// Copyright 2008 Dolphin Emulator Project / 2017 Citra Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include #include #include #include "common/assert.h" #include "common/logging/log.h" #include "core/core_timing.h" namespace Core { // Sort by time, unless the times are the same, in which case sort by the order added to the queue bool Timing::Event::operator>(const Timing::Event& right) const { return std::tie(time, fifo_order) > std::tie(right.time, right.fifo_order); } bool Timing::Event::operator<(const Timing::Event& right) const { return std::tie(time, fifo_order) < std::tie(right.time, right.fifo_order); } Timing::Timing(std::size_t num_cores, u32 cpu_clock_percentage) { timers.resize(num_cores); for (std::size_t i = 0; i < num_cores; ++i) { timers[i] = std::make_shared(100.0 / cpu_clock_percentage); } current_timer = timers[0]; } void Timing::UpdateClockSpeed(u32 cpu_clock_percentage) { for (auto& timer : timers) { timer->cpu_clock_scale = 100.0 / cpu_clock_percentage; } } TimingEventType* Timing::RegisterEvent(const std::string& name, TimedCallback callback) { // check for existing type with same name. // we want event type names to remain unique so that we can use them for serialization. ASSERT_MSG(event_types.find(name) == event_types.end(), "CoreTiming Event \"{}\" is already registered. Events should only be registered " "during Init to avoid breaking save states.", name); auto info = event_types.emplace(name, TimingEventType{callback, nullptr}); TimingEventType* event_type = &info.first->second; event_type->name = &info.first->first; return event_type; } void Timing::ScheduleEvent(s64 cycles_into_future, const TimingEventType* event_type, u64 userdata, std::size_t core_id) { ASSERT(event_type != nullptr); std::shared_ptr timer; if (core_id == std::numeric_limits::max()) { timer = current_timer; } else { ASSERT(core_id < timers.size()); timer = timers.at(core_id); } s64 timeout = timer->GetTicks() + cycles_into_future; if (current_timer == timer) { // If this event needs to be scheduled before the next advance(), force one early if (!timer->is_timer_sane) timer->ForceExceptionCheck(cycles_into_future); timer->event_queue.emplace_back( Event{timeout, timer->event_fifo_id++, userdata, event_type}); std::push_heap(timer->event_queue.begin(), timer->event_queue.end(), std::greater<>()); } else { timer->ts_queue.Push(Event{static_cast(timer->GetTicks() + cycles_into_future), 0, userdata, event_type}); } } void Timing::UnscheduleEvent(const TimingEventType* event_type, u64 userdata) { for (auto timer : timers) { auto itr = std::remove_if( timer->event_queue.begin(), timer->event_queue.end(), [&](const Event& e) { return e.type == event_type && e.userdata == userdata; }); // Removing random items breaks the invariant so we have to re-establish it. if (itr != timer->event_queue.end()) { timer->event_queue.erase(itr, timer->event_queue.end()); std::make_heap(timer->event_queue.begin(), timer->event_queue.end(), std::greater<>()); } } // TODO:remove events from ts_queue } void Timing::RemoveEvent(const TimingEventType* event_type) { for (auto timer : timers) { auto itr = std::remove_if(timer->event_queue.begin(), timer->event_queue.end(), [&](const Event& e) { return e.type == event_type; }); // Removing random items breaks the invariant so we have to re-establish it. if (itr != timer->event_queue.end()) { timer->event_queue.erase(itr, timer->event_queue.end()); std::make_heap(timer->event_queue.begin(), timer->event_queue.end(), std::greater<>()); } } // TODO:remove events from ts_queue } void Timing::SetCurrentTimer(std::size_t core_id) { current_timer = timers[core_id]; } s64 Timing::GetTicks() const { return current_timer->GetTicks(); } s64 Timing::GetGlobalTicks() const { return global_timer; } std::chrono::microseconds Timing::GetGlobalTimeUs() const { return std::chrono::microseconds{GetTicks() * 1000000 / BASE_CLOCK_RATE_ARM11}; } std::shared_ptr Timing::GetTimer(std::size_t cpu_id) { return timers[cpu_id]; } Timing::Timer::Timer(double cpu_clock_scale_) : cpu_clock_scale(cpu_clock_scale_) {} Timing::Timer::~Timer() { MoveEvents(); } u64 Timing::Timer::GetTicks() const { u64 ticks = static_cast(executed_ticks); if (!is_timer_sane) { ticks += slice_length - downcount; } return ticks; } void Timing::Timer::AddTicks(u64 ticks) { downcount -= static_cast(ticks * cpu_clock_scale); } u64 Timing::Timer::GetIdleTicks() const { return static_cast(idled_cycles); } void Timing::Timer::ForceExceptionCheck(s64 cycles) { cycles = std::max(0, cycles); if (downcount > cycles) { slice_length -= downcount - cycles; downcount = cycles; } } void Timing::Timer::MoveEvents() { for (Event ev; ts_queue.Pop(ev);) { ev.fifo_order = event_fifo_id++; event_queue.emplace_back(std::move(ev)); std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>()); } } s64 Timing::Timer::GetMaxSliceLength() const { auto next_event = std::find_if(event_queue.begin(), event_queue.end(), [&](const Event& e) { return e.time - executed_ticks > 0; }); if (next_event != event_queue.end()) { return next_event->time - executed_ticks; } return MAX_SLICE_LENGTH; } void Timing::Timer::Advance(s64 max_slice_length) { MoveEvents(); s64 cycles_executed = slice_length - downcount; idled_cycles = 0; executed_ticks += cycles_executed; slice_length = max_slice_length; is_timer_sane = true; while (!event_queue.empty() && event_queue.front().time <= executed_ticks) { Event evt = std::move(event_queue.front()); std::pop_heap(event_queue.begin(), event_queue.end(), std::greater<>()); event_queue.pop_back(); evt.type->callback(evt.userdata, executed_ticks - evt.time); } is_timer_sane = false; // Still events left (scheduled in the future) if (!event_queue.empty()) { slice_length = static_cast( std::min(event_queue.front().time - executed_ticks, max_slice_length)); } downcount = slice_length; } void Timing::Timer::Idle() { idled_cycles += downcount; downcount = 0; } s64 Timing::Timer::GetDowncount() const { return downcount; } } // namespace Core