloc.ScratchXmm();
reg_ge = reg_alloc.ScratchGpr().cvt32();
code->movdqa(xmm_ge, xmm_a);
code->pmaxub(xmm_ge, xmm_b);
code->pcmpeqb(xmm_ge, xmm_a);
code->movd(reg_ge, xmm_ge);
}
code->psubb(xmm_a, xmm_b);
if (ge_inst) {
ExtractMostSignificantBitFromPackedBytes(code, reg_alloc, reg_ge);
reg_alloc.DefineValue(ge_inst, reg_ge);
}
reg_alloc.DefineValue(inst, xmm_a);
}
void EmitX64::EmitPackedSubS8(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
auto ge_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetGEFromOp);
Xbyak::Xmm xmm_a = reg_alloc.UseScratchXmm(args[0]);
Xbyak::Xmm xmm_b = reg_alloc.UseXmm(args[1]);
Xbyak::Reg32 reg_ge;
if (ge_inst) {
EraseInstruction(block, ge_inst);
Xbyak::Xmm xmm_ge = reg_alloc.ScratchXmm();
reg_ge = reg_alloc.ScratchGpr().cvt32();
code->movdqa(xmm_ge, xmm_a);
code->psubsb(xmm_ge, xmm_b);
code->movd(reg_ge, xmm_ge);
}
code->psubb(xmm_a, xmm_b);
if (ge_inst) {
code->not_(reg_ge);
ExtractMostSignificantBitFromPackedBytes(code, reg_alloc, reg_ge);
reg_alloc.DefineValue(ge_inst, reg_ge);
}
reg_alloc.DefineValue(inst, xmm_a);
}
void EmitX64::EmitPackedSubU16(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
auto ge_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetGEFromOp);
Xbyak::Xmm xmm_a = reg_alloc.UseScratchXmm(args[0]);
Xbyak::Xmm xmm_b = reg_alloc.UseXmm(args[1]);
Xbyak::Reg32 reg_ge;
if (ge_inst) {
EraseInstruction(block, ge_inst);
reg_ge = reg_alloc.ScratchGpr().cvt32();
Xbyak::Xmm xmm_ge = reg_alloc.ScratchXmm();
code->movdqa(xmm_ge, xmm_a);
code->pmaxuw(xmm_ge, xmm_b);
code->pcmpeqw(xmm_ge, xmm_a);
code->movd(reg_ge, xmm_ge);
}
code->psubw(xmm_a, xmm_b);
if (ge_inst) {
ExtractAndDuplicateMostSignificantBitFromPackedWords(code, reg_ge);
reg_alloc.DefineValue(ge_inst, reg_ge);
}
reg_alloc.DefineValue(inst, xmm_a);
}
void EmitX64::EmitPackedSubS16(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
auto ge_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetGEFromOp);
Xbyak::Xmm xmm_a = reg_alloc.UseScratchXmm(args[0]);
Xbyak::Xmm xmm_b = reg_alloc.UseXmm(args[1]);
Xbyak::Reg32 reg_ge;
if (ge_inst) {
EraseInstruction(block, ge_inst);
Xbyak::Xmm xmm_ge = reg_alloc.ScratchXmm();
reg_ge = reg_alloc.ScratchGpr().cvt32();
code->movdqa(xmm_ge, xmm_a);
code->psubsw(xmm_ge, xmm_b);
code->movd(reg_ge, xmm_ge);
}
code->psubw(xmm_a, xmm_b);
if (ge_inst) {
code->not_(reg_ge);
ExtractAndDuplicateMostSignificantBitFromPackedWords(code, reg_ge);
reg_alloc.DefineValue(ge_inst, reg_ge);
}
reg_alloc.DefineValue(inst, xmm_a);
}
void EmitX64::EmitPackedHalvingAddU8(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
// This code path requires SSSE3 because of the PSHUFB instruction.
// A fallback implementation is provided below.
if (code->DoesCpuSupport(Xbyak::util::Cpu::tSSSE3)) {
Xbyak::Xmm xmm_a = reg_alloc.UseScratchXmm(args[0]);
Xbyak::Xmm xmm_b = reg_alloc.UseScratchXmm(args[1]);
Xbyak::Xmm xmm_mask = reg_alloc.ScratchXmm();
Xbyak::Reg64 mask = reg_alloc.ScratchGpr();
// Set the mask to expand the values
// 0xAABBCCDD becomes 0x00AA00BB00CC00DD
code->mov(mask, 0x8003800280018000);
code->movq(xmm_mask, mask);
// Expand each 8-bit value to 16-bit
code->pshufb(xmm_a, xmm_mask);
code->pshufb(xmm_b, xmm_mask);
// Add the individual 16-bit values
code->paddw(xmm_a, xmm_b);
// Shift the 16-bit values to the right to halve them
code->psrlw(xmm_a, 1);
// Set the mask to pack the values again
// 0x00AA00BB00CC00DD becomes 0xAABBCCDD
code->mov(mask, 0x06040200);
code->movq(xmm_mask, mask);
// Shuffle them back to 8-bit values
code->pshufb(xmm_a, xmm_mask);
reg_alloc.DefineValue(inst, xmm_a);
} else {
// Fallback implementation in case the CPU doesn't support SSSE3
Xbyak::Reg32 reg_a = reg_alloc.UseScratchGpr(args[0]).cvt32();
Xbyak::Reg32 reg_b = reg_alloc.UseGpr(args[1]).cvt32();
Xbyak::Reg32 xor_a_b = reg_alloc.ScratchGpr().cvt32();
Xbyak::Reg32 and_a_b = reg_a;
Xbyak::Reg32 result = reg_a;
code->mov(xor_a_b, reg_a);
code->and_(and_a_b, reg_b);
code->xor_(xor_a_b, reg_b);
code->shr(xor_a_b, 1);
code->and_(xor_a_b, 0x7F7F7F7F);
code->add(result, xor_a_b);
reg_alloc.DefineValue(inst, result);
}
}
void EmitX64::EmitPackedHalvingAddU16(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
Xbyak::Reg32 reg_a = reg_alloc.UseScratchGpr(args[0]).cvt32();
Xbyak::Reg32 reg_b = reg_alloc.UseGpr(args[1]).cvt32();
Xbyak::Reg32 xor_a_b = reg_alloc.ScratchGpr().cvt32();
Xbyak::Reg32 and_a_b = reg_a;
Xbyak::Reg32 result = reg_a;
// This relies on the equality x+y == ((x&y) << 1) + (x^y).
// Note that x^y always contains the LSB of the result.
// Since we want to calculate (x+y)/2, we can instead calculate (x&y) + ((x^y)>>1).
// We mask by 0x7FFF to remove the LSB so that it doesn't leak into the field below.
code->mov(xor_a_b, reg_a);
code->and_(and_a_b, reg_b);
code->xor_(xor_a_b, reg_b);
code->shr(xor_a_b, 1);
code->and_(xor_a_b, 0x7FFF7FFF);
code->add(result, xor_a_b);
reg_alloc.DefineValue(inst, result);
}
void EmitX64::EmitPackedHalvingAddS8(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
Xbyak::Reg32 reg_a = reg_alloc.UseScratchGpr(args[0]).cvt32();
Xbyak::Reg32 reg_b = reg_alloc.UseGpr(args[1]).cvt32();
Xbyak::Reg32 xor_a_b = reg_alloc.ScratchGpr().cvt32();
Xbyak::Reg32 and_a_b = reg_a;
Xbyak::Reg32 result = reg_a;
Xbyak::Reg32 carry = reg_alloc.ScratchGpr().cvt32();
// This relies on the equality x+y == ((x&y) << 1) + (x^y).
// Note that x^y always contains the LSB of the result.
// Since we want to calculate (x+y)/2, we can instead calculate (x&y) + ((x^y)>>1).
// We mask by 0x7F to remove the LSB so that it doesn't leak into the field below.
// carry propagates the sign bit from (x^y)>>1 upwards by one.
code->mov(xor_a_b, reg_a);
code->and_(and_a_b, reg_b);
code->xor_(xor_a_b, reg_b);
code->mov(carry, xor_a_b);
code->and_(carry, 0x80808080);
code->shr(xor_a_b, 1);
code->and_(xor_a_b, 0x7F7F7F7F);
code->add(result, xor_a_b);
code->xor_(result, carry);
reg_alloc.DefineValue(inst, result);
}
void EmitX64::EmitPackedHalvingAddS16(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
Xbyak::Reg32 reg_a = reg_alloc.UseScratchGpr(args[0]).cvt32();
Xbyak::Reg32 reg_b = reg_alloc.UseGpr(args[1]).cvt32();
Xbyak::Reg32 xor_a_b = reg_alloc.ScratchGpr().cvt32();
Xbyak::Reg32 and_a_b = reg_a;
Xbyak::Reg32 result = reg_a;
Xbyak::Reg32 carry = reg_alloc.ScratchGpr().cvt32();
// This relies on the equality x+y == ((x&y) << 1) + (x^y).
// Note that x^y always contains the LSB of the result.
// Since we want to calculate (x+y)/2, we can instead calculate (x&y) + ((x^y)>>1).
// We mask by 0x7FFF to remove the LSB so that it doesn't leak into the field below.
// carry propagates the sign bit from (x^y)>>1 upwards by one.
code->mov(xor_a_b, reg_a);
code->and_(and_a_b, reg_b);
code->xor_(xor_a_b, reg_b);
code->mov(carry, xor_a_b);
code->and_(carry, 0x80008000);
code->shr(xor_a_b, 1);
code->and_(xor_a_b, 0x7FFF7FFF);
code->add(result, xor_a_b);
code->xor_(result, carry);
reg_alloc.DefineValue(inst, result);
}
void EmitX64::EmitPackedHalvingSubU8(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
Xbyak::Reg32 minuend = reg_alloc.UseScratchGpr(args[0]).cvt32();
Xbyak::Reg32 subtrahend = reg_alloc.UseScratchGpr(args[1]).cvt32();
// This relies on the equality x-y == (x^y) - (((x^y)&y) << 1).
// Note that x^y always contains the LSB of the result.
// Since we want to calculate (x+y)/2, we can instead calculate ((x^y)>>1) - ((x^y)&y).
code->xor_(minuend, subtrahend);
code->and_(subtrahend, minuend);
code->shr(minuend, 1);
// At this point,
// minuend := (a^b) >> 1
// subtrahend := (a^b) & b
// We must now perform a partitioned subtraction.
// We can do this because minuend contains 7 bit fields.
// We use the extra bit in minuend as a bit to borrow from; we set this bit.
// We invert this bit at the end as this tells us if that bit was borrowed from.
code->or_(minuend, 0x80808080);
code->sub(minuend, subtrahend);
code->xor_(minuend, 0x80808080);
// minuend now contains the desired result.
reg_alloc.DefineValue(inst, minuend);
}
void EmitX64::EmitPackedHalvingSubS8(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
Xbyak::Reg32 minuend = reg_alloc.UseScratchGpr(args[0]).cvt32();
Xbyak::Reg32 subtrahend = reg_alloc.UseScratchGpr(args[1]).cvt32();
Xbyak::Reg32 carry = reg_alloc.ScratchGpr().cvt32();
// This relies on the equality x-y == (x^y) - (((x^y)&y) << 1).
// Note that x^y always contains the LSB of the result.
// Since we want to calculate (x-y)/2, we can instead calculate ((x^y)>>1) - ((x^y)&y).
code->xor_(minuend, subtrahend);
code->and_(subtrahend, minuend);
code->mov(carry, minuend);
code->and_(carry, 0x80808080);
code->shr(minuend, 1);
// At this point,
// minuend := (a^b) >> 1
// subtrahend := (a^b) & b
// carry := (a^b) & 0x80808080
// We must now perform a partitioned subtraction.
// We can do this because minuend contains 7 bit fields.
// We use the extra bit in minuend as a bit to borrow from; we set this bit.
// We invert this bit at the end as this tells us if that bit was borrowed from.
// We then sign extend the result into this bit.
code->or_(minuend, 0x80808080);
code->sub(minuend, subtrahend);
code->xor_(minuend, 0x80808080);
code->xor_(minuend, carry);
reg_alloc.DefineValue(inst, minuend);
}
void EmitX64::EmitPackedHalvingSubU16(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
Xbyak::Reg32 minuend = reg_alloc.UseScratchGpr(args[0]).cvt32();
Xbyak::Reg32 subtrahend = reg_alloc.UseScratchGpr(args[1]).cvt32();
// This relies on the equality x-y == (x^y) - (((x^y)&y) << 1).
// Note that x^y always contains the LSB of the result.
// Since we want to calculate (x+y)/2, we can instead calculate ((x^y)>>1) - ((x^y)&y).
code->xor_(minuend, subtrahend);
code->and_(subtrahend, minuend);
code->shr(minuend, 1);
// At this point,
// minuend := (a^b) >> 1
// subtrahend := (a^b) & b
// We must now perform a partitioned subtraction.
// We can do this because minuend contains 15 bit fields.
// We use the extra bit in minuend as a bit to borrow from; we set this bit.
// We invert this bit at the end as this tells us if that bit was borrowed from.
code->or_(minuend, 0x80008000);
code->sub(minuend, subtrahend);
code->xor_(minuend, 0x80008000);
reg_alloc.DefineValue(inst, minuend);
}
void EmitX64::EmitPackedHalvingSubS16(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
Xbyak::Reg32 minuend = reg_alloc.UseScratchGpr(args[0]).cvt32();
Xbyak::Reg32 subtrahend = reg_alloc.UseScratchGpr(args[1]).cvt32();
Xbyak::Reg32 carry = reg_alloc.ScratchGpr().cvt32();
// This relies on the equality x-y == (x^y) - (((x^y)&y) << 1).
// Note that x^y always contains the LSB of the result.
// Since we want to calculate (x-y)/2, we can instead calculate ((x^y)>>1) - ((x^y)&y).
code->xor_(minuend, subtrahend);
code->and_(subtrahend, minuend);
code->mov(carry, minuend);
code->and_(carry, 0x80008000);
code->shr(minuend, 1);
// At this point,
// minuend := (a^b) >> 1
// subtrahend := (a^b) & b
// carry := (a^b) & 0x80008000
// We must now perform a partitioned subtraction.
// We can do this because minuend contains 7 bit fields.
// We use the extra bit in minuend as a bit to borrow from; we set this bit.
// We invert this bit at the end as this tells us if that bit was borrowed from.
// We then sign extend the result into this bit.
code->or_(minuend, 0x80008000);
code->sub(minuend, subtrahend);
code->xor_(minuend, 0x80008000);
code->xor_(minuend, carry);
reg_alloc.DefineValue(inst, minuend);
}
void EmitPackedSubAdd(BlockOfCode* code, RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst, bool hi_is_sum, bool is_signed, bool is_halving) {
auto args = reg_alloc.GetArgumentInfo(inst);
auto ge_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetGEFromOp);
Xbyak::Reg32 reg_a_hi = reg_alloc.UseScratchGpr(args[0]).cvt32();
Xbyak::Reg32 reg_b_hi = reg_alloc.UseScratchGpr(args[1]).cvt32();
Xbyak::Reg32 reg_a_lo = reg_alloc.ScratchGpr().cvt32();
Xbyak::Reg32 reg_b_lo = reg_alloc.ScratchGpr().cvt32();
Xbyak::Reg32 reg_sum, reg_diff;
if (is_signed) {
code->movsx(reg_a_lo, reg_a_hi.cvt16());
code->movsx(reg_b_lo, reg_b_hi.cvt16());
code->sar(reg_a_hi, 16);
code->sar(reg_b_hi, 16);
} else {
code->movzx(reg_a_lo, reg_a_hi.cvt16());
code->movzx(reg_b_lo, reg_b_hi.cvt16());
code->shr(reg_a_hi, 16);
code->shr(reg_b_hi, 16);
}
if (hi_is_sum) {
code->sub(reg_a_lo, reg_b_hi);
code->add(reg_a_hi, reg_b_lo);
reg_diff = reg_a_lo;
reg_sum = reg_a_hi;
} else {
code->add(reg_a_lo, reg_b_hi);
code->sub(reg_a_hi, reg_b_lo);
reg_diff = reg_a_hi;
reg_sum = reg_a_lo;
}
if (ge_inst) {
EraseInstruction(block, ge_inst);
// The reg_b registers are no longer required.
Xbyak::Reg32 ge_sum = reg_b_hi;
Xbyak::Reg32 ge_diff = reg_b_lo;
code->mov(ge_sum, reg_sum);
code->mov(ge_diff, reg_diff);
if (!is_signed) {
code->shl(ge_sum, 15);
code->sar(ge_sum, 16);
} else {
code->not_(ge_sum);
}
code->not_(ge_diff);
code->and_(ge_sum, hi_is_sum ? 0xC0000000 : 0x30000000);
code->and_(ge_diff, hi_is_sum ? 0x30000000 : 0xC0000000);
code->or_(ge_sum, ge_diff);
code->shr(ge_sum, 28);
reg_alloc.DefineValue(ge_inst, ge_sum);
}
if (is_halving) {
code->shl(reg_a_lo, 15);
code->shr(reg_a_hi, 1);
} else {
code->shl(reg_a_lo, 16);
}
// reg_a_lo now contains the low word and reg_a_hi now contains the high word.
// Merge them.
code->shld(reg_a_hi, reg_a_lo, 16);
reg_alloc.DefineValue(inst, reg_a_hi);
}
void EmitX64::EmitPackedAddSubU16(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) {
EmitPackedSubAdd(code, reg_alloc, block, inst, true, false, false);
}
void EmitX64::EmitPackedAddSubS16(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) {
EmitPackedSubAdd(code, reg_alloc, block, inst, true, true, false);
}
void EmitX64::EmitPackedSubAddU16(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) {
EmitPackedSubAdd(code, reg_alloc, block, inst, false, false, false);
}
void EmitX64::EmitPackedSubAddS16(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) {
EmitPackedSubAdd(code, reg_alloc, block, inst, false, true, false);
}
void EmitX64::EmitPackedHalvingAddSubU16(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) {
EmitPackedSubAdd(code, reg_alloc, block, inst, true, false, true);
}
void EmitX64::EmitPackedHalvingAddSubS16(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) {
EmitPackedSubAdd(code, reg_alloc, block, inst, true, true, true);
}
void EmitX64::EmitPackedHalvingSubAddU16(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) {
EmitPackedSubAdd(code, reg_alloc, block, inst, false, false, true);
}
void EmitX64::EmitPackedHalvingSubAddS16(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) {
EmitPackedSubAdd(code, reg_alloc, block, inst, false, true, true);
}
static void EmitPackedOperation(BlockOfCode* code, RegAlloc& reg_alloc, IR::Inst* inst, void (Xbyak::CodeGenerator::*fn)(const Xbyak::Mmx& mmx, const Xbyak::Operand&)) {
auto args = reg_alloc.GetArgumentInfo(inst);
Xbyak::Xmm xmm_a = reg_alloc.UseScratchXmm(args[0]);
Xbyak::Xmm xmm_b = reg_alloc.UseXmm(args[1]);
(code->*fn)(xmm_a, xmm_b);
reg_alloc.DefineValue(inst, xmm_a);
}
void EmitX64::EmitPackedSaturatedAddU8(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
EmitPackedOperation(code, reg_alloc, inst, &Xbyak::CodeGenerator::paddusb);
}
void EmitX64::EmitPackedSaturatedAddS8(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
EmitPackedOperation(code, reg_alloc, inst, &Xbyak::CodeGenerator::paddsb);
}
void EmitX64::EmitPackedSaturatedSubU8(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
EmitPackedOperation(code, reg_alloc, inst, &Xbyak::CodeGenerator::psubusb);
}
void EmitX64::EmitPackedSaturatedSubS8(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
EmitPackedOperation(code, reg_alloc, inst, &Xbyak::CodeGenerator::psubsb);
}
void EmitX64::EmitPackedSaturatedAddU16(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
EmitPackedOperation(code, reg_alloc, inst, &Xbyak::CodeGenerator::paddusw);
}
void EmitX64::EmitPackedSaturatedAddS16(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
EmitPackedOperation(code, reg_alloc, inst, &Xbyak::CodeGenerator::paddsw);
}
void EmitX64::EmitPackedSaturatedSubU16(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
EmitPackedOperation(code, reg_alloc, inst, &Xbyak::CodeGenerator::psubusw);
}
void EmitX64::EmitPackedSaturatedSubS16(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
EmitPackedOperation(code, reg_alloc, inst, &Xbyak::CodeGenerator::psubsw);
}
void EmitX64::EmitPackedAbsDiffSumS8(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
EmitPackedOperation(code, reg_alloc, inst, &Xbyak::CodeGenerator::psadbw);
}
static void DenormalsAreZero32(BlockOfCode* code, Xbyak::Xmm xmm_value, Xbyak::Reg32 gpr_scratch) {
using namespace Xbyak::util;
Xbyak::Label end;
// We need to report back whether we've found a denormal on input.
// SSE doesn't do this for us when SSE's DAZ is enabled.
code->movd(gpr_scratch, xmm_value);
code->and_(gpr_scratch, u32(0x7FFFFFFF));
code->sub(gpr_scratch, u32(1));
code->cmp(gpr_scratch, u32(0x007FFFFE));
code->ja(end);
code->pxor(xmm_value, xmm_value);
code->mov(dword[r15 + offsetof(JitState, FPSCR_IDC)], u32(1 << 7));
code->L(end);
}
static void DenormalsAreZero64(BlockOfCode* code, Xbyak::Xmm xmm_value, Xbyak::Reg64 gpr_scratch) {
using namespace Xbyak::util;
Xbyak::Label end;
auto mask = code->MConst(f64_non_sign_mask);
mask.setBit(64);
auto penult_denormal = code->MConst(f64_penultimate_positive_denormal);
penult_denormal.setBit(64);
code->movq(gpr_scratch, xmm_value);
code->and_(gpr_scratch, mask);
code->sub(gpr_scratch, u32(1));
code->cmp(gpr_scratch, penult_denormal);
code->ja(end);
code->pxor(xmm_value, xmm_value);
code->mov(dword[r15 + offsetof(JitState, FPSCR_IDC)], u32(1 << 7));
code->L(end);
}
static void FlushToZero32(BlockOfCode* code, Xbyak::Xmm xmm_value, Xbyak::Reg32 gpr_scratch) {
using namespace Xbyak::util;
Xbyak::Label end;
code->movd(gpr_scratch, xmm_value);
code->and_(gpr_scratch, u32(0x7FFFFFFF));
code->sub(gpr_scratch, u32(1));
code->cmp(gpr_scratch, u32(0x007FFFFE));
code->ja(end);
code->pxor(xmm_value, xmm_value);
code->mov(dword[r15 + offsetof(JitState, FPSCR_UFC)], u32(1 << 3));
code->L(end);
}
static void FlushToZero64(BlockOfCode* code, Xbyak::Xmm xmm_value, Xbyak::Reg64 gpr_scratch) {
using namespace Xbyak::util;
Xbyak::Label end;
auto mask = code->MConst(f64_non_sign_mask);
mask.setBit(64);
auto penult_denormal = code->MConst(f64_penultimate_positive_denormal);
penult_denormal.setBit(64);
code->movq(gpr_scratch, xmm_value);
code->and_(gpr_scratch, mask);
code->sub(gpr_scratch, u32(1));
code->cmp(gpr_scratch, penult_denormal);
code->ja(end);
code->pxor(xmm_value, xmm_value);
code->mov(dword[r15 + offsetof(JitState, FPSCR_UFC)], u32(1 << 3));
code->L(end);
}
static void DefaultNaN32(BlockOfCode* code, Xbyak::Xmm xmm_value) {
Xbyak::Label end;
code->ucomiss(xmm_value, xmm_value);
code->jnp(end);
code->movaps(xmm_value, code->MConst(f32_nan));
code->L(end);
}
static void DefaultNaN64(BlockOfCode* code, Xbyak::Xmm xmm_value) {
Xbyak::Label end;
code->ucomisd(xmm_value, xmm_value);
code->jnp(end);
code->movaps(xmm_value, code->MConst(f64_nan));
code->L(end);
}
static void ZeroIfNaN64(BlockOfCode* code, Xbyak::Xmm xmm_value, Xbyak::Xmm xmm_scratch) {
code->pxor(xmm_scratch, xmm_scratch);
code->cmpordsd(xmm_scratch, xmm_value); // true mask when ordered (i.e.: when not an NaN)
code->pand(xmm_value, xmm_scratch);
}
static void FPThreeOp32(BlockOfCode* code, RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst, void (Xbyak::CodeGenerator::*fn)(const Xbyak::Xmm&, const Xbyak::Operand&)) {
auto args = reg_alloc.GetArgumentInfo(inst);
Xbyak::Xmm result = reg_alloc.UseScratchXmm(args[0]);
Xbyak::Xmm operand = reg_alloc.UseScratchXmm(args[1]);
Xbyak::Reg32 gpr_scratch = reg_alloc.ScratchGpr().cvt32();
if (block.Location().FPSCR().FTZ()) {
DenormalsAreZero32(code, result, gpr_scratch);
DenormalsAreZero32(code, operand, gpr_scratch);
}
(code->*fn)(result, operand);
if (block.Location().FPSCR().FTZ()) {
FlushToZero32(code, result, gpr_scratch);
}
if (block.Location().FPSCR().DN()) {
DefaultNaN32(code, result);
}
reg_alloc.DefineValue(inst, result);
}
static void FPThreeOp64(BlockOfCode* code, RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst, void (Xbyak::CodeGenerator::*fn)(const Xbyak::Xmm&, const Xbyak::Operand&)) {
auto args = reg_alloc.GetArgumentInfo(inst);
Xbyak::Xmm result = reg_alloc.UseScratchXmm(args[0]);
Xbyak::Xmm operand = reg_alloc.UseScratchXmm(args[1]);
Xbyak::Reg64 gpr_scratch = reg_alloc.ScratchGpr();
if (block.Location().FPSCR().FTZ()) {
DenormalsAreZero64(code, result, gpr_scratch);
DenormalsAreZero64(code, operand, gpr_scratch);
}
(code->*fn)(result, operand);
if (block.Location().FPSCR().FTZ()) {
FlushToZero64(code, result, gpr_scratch);
}
if (block.Location().FPSCR().DN()) {
DefaultNaN64(code, result);
}
reg_alloc.DefineValue(inst, result);
}
static void FPTwoOp32(BlockOfCode* code, RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst, void (Xbyak::CodeGenerator::*fn)(const Xbyak::Xmm&, const Xbyak::Operand&)) {
auto args = reg_alloc.GetArgumentInfo(inst);
Xbyak::Xmm result = reg_alloc.UseScratchXmm(args[0]);
Xbyak::Reg32 gpr_scratch = reg_alloc.ScratchGpr().cvt32();
if (block.Location().FPSCR().FTZ()) {
DenormalsAreZero32(code, result, gpr_scratch);
}
(code->*fn)(result, result);
if (block.Location().FPSCR().FTZ()) {
FlushToZero32(code, result, gpr_scratch);
}
if (block.Location().FPSCR().DN()) {
DefaultNaN32(code, result);
}
reg_alloc.DefineValue(inst, result);
}
static void FPTwoOp64(BlockOfCode* code, RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst, void (Xbyak::CodeGenerator::*fn)(const Xbyak::Xmm&, const Xbyak::Operand&)) {
auto args = reg_alloc.GetArgumentInfo(inst);
Xbyak::Xmm result = reg_alloc.UseScratchXmm(args[0]);
Xbyak::Reg64 gpr_scratch = reg_alloc.ScratchGpr();
if (block.Location().FPSCR().FTZ()) {
DenormalsAreZero64(code, result, gpr_scratch);
}
(code->*fn)(result, result);
if (block.Location().FPSCR().FTZ()) {
FlushToZero64(code, result, gpr_scratch);
}
if (block.Location().FPSCR().DN()) {
DefaultNaN64(code, result);
}
reg_alloc.DefineValue(inst, result);
}
void EmitX64::EmitTransferFromFP32(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
reg_alloc.DefineValue(inst, args[0]);
}
void EmitX64::EmitTransferFromFP64(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
reg_alloc.DefineValue(inst, args[0]);
}
void EmitX64::EmitTransferToFP32(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
if (args[0].IsImmediate() && args[0].GetImmediateU32() == 0) {
Xbyak::Xmm result = reg_alloc.ScratchXmm();
code->xorps(result, result);
reg_alloc.DefineValue(inst, result);
} else {
reg_alloc.DefineValue(inst, args[0]);
}
}
void EmitX64::EmitTransferToFP64(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
if (args[0].IsImmediate() && args[0].GetImmediateU64() == 0) {
Xbyak::Xmm result = reg_alloc.ScratchXmm();
code->xorps(result, result);
reg_alloc.DefineValue(inst, result);
} else {
reg_alloc.DefineValue(inst, args[0]);
}
}
void EmitX64::EmitFPAbs32(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
Xbyak::Xmm result = reg_alloc.UseScratchXmm(args[0]);
code->pand(result, code->MConst(f32_non_sign_mask));
reg_alloc.DefineValue(inst, result);
}
void EmitX64::EmitFPAbs64(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
Xbyak::Xmm result = reg_alloc.UseScratchXmm(args[0]);
code->pand(result, code->MConst(f64_non_sign_mask));
reg_alloc.DefineValue(inst, result);
}
void EmitX64::EmitFPNeg32(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
Xbyak::Xmm result = reg_alloc.UseScratchXmm(args[0]);
code->pxor(result, code->MConst(f32_negative_zero));
reg_alloc.DefineValue(inst, result);
}
void EmitX64::EmitFPNeg64(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
Xbyak::Xmm result = reg_alloc.UseScratchXmm(args[0]);
code->pxor(result, code->MConst(f64_negative_zero));
reg_alloc.DefineValue(inst, result);
}
void EmitX64::EmitFPAdd32(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) {
FPThreeOp32(code, reg_alloc, block, inst, &Xbyak::CodeGenerator::addss);
}
void EmitX64::EmitFPAdd64(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) {
FPThreeOp64(code, reg_alloc, block, inst, &Xbyak::CodeGenerator::addsd);
}
void EmitX64::EmitFPDiv32(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) {
FPThreeOp32(code, reg_alloc, block, inst, &Xbyak::CodeGenerator::divss);
}
void EmitX64::EmitFPDiv64(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) {
FPThreeOp64(code, reg_alloc, block, inst, &Xbyak::CodeGenerator::divsd);
}
void EmitX64::EmitFPMul32(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) {
FPThreeOp32(code, reg_alloc, block, inst, &Xbyak::CodeGenerator::mulss);
}
void EmitX64::EmitFPMul64(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) {
FPThreeOp64(code, reg_alloc, block, inst, &Xbyak::CodeGenerator::mulsd);
}
void EmitX64::EmitFPSqrt32(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) {
FPTwoOp32(code, reg_alloc, block, inst, &Xbyak::CodeGenerator::sqrtss);
}
void EmitX64::EmitFPSqrt64(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) {
FPTwoOp64(code, reg_alloc, block, inst, &Xbyak::CodeGenerator::sqrtsd);
}
void EmitX64::EmitFPSub32(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) {
FPThreeOp32(code, reg_alloc, block, inst, &Xbyak::CodeGenerator::subss);
}
void EmitX64::EmitFPSub64(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) {
FPThreeOp64(code, reg_alloc, block, inst, &Xbyak::CodeGenerator::subsd);
}
static void SetFpscrNzcvFromFlags(BlockOfCode* code, RegAlloc& reg_alloc) {
reg_alloc.ScratchGpr({HostLoc::RAX}); // lahf requires use of ah
Xbyak::Reg32 nzcv_imm = reg_alloc.ScratchGpr().cvt32();
Xbyak::Reg32 nzcv = reg_alloc.ScratchGpr().cvt32();
using namespace Xbyak::util;
code->lahf();
code->mov(nzcv_imm, 0x30000000);
code->cmp(ah, 0b01000111);
code->cmove(nzcv, nzcv_imm);
code->mov(nzcv_imm, 0x20000000);
code->cmp(ah, 0b00000010);
code->cmove(nzcv, nzcv_imm);
code->mov(nzcv_imm, 0x80000000);
code->cmp(ah, 0b00000011);
code->cmove(nzcv, nzcv_imm);
code->mov(nzcv_imm, 0x60000000);
code->cmp(ah, 0b01000010);
code->cmove(nzcv, nzcv_imm);
code->mov(dword[r15 + offsetof(JitState, FPSCR_nzcv)], nzcv);
}
void EmitX64::EmitFPCompare32(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
Xbyak::Xmm reg_a = reg_alloc.UseXmm(args[0]);
Xbyak::Xmm reg_b = reg_alloc.UseXmm(args[1]);
bool quiet = args[2].GetImmediateU1();
if (quiet) {
code->ucomiss(reg_a, reg_b);
} else {
code->comiss(reg_a, reg_b);
}
SetFpscrNzcvFromFlags(code, reg_alloc);
}
void EmitX64::EmitFPCompare64(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
Xbyak::Xmm reg_a = reg_alloc.UseXmm(args[0]);
Xbyak::Xmm reg_b = reg_alloc.UseXmm(args[1]);
bool quiet = args[2].GetImmediateU1();
if (quiet) {
code->ucomisd(reg_a, reg_b);
} else {
code->comisd(reg_a, reg_b);
}
SetFpscrNzcvFromFlags(code, reg_alloc);
}
void EmitX64::EmitFPSingleToDouble(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
Xbyak::Xmm result = reg_alloc.UseScratchXmm(args[0]);
Xbyak::Reg64 gpr_scratch = reg_alloc.ScratchGpr();
if (block.Location().FPSCR().FTZ()) {
DenormalsAreZero32(code, result, gpr_scratch.cvt32());
}
code->cvtss2sd(result, result);
if (block.Location().FPSCR().FTZ()) {
FlushToZero64(code, result, gpr_scratch);
}
if (block.Location().FPSCR().DN()) {
DefaultNaN64(code, result);
}
reg_alloc.DefineValue(inst, result);
}
void EmitX64::EmitFPDoubleToSingle(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
Xbyak::Xmm result = reg_alloc.UseScratchXmm(args[0]);
Xbyak::Reg64 gpr_scratch = reg_alloc.ScratchGpr();
if (block.Location().FPSCR().FTZ()) {
DenormalsAreZero64(code, result, gpr_scratch);
}
code->cvtsd2ss(result, result);
if (block.Location().FPSCR().FTZ()) {
FlushToZero32(code, result, gpr_scratch.cvt32());
}
if (block.Location().FPSCR().DN()) {
DefaultNaN32(code, result);
}
reg_alloc.DefineValue(inst, result);
}
void EmitX64::EmitFPSingleToS32(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
Xbyak::Xmm from = reg_alloc.UseScratchXmm(args[0]);
Xbyak::Reg32 to = reg_alloc.ScratchGpr().cvt32();
Xbyak::Xmm xmm_scratch = reg_alloc.ScratchXmm();
bool round_towards_zero = args[1].GetImmediateU1();
// ARM saturates on conversion; this differs from x64 which returns a sentinel value.
// Conversion to double is lossless, and allows for clamping.
if (block.Location().FPSCR().FTZ()) {
DenormalsAreZero32(code, from, to);
}
code->cvtss2sd(from, from);
// First time is to set flags
if (round_towards_zero) {
code->cvttsd2si(to, from); // 32 bit gpr
} else {
code->cvtsd2si(to, from); // 32 bit gpr
}
// Clamp to output range
ZeroIfNaN64(code, from, xmm_scratch);
code->minsd(from, code->MConst(f64_max_s32));
code->maxsd(from, code->MConst(f64_min_s32));
// Second time is for real
if (round_towards_zero) {
code->cvttsd2si(to, from); // 32 bit gpr
} else {
code->cvtsd2si(to, from); // 32 bit gpr
}
reg_alloc.DefineValue(inst, to);
}
void EmitX64::EmitFPSingleToU32(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
Xbyak::Xmm from = reg_alloc.UseScratchXmm(args[0]);
Xbyak::Reg32 to = reg_alloc.ScratchGpr().cvt32();
Xbyak::Xmm xmm_scratch = reg_alloc.ScratchXmm();
bool round_towards_zero = args[1].GetImmediateU1();
// ARM saturates on conversion; this differs from x64 which returns a sentinel value.
// Conversion to double is lossless, and allows for accurate clamping.
//
// Since SSE2 doesn't provide an unsigned conversion, we shift the range as appropriate.
//
// FIXME: Inexact exception not correctly signalled with the below code
if (block.Location().FPSCR().RMode() != Arm::FPSCR::RoundingMode::TowardsZero && !round_towards_zero) {
if (block.Location().FPSCR().FTZ()) {
DenormalsAreZero32(code, from, to);
}
code->cvtss2sd(from, from);
ZeroIfNaN64(code, from, xmm_scratch);
// Bring into SSE range
code->addsd(from, code->MConst(f64_min_s32));
// First time is to set flags
code->cvtsd2si(to, from); // 32 bit gpr
// Clamp to output range
code->minsd(from, code->MConst(f64_max_s32));
code->maxsd(from, code->MConst(f64_min_s32));
// Actually convert
code->cvtsd2si(to, from); // 32 bit gpr
// Bring back into original range
code->add(to, u32(2147483648u));
} else {
Xbyak::Xmm xmm_mask = reg_alloc.ScratchXmm();
Xbyak::Reg32 gpr_mask = reg_alloc.ScratchGpr().cvt32();
if (block.Location().FPSCR().FTZ()) {
DenormalsAreZero32(code, from, to);
}
code->cvtss2sd(from, from);
ZeroIfNaN64(code, from, xmm_scratch);
// Generate masks if out-of-signed-range
code->movaps(xmm_mask, code->MConst(f64_max_s32));
code->cmpltsd(xmm_mask, from);
code->movd(gpr_mask, xmm_mask);
code->pand(xmm_mask, code->MConst(f64_min_s32));
code->and_(gpr_mask, u32(2147483648u));
// Bring into range if necessary
code->addsd(from, xmm_mask);
// First time is to set flags
code->cvttsd2si(to, from); // 32 bit gpr
// Clamp to output range
code->minsd(from, code->MConst(f64_max_s32));
code->maxsd(from, code->MConst(f64_min_u32));
// Actually convert
code->cvttsd2si(to, from); // 32 bit gpr
// Bring back into original range if necessary
code->add(to, gpr_mask);
}
reg_alloc.DefineValue(inst, to);
}
void EmitX64::EmitFPDoubleToS32(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
Xbyak::Xmm from = reg_alloc.UseScratchXmm(args[0]);
Xbyak::Reg32 to = reg_alloc.ScratchGpr().cvt32();
Xbyak::Xmm xmm_scratch = reg_alloc.ScratchXmm();
Xbyak::Reg32 gpr_scratch = reg_alloc.ScratchGpr().cvt32();
bool round_towards_zero = args[1].GetImmediateU1();
// ARM saturates on conversion; this differs from x64 which returns a sentinel value.
if (block.Location().FPSCR().FTZ()) {
DenormalsAreZero64(code, from, gpr_scratch.cvt64());
}
// First time is to set flags
if (round_towards_zero) {
code->cvttsd2si(gpr_scratch, from); // 32 bit gpr
} else {
code->cvtsd2si(gpr_scratch, from); // 32 bit gpr
}
// Clamp to output range
ZeroIfNaN64(code, from, xmm_scratch);
code->minsd(from, code->MConst(f64_max_s32));
code->maxsd(from, code->MConst(f64_min_s32));
// Second time is for real
if (round_towards_zero) {
code->cvttsd2si(to, from); // 32 bit gpr
} else {
code->cvtsd2si(to, from); // 32 bit gpr
}
reg_alloc.DefineValue(inst, to);
}
void EmitX64::EmitFPDoubleToU32(RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
Xbyak::Xmm from = reg_alloc.UseScratchXmm(args[0]);
Xbyak::Reg32 to = reg_alloc.ScratchGpr().cvt32();
Xbyak::Xmm xmm_scratch = reg_alloc.ScratchXmm();
Xbyak::Reg32 gpr_scratch = reg_alloc.ScratchGpr().cvt32();
bool round_towards_zero = args[1].GetImmediateU1();
// ARM saturates on conversion; this differs from x64 which returns a sentinel value.
// TODO: Use VCVTPD2UDQ when AVX512VL is available.
// FIXME: Inexact exception not correctly signalled with the below code
if (block.Location().FPSCR().RMode() != Arm::FPSCR::RoundingMode::TowardsZero && !round_towards_zero) {
if (block.Location().FPSCR().FTZ()) {
DenormalsAreZero64(code, from, gpr_scratch.cvt64());
}
ZeroIfNaN64(code, from, xmm_scratch);
// Bring into SSE range
code->addsd(from, code->MConst(f64_min_s32));
// First time is to set flags
code->cvtsd2si(gpr_scratch, from); // 32 bit gpr
// Clamp to output range
code->minsd(from, code->MConst(f64_max_s32));
code->maxsd(from, code->MConst(f64_min_s32));
// Actually convert
code->cvtsd2si(to, from); // 32 bit gpr
// Bring back into original range
code->add(to, u32(2147483648u));
} else {
Xbyak::Xmm xmm_mask = reg_alloc.ScratchXmm();
Xbyak::Reg32 gpr_mask = reg_alloc.ScratchGpr().cvt32();
if (block.Location().FPSCR().FTZ()) {
DenormalsAreZero64(code, from, gpr_scratch.cvt64());
}
ZeroIfNaN64(code, from, xmm_scratch);
// Generate masks if out-of-signed-range
code->movaps(xmm_mask, code->MConst(f64_max_s32));
code->cmpltsd(xmm_mask, from);
code->movd(gpr_mask, xmm_mask);
code->pand(xmm_mask, code->MConst(f64_min_s32));
code->and_(gpr_mask, u32(2147483648u));
// Bring into range if necessary
code->addsd(from, xmm_mask);
// First time is to set flags
code->cvttsd2si(gpr_scratch, from); // 32 bit gpr
// Clamp to output range
code->minsd(from, code->MConst(f64_max_s32));
code->maxsd(from, code->MConst(f64_min_u32));
// Actually convert
code->cvttsd2si(to, from); // 32 bit gpr
// Bring back into original range if necessary
code->add(to, gpr_mask);
}
reg_alloc.DefineValue(inst, to);
}
void EmitX64::EmitFPS32ToSingle(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
Xbyak::Reg32 from = reg_alloc.UseGpr(args[0]).cvt32();
Xbyak::Xmm to = reg_alloc.ScratchXmm();
bool round_to_nearest = args[1].GetImmediateU1();
ASSERT_MSG(!round_to_nearest, "round_to_nearest unimplemented");
code->cvtsi2ss(to, from);
reg_alloc.DefineValue(inst, to);
}
void EmitX64::EmitFPU32ToSingle(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
Xbyak::Reg64 from = reg_alloc.UseGpr(args[0]);
Xbyak::Xmm to = reg_alloc.ScratchXmm();
bool round_to_nearest = args[1].GetImmediateU1();
ASSERT_MSG(!round_to_nearest, "round_to_nearest unimplemented");
// We are using a 64-bit GPR register to ensure we don't end up treating the input as signed
code->mov(from.cvt32(), from.cvt32()); // TODO: Verify if this is necessary
code->cvtsi2ss(to, from);
reg_alloc.DefineValue(inst, to);
}
void EmitX64::EmitFPS32ToDouble(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
Xbyak::Reg32 from = reg_alloc.UseGpr(args[0]).cvt32();
Xbyak::Xmm to = reg_alloc.ScratchXmm();
bool round_to_nearest = args[1].GetImmediateU1();
ASSERT_MSG(!round_to_nearest, "round_to_nearest unimplemented");
code->cvtsi2sd(to, from);
reg_alloc.DefineValue(inst, to);
}
void EmitX64::EmitFPU32ToDouble(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
Xbyak::Reg64 from = reg_alloc.UseGpr(args[0]);
Xbyak::Xmm to = reg_alloc.ScratchXmm();
bool round_to_nearest = args[1].GetImmediateU1();
ASSERT_MSG(!round_to_nearest, "round_to_nearest unimplemented");
// We are using a 64-bit GPR register to ensure we don't end up treating the input as signed
code->mov(from.cvt32(), from.cvt32()); // TODO: Verify if this is necessary
code->cvtsi2sd(to, from);
reg_alloc.DefineValue(inst, to);
}
void EmitX64::EmitClearExclusive(RegAlloc&, IR::Block&, IR::Inst*) {
using namespace Xbyak::util;
code->mov(code->byte[r15 + offsetof(JitState, exclusive_state)], u8(0));
}
void EmitX64::EmitSetExclusive(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
using namespace Xbyak::util;
auto args = reg_alloc.GetArgumentInfo(inst);
ASSERT(args[1].IsImmediate());
Xbyak::Reg32 address = reg_alloc.UseGpr(args[0]).cvt32();
code->mov(code->byte[r15 + offsetof(JitState, exclusive_state)], u8(1));
code->mov(dword[r15 + offsetof(JitState, exclusive_address)], address);
}
template <typename FunctionPointer>
static void ReadMemory(BlockOfCode* code, RegAlloc& reg_alloc, IR::Inst* inst, UserCallbacks& cb, size_t bit_size, FunctionPointer fn) {
auto args = reg_alloc.GetArgumentInfo(inst);
reg_alloc.HostCall(inst, args[0]);
if (!cb.page_table) {
code->CallFunction(fn);
return;
}
using namespace Xbyak::util;
Xbyak::Reg64 result = code->ABI_RETURN;
Xbyak::Reg32 vaddr = code->ABI_PARAM1.cvt32();
Xbyak::Reg64 page_index = code->ABI_PARAM3;
Xbyak::Reg64 page_offset = code->ABI_PARAM4;
Xbyak::Label abort, end;
code->mov(result, reinterpret_cast<u64>(cb.page_table));
code->mov(page_index.cvt32(), vaddr);
code->shr(page_index.cvt32(), 12);
code->mov(result, qword[result + page_index * 8]);
code->test(result, result);
code->jz(abort);
code->mov(page_offset.cvt32(), vaddr);
code->and_(page_offset.cvt32(), 4095);
switch (bit_size) {
case 8:
code->movzx(result, code->byte[result + page_offset]);
break;
case 16:
code->movzx(result, word[result + page_offset]);
break;
case 32:
code->mov(result.cvt32(), dword[result + page_offset]);
break;
case 64:
code->mov(result.cvt64(), qword[result + page_offset]);
break;
default:
ASSERT_MSG(false, "Invalid bit_size");
break;
}
code->jmp(end);
code->L(abort);
code->call(code->GetMemoryReadCallback(bit_size));
code->L(end);
}
template<typename FunctionPointer>
static void WriteMemory(BlockOfCode* code, RegAlloc& reg_alloc, IR::Inst* inst, UserCallbacks& cb, size_t bit_size, FunctionPointer fn) {
auto args = reg_alloc.GetArgumentInfo(inst);
reg_alloc.HostCall(nullptr, args[0], args[1]);
if (!cb.page_table) {
code->CallFunction(fn);
return;
}
using namespace Xbyak::util;
Xbyak::Reg32 vaddr = code->ABI_PARAM1.cvt32();
Xbyak::Reg64 value = code->ABI_PARAM2;
Xbyak::Reg64 page_index = code->ABI_PARAM3;
Xbyak::Reg64 page_offset = code->ABI_PARAM4;
Xbyak::Label abort, end;
code->mov(rax, reinterpret_cast<u64>(cb.page_table));
code->mov(page_index.cvt32(), vaddr);
code->shr(page_index.cvt32(), 12);
code->mov(rax, qword[rax + page_index * 8]);
code->test(rax, rax);
code->jz(abort);
code->mov(page_offset.cvt32(), vaddr);
code->and_(page_offset.cvt32(), 4095);
switch (bit_size) {
case 8:
code->mov(code->byte[rax + page_offset], value.cvt8());
break;
case 16:
code->mov(word[rax + page_offset], value.cvt16());
break;
case 32:
code->mov(dword[rax + page_offset], value.cvt32());
break;
case 64:
code->mov(qword[rax + page_offset], value.cvt64());
break;
default:
ASSERT_MSG(false, "Invalid bit_size");
break;
}
code->jmp(end);
code->L(abort);
code->call(code->GetMemoryWriteCallback(bit_size));
code->L(end);
}
void EmitX64::EmitReadMemory8(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
ReadMemory(code, reg_alloc, inst, cb, 8, cb.memory.Read8);
}
void EmitX64::EmitReadMemory16(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
ReadMemory(code, reg_alloc, inst, cb, 16, cb.memory.Read16);
}
void EmitX64::EmitReadMemory32(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
ReadMemory(code, reg_alloc, inst, cb, 32, cb.memory.Read32);
}
void EmitX64::EmitReadMemory64(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
ReadMemory(code, reg_alloc, inst, cb, 64, cb.memory.Read64);
}
void EmitX64::EmitWriteMemory8(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
WriteMemory(code, reg_alloc, inst, cb, 8, cb.memory.Write8);
}
void EmitX64::EmitWriteMemory16(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
WriteMemory(code, reg_alloc, inst, cb, 16, cb.memory.Write16);
}
void EmitX64::EmitWriteMemory32(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
WriteMemory(code, reg_alloc, inst, cb, 32, cb.memory.Write32);
}
void EmitX64::EmitWriteMemory64(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
WriteMemory(code, reg_alloc, inst, cb, 64, cb.memory.Write64);
}
template <typename FunctionPointer>
static void ExclusiveWrite(BlockOfCode* code, RegAlloc& reg_alloc, IR::Inst* inst, FunctionPointer fn, bool prepend_high_word) {
auto args = reg_alloc.GetArgumentInfo(inst);
if (prepend_high_word) {
reg_alloc.HostCall(nullptr, args[0], args[1], args[2]);
} else {
reg_alloc.HostCall(nullptr, args[0], args[1]);
}
Xbyak::Reg32 passed = reg_alloc.ScratchGpr().cvt32();
Xbyak::Reg32 tmp = code->ABI_RETURN.cvt32(); // Use one of the unusued HostCall registers.
using namespace Xbyak::util;
Xbyak::Label end;
code->mov(passed, u32(1));
code->cmp(code->byte[r15 + offsetof(JitState, exclusive_state)], u8(0));
code->je(end);
code->mov(tmp, code->ABI_PARAM1);
code->xor_(tmp, dword[r15 + offsetof(JitState, exclusive_address)]);
code->test(tmp, JitState::RESERVATION_GRANULE_MASK);
code->jne(end);
code->mov(code->byte[r15 + offsetof(JitState, exclusive_state)], u8(0));
if (prepend_high_word) {
code->mov(code->ABI_PARAM2.cvt32(), code->ABI_PARAM2.cvt32()); // zero extend to 64-bits
code->shl(code->ABI_PARAM3, 32);
code->or_(code->ABI_PARAM2, code->ABI_PARAM3);
}
code->CallFunction(fn);
code->xor_(passed, passed);
code->L(end);
reg_alloc.DefineValue(inst, passed);
}
void EmitX64::EmitExclusiveWriteMemory8(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
ExclusiveWrite(code, reg_alloc, inst, cb.memory.Write8, false);
}
void EmitX64::EmitExclusiveWriteMemory16(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
ExclusiveWrite(code, reg_alloc, inst, cb.memory.Write16, false);
}
void EmitX64::EmitExclusiveWriteMemory32(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
ExclusiveWrite(code, reg_alloc, inst, cb.memory.Write32, false);
}
void EmitX64::EmitExclusiveWriteMemory64(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
ExclusiveWrite(code, reg_alloc, inst, cb.memory.Write64, true);
}
static void EmitCoprocessorException() {
ASSERT_MSG(false, "Should raise coproc exception here");
}
static void CallCoprocCallback(BlockOfCode* code, RegAlloc& reg_alloc, Jit* jit_interface, Coprocessor::Callback callback, IR::Inst* inst = nullptr, boost::optional<Argument&> arg0 = {}, boost::optional<Argument&> arg1 = {}) {
reg_alloc.HostCall(inst, {}, {}, arg0, arg1);
code->mov(code->ABI_PARAM1, reinterpret_cast<u64>(jit_interface));
if (callback.user_arg) {
code->mov(code->ABI_PARAM2, reinterpret_cast<u64>(*callback.user_arg));
}
code->CallFunction(callback.function);
}
void EmitX64::EmitCoprocInternalOperation(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto coproc_info = inst->GetArg(0).GetCoprocInfo();
size_t coproc_num = coproc_info[0];
bool two = coproc_info[1] != 0;
unsigned opc1 = static_cast<unsigned>(coproc_info[2]);
Arm::CoprocReg CRd = static_cast<Arm::CoprocReg>(coproc_info[3]);
Arm::CoprocReg CRn = static_cast<Arm::CoprocReg>(coproc_info[4]);
Arm::CoprocReg CRm = static_cast<Arm::CoprocReg>(coproc_info[5]);
unsigned opc2 = static_cast<unsigned>(coproc_info[6]);
std::shared_ptr<Coprocessor> coproc = cb.coprocessors[coproc_num];
if (!coproc) {
EmitCoprocessorException();
return;
}
auto action = coproc->CompileInternalOperation(two, opc1, CRd, CRn, CRm, opc2);
if (!action) {
EmitCoprocessorException();
return;
}
CallCoprocCallback(code, reg_alloc, jit_interface, *action);
}
void EmitX64::EmitCoprocSendOneWord(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
auto coproc_info = inst->GetArg(0).GetCoprocInfo();
size_t coproc_num = coproc_info[0];
bool two = coproc_info[1] != 0;
unsigned opc1 = static_cast<unsigned>(coproc_info[2]);
Arm::CoprocReg CRn = static_cast<Arm::CoprocReg>(coproc_info[3]);
Arm::CoprocReg CRm = static_cast<Arm::CoprocReg>(coproc_info[4]);
unsigned opc2 = static_cast<unsigned>(coproc_info[5]);
std::shared_ptr<Coprocessor> coproc = cb.coprocessors[coproc_num];
if (!coproc) {
EmitCoprocessorException();
return;
}
auto action = coproc->CompileSendOneWord(two, opc1, CRn, CRm, opc2);
switch (action.which()) {
case 0:
EmitCoprocessorException();
return;
case 1:
CallCoprocCallback(code, reg_alloc, jit_interface, boost::get<Coprocessor::Callback>(action), nullptr, args[1]);
return;
case 2: {
u32* destination_ptr = boost::get<u32*>(action);
Xbyak::Reg32 reg_word = reg_alloc.UseGpr(args[1]).cvt32();
Xbyak::Reg64 reg_destination_addr = reg_alloc.ScratchGpr();
code->mov(reg_destination_addr, reinterpret_cast<u64>(destination_ptr));
code->mov(code->dword[reg_destination_addr], reg_word);
return;
}
default:
ASSERT_MSG(false, "Unreachable");
}
}
void EmitX64::EmitCoprocSendTwoWords(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
auto coproc_info = inst->GetArg(0).GetCoprocInfo();
size_t coproc_num = coproc_info[0];
bool two = coproc_info[1] != 0;
unsigned opc = static_cast<unsigned>(coproc_info[2]);
Arm::CoprocReg CRm = static_cast<Arm::CoprocReg>(coproc_info[3]);
std::shared_ptr<Coprocessor> coproc = cb.coprocessors[coproc_num];
if (!coproc) {
EmitCoprocessorException();
return;
}
auto action = coproc->CompileSendTwoWords(two, opc, CRm);
switch (action.which()) {
case 0:
EmitCoprocessorException();
return;
case 1:
CallCoprocCallback(code, reg_alloc, jit_interface, boost::get<Coprocessor::Callback>(action), nullptr, args[1], args[2]);
return;
case 2: {
auto destination_ptrs = boost::get<std::array<u32*, 2>>(action);
Xbyak::Reg32 reg_word1 = reg_alloc.UseGpr(args[1]).cvt32();
Xbyak::Reg32 reg_word2 = reg_alloc.UseGpr(args[2]).cvt32();
Xbyak::Reg64 reg_destination_addr = reg_alloc.ScratchGpr();
code->mov(reg_destination_addr, reinterpret_cast<u64>(destination_ptrs[0]));
code->mov(code->dword[reg_destination_addr], reg_word1);
code->mov(reg_destination_addr, reinterpret_cast<u64>(destination_ptrs[1]));
code->mov(code->dword[reg_destination_addr], reg_word2);
return;
}
default:
ASSERT_MSG(false, "Unreachable");
}
}
void EmitX64::EmitCoprocGetOneWord(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto coproc_info = inst->GetArg(0).GetCoprocInfo();
size_t coproc_num = coproc_info[0];
bool two = coproc_info[1] != 0;
unsigned opc1 = static_cast<unsigned>(coproc_info[2]);
Arm::CoprocReg CRn = static_cast<Arm::CoprocReg>(coproc_info[3]);
Arm::CoprocReg CRm = static_cast<Arm::CoprocReg>(coproc_info[4]);
unsigned opc2 = static_cast<unsigned>(coproc_info[5]);
std::shared_ptr<Coprocessor> coproc = cb.coprocessors[coproc_num];
if (!coproc) {
EmitCoprocessorException();
return;
}
auto action = coproc->CompileGetOneWord(two, opc1, CRn, CRm, opc2);
switch (action.which()) {
case 0:
EmitCoprocessorException();
return;
case 1:
CallCoprocCallback(code, reg_alloc, jit_interface, boost::get<Coprocessor::Callback>(action), inst);
return;
case 2: {
u32* source_ptr = boost::get<u32*>(action);
Xbyak::Reg32 reg_word = reg_alloc.ScratchGpr().cvt32();
Xbyak::Reg64 reg_source_addr = reg_alloc.ScratchGpr();
code->mov(reg_source_addr, reinterpret_cast<u64>(source_ptr));
code->mov(reg_word, code->dword[reg_source_addr]);
reg_alloc.DefineValue(inst, reg_word);
return;
}
default:
ASSERT_MSG(false, "Unreachable");
}
}
void EmitX64::EmitCoprocGetTwoWords(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto coproc_info = inst->GetArg(0).GetCoprocInfo();
size_t coproc_num = coproc_info[0];
bool two = coproc_info[1] != 0;
unsigned opc = coproc_info[2];
Arm::CoprocReg CRm = static_cast<Arm::CoprocReg>(coproc_info[3]);
std::shared_ptr<Coprocessor> coproc = cb.coprocessors[coproc_num];
if (!coproc) {
EmitCoprocessorException();
return;
}
auto action = coproc->CompileGetTwoWords(two, opc, CRm);
switch (action.which()) {
case 0:
EmitCoprocessorException();
return;
case 1:
CallCoprocCallback(code, reg_alloc, jit_interface, boost::get<Coprocessor::Callback>(action), inst);
return;
case 2: {
auto source_ptrs = boost::get<std::array<u32*, 2>>(action);
Xbyak::Reg64 reg_result = reg_alloc.ScratchGpr();
Xbyak::Reg64 reg_destination_addr = reg_alloc.ScratchGpr();
Xbyak::Reg64 reg_tmp = reg_alloc.ScratchGpr();
code->mov(reg_destination_addr, reinterpret_cast<u64>(source_ptrs[1]));
code->mov(reg_result.cvt32(), code->dword[reg_destination_addr]);
code->shl(reg_result, 32);
code->mov(reg_destination_addr, reinterpret_cast<u64>(source_ptrs[0]));
code->mov(reg_tmp.cvt32(), code->dword[reg_destination_addr]);
code->or_(reg_result, reg_tmp);
reg_alloc.DefineValue(inst, reg_result);
return;
}
default:
ASSERT_MSG(false, "Unreachable");
}
}
void EmitX64::EmitCoprocLoadWords(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
auto coproc_info = inst->GetArg(0).GetCoprocInfo();
size_t coproc_num = coproc_info[0];
bool two = coproc_info[1] != 0;
bool long_transfer = coproc_info[2] != 0;
Arm::CoprocReg CRd = static_cast<Arm::CoprocReg>(coproc_info[3]);
bool has_option = coproc_info[4] != 0;
boost::optional<u8> option{has_option, coproc_info[5]};
std::shared_ptr<Coprocessor> coproc = cb.coprocessors[coproc_num];
if (!coproc) {
EmitCoprocessorException();
return;
}
auto action = coproc->CompileLoadWords(two, long_transfer, CRd, option);
if (!action) {
EmitCoprocessorException();
return;
}
CallCoprocCallback(code, reg_alloc, jit_interface, *action, nullptr, args[1]);
}
void EmitX64::EmitCoprocStoreWords(RegAlloc& reg_alloc, IR::Block&, IR::Inst* inst) {
auto args = reg_alloc.GetArgumentInfo(inst);
auto coproc_info = inst->GetArg(0).GetCoprocInfo();
size_t coproc_num = coproc_info[0];
bool two = coproc_info[1] != 0;
bool long_transfer = coproc_info[2] != 0;
Arm::CoprocReg CRd = static_cast<Arm::CoprocReg>(coproc_info[3]);
bool has_option = coproc_info[4] != 0;
boost::optional<u8> option{has_option, coproc_info[5]};
std::shared_ptr<Coprocessor> coproc = cb.coprocessors[coproc_num];
if (!coproc) {
EmitCoprocessorException();
return;
}
auto action = coproc->CompileStoreWords(two, long_transfer, CRd, option);
if (!action) {
EmitCoprocessorException();
return;
}
CallCoprocCallback(code, reg_alloc, jit_interface, *action, nullptr, args[1]);
}
void EmitX64::EmitAddCycles(size_t cycles) {
using namespace Xbyak::util;
ASSERT(cycles < std::numeric_limits<u32>::max());
code->sub(qword[r15 + offsetof(JitState, cycles_remaining)], static_cast<u32>(cycles));
}
static Xbyak::Label EmitCond(BlockOfCode* code, Arm::Cond cond) {
using namespace Xbyak::util;
Xbyak::Label label;
const Xbyak::Reg32 cpsr = eax;
code->mov(cpsr, MJitStateCpsr());
constexpr size_t n_shift = 31;
constexpr size_t z_shift = 30;
constexpr size_t c_shift = 29;
constexpr size_t v_shift = 28;
constexpr u32 n_mask = 1u << n_shift;
constexpr u32 z_mask = 1u << z_shift;
constexpr u32 c_mask = 1u << c_shift;
constexpr u32 v_mask = 1u << v_shift;
switch (cond) {
case Arm::Cond::EQ: //z
code->test(cpsr, z_mask);
code->jnz(label);
break;
case Arm::Cond::NE: //!z
code->test(cpsr, z_mask);
code->jz(label);
break;
case Arm::Cond::CS: //c
code->test(cpsr, c_mask);
code->jnz(label);
break;
case Arm::Cond::CC: //!c
code->test(cpsr, c_mask);
code->jz(label);
break;
case Arm::Cond::MI: //n
code->test(cpsr, n_mask);
code->jnz(label);
break;
case Arm::Cond::PL: //!n
code->test(cpsr, n_mask);
code->jz(label);
break;
case Arm::Cond::VS: //v
code->test(cpsr, v_mask);
code->jnz(label);
break;
case Arm::Cond::VC: //!v
code->test(cpsr, v_mask);
code->jz(label);
break;
case Arm::Cond::HI: { //c & !z
code->and_(cpsr, z_mask | c_mask);
code->cmp(cpsr, c_mask);
code->je(label);
break;
}
case Arm::Cond::LS: { //!c | z
code->and_(cpsr, z_mask | c_mask);
code->cmp(cpsr, c_mask);
code->jne(label);
break;
}
case Arm::Cond::GE: { // n == v
code->and_(cpsr, n_mask | v_mask);
code->jz(label);
code->cmp(cpsr, n_mask | v_mask);
code->je(label);
break;
}
case Arm::Cond::LT: { // n != v
Xbyak::Label fail;
code->and_(cpsr, n_mask | v_mask);
code->jz(fail);
code->cmp(cpsr, n_mask | v_mask);
code->jne(label);
code->L(fail);
break;
}
case Arm::Cond::GT: { // !z & (n == v)
const Xbyak::Reg32 tmp1 = ebx;
const Xbyak::Reg32 tmp2 = esi;
code->mov(tmp1, cpsr);
code->mov(tmp2, cpsr);
code->shr(tmp1, n_shift);
code->shr(tmp2, v_shift);
code->shr(cpsr, z_shift);
code->xor_(tmp1, tmp2);
code->or_(tmp1, cpsr);
code->test(tmp1, 1);
code->jz(label);
break;
}
case Arm::Cond::LE: { // z | (n != v)
const Xbyak::Reg32 tmp1 = ebx;
const Xbyak::Reg32 tmp2 = esi;
code->mov(tmp1, cpsr);
code->mov(tmp2, cpsr);
code->shr(tmp1, n_shift);
code->shr(tmp2, v_shift);
code->shr(cpsr, z_shift);
code->xor_(tmp1, tmp2);
code->or_(tmp1, cpsr);
code->test(tmp1, 1);
code->jnz(label);
break;
}
default:
ASSERT_MSG(false, "Unknown cond %zu", static_cast<size_t>(cond));
break;
}
return label;
}
void EmitX64::EmitCondPrelude(const IR::Block& block) {
if (block.GetCondition() == Arm::Cond::AL) {
ASSERT(!block.HasConditionFailedLocation());
return;
}
ASSERT(block.HasConditionFailedLocation());
Xbyak::Label pass = EmitCond(code, block.GetCondition());
EmitAddCycles(block.ConditionFailedCycleCount());
EmitTerminal(IR::Term::LinkBlock{block.ConditionFailedLocation()}, block.Location());
code->L(pass);
}
void EmitX64::EmitTerminal(IR::Terminal terminal, IR::LocationDescriptor initial_location) {
Common::VisitVariant<void>(terminal, [this, &initial_location](auto x) {
this->EmitTerminal(x, initial_location);
});
}
void EmitX64::EmitTerminal(IR::Term::Interpret terminal, IR::LocationDescriptor initial_location) {
ASSERT_MSG(terminal.next.TFlag() == initial_location.TFlag(), "Unimplemented");
ASSERT_MSG(terminal.next.EFlag() == initial_location.EFlag(), "Unimplemented");
code->mov(code->ABI_PARAM1.cvt32(), terminal.next.PC());
code->mov(code->ABI_PARAM2, reinterpret_cast<u64>(jit_interface));
code->mov(code->ABI_PARAM3, reinterpret_cast<u64>(cb.user_arg));
code->mov(MJitStateReg(Arm::Reg::PC), code->ABI_PARAM1.cvt32());
code->SwitchMxcsrOnExit();
code->CallFunction(cb.InterpreterFallback);
code->ReturnFromRunCode(false); // TODO: Check cycles
}
void EmitX64::EmitTerminal(IR::Term::ReturnToDispatch, IR::LocationDescriptor) {
code->ReturnFromRunCode();
}
void EmitX64::EmitTerminal(IR::Term::LinkBlock terminal, IR::LocationDescriptor initial_location) {
using namespace Xbyak::util;
if (terminal.next.TFlag() != initial_location.TFlag()) {
if (terminal.next.TFlag()) {
code->or_(MJitStateCpsr(), u32(1 << 5));
} else {
code->and_(MJitStateCpsr(), u32(~(1 << 5)));
}
}
if (terminal.next.EFlag() != initial_location.EFlag()) {
if (terminal.next.EFlag()) {
code->or_(MJitStateCpsr(), u32(1 << 9));
} else {
code->and_(MJitStateCpsr(), u32(~(1 << 9)));
}
}
code->cmp(qword[r15 + offsetof(JitState, cycles_remaining)], 0);
patch_information[terminal.next.UniqueHash()].jg.emplace_back(code->getCurr());
if (auto next_bb = GetBasicBlock(terminal.next)) {
EmitPatchJg(terminal.next, next_bb->entrypoint);
} else {
EmitPatchJg(terminal.next);
}
code->mov(MJitStateReg(Arm::Reg::PC), terminal.next.PC());
code->ForceReturnFromRunCode(); // TODO: Check cycles, Properly do a link
}
void EmitX64::EmitTerminal(IR::Term::LinkBlockFast terminal, IR::LocationDescriptor initial_location) {
using namespace Xbyak::util;
if (terminal.next.TFlag() != initial_location.TFlag()) {
if (terminal.next.TFlag()) {
code->or_(MJitStateCpsr(), u32(1 << 5));
} else {
code->and_(MJitStateCpsr(), u32(~(1 << 5)));
}
}
if (terminal.next.EFlag() != initial_location.EFlag()) {
if (terminal.next.EFlag()) {
code->or_(MJitStateCpsr(), u32(1 << 9));
} else {
code->and_(MJitStateCpsr(), u32(~(1 << 9)));
}
}
patch_information[terminal.next.UniqueHash()].jmp.emplace_back(code->getCurr());
if (auto next_bb = GetBasicBlock(terminal.next)) {
EmitPatchJmp(terminal.next, next_bb->entrypoint);
} else {
EmitPatchJmp(terminal.next);
}
}
void EmitX64::EmitTerminal(IR::Term::PopRSBHint, IR::LocationDescriptor) {
using namespace Xbyak::util;
// This calculation has to match up with IREmitter::PushRSB
code->mov(ebx, MJitStateCpsr());
code->mov(ecx, MJitStateReg(Arm::Reg::PC));
code->and_(ebx, u32((1 << 5) | (1 << 9)));
code->shr(ebx, 2);
code->or_(ebx, dword[r15 + offsetof(JitState, FPSCR_mode)]);
code->shl(rbx, 32);
code->or_(rbx, rcx);
code->mov(rax, reinterpret_cast<u64>(code->GetReturnFromRunCodeAddress()));
for (size_t i = 0; i < JitState::RSBSize; ++i) {
code->cmp(rbx, qword[r15 + offsetof(JitState, rsb_location_descriptors) + i * sizeof(u64)]);
code->cmove(rax, qword[r15 + offsetof(JitState, rsb_codeptrs) + i * sizeof(u64)]);
}
code->jmp(rax);
}
void EmitX64::EmitTerminal(IR::Term::If terminal, IR::LocationDescriptor initial_location) {
Xbyak::Label pass = EmitCond(code, terminal.if_);
EmitTerminal(terminal.else_, initial_location);
code->L(pass);
EmitTerminal(terminal.then_, initial_location);
}
void EmitX64::EmitTerminal(IR::Term::CheckHalt terminal, IR::LocationDescriptor initial_location) {
using namespace Xbyak::util;
code->cmp(code->byte[r15 + offsetof(JitState, halt_requested)], u8(0));
code->jne(code->GetForceReturnFromRunCodeAddress());
EmitTerminal(terminal.else_, initial_location);
}
void EmitX64::Patch(const IR::LocationDescriptor& desc, CodePtr bb) {
const CodePtr save_code_ptr = code->getCurr();
const PatchInformation& patch_info = patch_information[desc.UniqueHash()];
for (CodePtr location : patch_info.jg) {
code->SetCodePtr(location);
EmitPatchJg(desc, bb);
}
for (CodePtr location : patch_info.jmp) {
code->SetCodePtr(location);
EmitPatchJmp(desc, bb);
}
for (CodePtr location : patch_info.mov_rcx) {
code->SetCodePtr(location);
EmitPatchMovRcx(bb);
}
code->SetCodePtr(save_code_ptr);
}
void EmitX64::Unpatch(const IR::LocationDescriptor& desc) {
Patch(desc, nullptr);
}
void EmitX64::EmitPatchJg(const IR::LocationDescriptor& target_desc, CodePtr target_code_ptr) {
const CodePtr patch_location = code->getCurr();
if (target_code_ptr) {
code->jg(target_code_ptr);
} else {
code->mov(MJitStateReg(Arm::Reg::PC), target_desc.PC());
code->jg(code->GetReturnFromRunCodeAddress());
}
code->EnsurePatchLocationSize(patch_location, 14);
}
void EmitX64::EmitPatchJmp(const IR::LocationDescriptor& target_desc, CodePtr target_code_ptr) {
const CodePtr patch_location = code->getCurr();
if (target_code_ptr) {
code->jmp(target_code_ptr);
} else {
code->mov(MJitStateReg(Arm::Reg::PC), target_desc.PC());
code->jmp(code->GetReturnFromRunCodeAddress());
}
code->EnsurePatchLocationSize(patch_location, 13);
}
void EmitX64::EmitPatchMovRcx(CodePtr target_code_ptr) {
if (!target_code_ptr) {
target_code_ptr = code->GetReturnFromRunCodeAddress();
}
const CodePtr patch_location = code->getCurr();
code->mov(code->rcx, reinterpret_cast<u64>(target_code_ptr));
code->EnsurePatchLocationSize(patch_location, 10);
}
void EmitX64::ClearCache() {
block_descriptors.clear();
patch_information.clear();
}
void EmitX64::InvalidateCacheRange(const Common::AddressRange& range) {
// Remove cached block descriptors and patch information overlapping with the given range.
for (auto it = block_descriptors.begin(); it != block_descriptors.end();) {
IR::LocationDescriptor descriptor = it->second.start_location;
u32 start = descriptor.PC();
u32 end = it->second.end_location_pc;
if (range.Overlaps(start, end)) {
it = block_descriptors.erase(it);
if (patch_information.count(descriptor.UniqueHash())) {
Unpatch(descriptor);
}
} else {
++it;
}
}
}
} // namespace BackendX64
} // namespace Dynarmic