// Copyright 2008 Dolphin Emulator Project / 2017 Citra Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #pragma once /** * This is a system to schedule events into the emulated machine's future. Time is measured * in main CPU clock cycles. * * To schedule an event, you first have to register its type. This is where you pass in the * callback. You then schedule events using the type id you get back. * * The int cyclesLate that the callbacks get is how many cycles late it was. * So to schedule a new event on a regular basis: * inside callback: * ScheduleEvent(periodInCycles - cyclesLate, callback, "whatever") */ #include #include #include #include #include #include #include #include #include "common/common_types.h" #include "common/logging/log.h" #include "common/threadsafe_queue.h" #include "core/global.h" // The timing we get from the assembly is 268,111,855.956 Hz // It is possible that this number isn't just an integer because the compiler could have // optimized the multiplication by a multiply-by-constant division. // Rounding to the nearest integer should be fine constexpr u64 BASE_CLOCK_RATE_ARM11 = 268111856; constexpr u64 MAX_VALUE_TO_MULTIPLY = std::numeric_limits::max() / BASE_CLOCK_RATE_ARM11; constexpr s64 msToCycles(int ms) { // since ms is int there is no way to overflow return BASE_CLOCK_RATE_ARM11 * static_cast(ms) / 1000; } constexpr s64 msToCycles(float ms) { return static_cast(BASE_CLOCK_RATE_ARM11 * (0.001f) * ms); } constexpr s64 msToCycles(double ms) { return static_cast(BASE_CLOCK_RATE_ARM11 * (0.001) * ms); } constexpr s64 usToCycles(float us) { return static_cast(BASE_CLOCK_RATE_ARM11 * (0.000001f) * us); } constexpr s64 usToCycles(int us) { return (BASE_CLOCK_RATE_ARM11 * static_cast(us) / 1000000); } inline s64 usToCycles(s64 us) { if (us / 1000000 > static_cast(MAX_VALUE_TO_MULTIPLY)) { LOG_ERROR(Core_Timing, "Integer overflow, use max value"); return std::numeric_limits::max(); } if (us > static_cast(MAX_VALUE_TO_MULTIPLY)) { LOG_DEBUG(Core_Timing, "Time very big, do rounding"); return BASE_CLOCK_RATE_ARM11 * (us / 1000000); } return (BASE_CLOCK_RATE_ARM11 * us) / 1000000; } inline s64 usToCycles(u64 us) { if (us / 1000000 > MAX_VALUE_TO_MULTIPLY) { LOG_ERROR(Core_Timing, "Integer overflow, use max value"); return std::numeric_limits::max(); } if (us > MAX_VALUE_TO_MULTIPLY) { LOG_DEBUG(Core_Timing, "Time very big, do rounding"); return BASE_CLOCK_RATE_ARM11 * static_cast(us / 1000000); } return (BASE_CLOCK_RATE_ARM11 * static_cast(us)) / 1000000; } constexpr s64 nsToCycles(float ns) { return static_cast(BASE_CLOCK_RATE_ARM11 * (0.000000001f) * ns); } constexpr s64 nsToCycles(int ns) { return BASE_CLOCK_RATE_ARM11 * static_cast(ns) / 1000000000; } inline s64 nsToCycles(s64 ns) { if (ns / 1000000000 > static_cast(MAX_VALUE_TO_MULTIPLY)) { LOG_ERROR(Core_Timing, "Integer overflow, use max value"); return std::numeric_limits::max(); } if (ns > static_cast(MAX_VALUE_TO_MULTIPLY)) { LOG_DEBUG(Core_Timing, "Time very big, do rounding"); return BASE_CLOCK_RATE_ARM11 * (ns / 1000000000); } return (BASE_CLOCK_RATE_ARM11 * ns) / 1000000000; } inline s64 nsToCycles(u64 ns) { if (ns / 1000000000 > MAX_VALUE_TO_MULTIPLY) { LOG_ERROR(Core_Timing, "Integer overflow, use max value"); return std::numeric_limits::max(); } if (ns > MAX_VALUE_TO_MULTIPLY) { LOG_DEBUG(Core_Timing, "Time very big, do rounding"); return BASE_CLOCK_RATE_ARM11 * (static_cast(ns) / 1000000000); } return (BASE_CLOCK_RATE_ARM11 * static_cast(ns)) / 1000000000; } constexpr u64 cyclesToNs(s64 cycles) { return cycles * 1000000000 / BASE_CLOCK_RATE_ARM11; } constexpr s64 cyclesToUs(s64 cycles) { return cycles * 1000000 / BASE_CLOCK_RATE_ARM11; } constexpr u64 cyclesToMs(s64 cycles) { return cycles * 1000 / BASE_CLOCK_RATE_ARM11; } namespace Core { using TimedCallback = std::function; struct TimingEventType { TimedCallback callback; const std::string* name; }; class Timing { public: struct Event { s64 time; u64 fifo_order; u64 userdata; const TimingEventType* type; bool operator>(const Event& right) const; bool operator<(const Event& right) const; private: template void save(Archive& ar, const unsigned int) const { ar& time; ar& fifo_order; ar& userdata; std::string name = *(type->name); ar << name; } template void load(Archive& ar, const unsigned int) { ar& time; ar& fifo_order; ar& userdata; std::string name; ar >> name; type = Global().RegisterEvent(name, nullptr); } friend class boost::serialization::access; BOOST_SERIALIZATION_SPLIT_MEMBER() }; static constexpr int MAX_SLICE_LENGTH = 20000; class Timer { public: Timer(); ~Timer(); s64 GetMaxSliceLength() const; void Advance(s64 max_slice_length = MAX_SLICE_LENGTH); void Idle(); u64 GetTicks() const; u64 GetIdleTicks() const; void AddTicks(u64 ticks); s64 GetDowncount() const; void ForceExceptionCheck(s64 cycles); void MoveEvents(); private: friend class Timing; // The queue is a min-heap using std::make_heap/push_heap/pop_heap. // We don't use std::priority_queue because we need to be able to serialize, unserialize and // erase arbitrary events (RemoveEvent()) regardless of the queue order. These aren't // accomodated by the standard adaptor class. std::vector event_queue; u64 event_fifo_id = 0; // the queue for storing the events from other threads threadsafe until they will be added // to the event_queue by the emu thread Common::MPSCQueue ts_queue; // Are we in a function that has been called from Advance() // If events are sheduled from a function that gets called from Advance(), // don't change slice_length and downcount. // The time between CoreTiming being intialized and the first call to Advance() is // considered the slice boundary between slice -1 and slice 0. Dispatcher loops must call // Advance() before executing the first cycle of each slice to prepare the slice length and // downcount for that slice. bool is_timer_sane = true; s64 slice_length = MAX_SLICE_LENGTH; s64 downcount = MAX_SLICE_LENGTH; s64 executed_ticks = 0; u64 idled_cycles = 0; // Stores a scaling for the internal clockspeed. Changing this number results in // under/overclocking the guest cpu double cpu_clock_scale = 1.0; template void serialize(Archive& ar, const unsigned int) { MoveEvents(); // NOTE: ts_queue should be empty now ar& event_queue; ar& event_fifo_id; ar& slice_length; ar& downcount; ar& executed_ticks; ar& idled_cycles; } friend class boost::serialization::access; }; explicit Timing(std::size_t num_cores, u32 cpu_clock_percentage); ~Timing(){}; /** * Returns the event_type identifier. if name is not unique, it will assert. */ TimingEventType* RegisterEvent(const std::string& name, TimedCallback callback); void ScheduleEvent(s64 cycles_into_future, const TimingEventType* event_type, u64 userdata = 0, std::size_t core_id = std::numeric_limits::max()); void UnscheduleEvent(const TimingEventType* event_type, u64 userdata); /// We only permit one event of each type in the queue at a time. void RemoveEvent(const TimingEventType* event_type); void SetCurrentTimer(std::size_t core_id); s64 GetTicks() const; s64 GetGlobalTicks() const; void AddToGlobalTicks(s64 ticks) { global_timer += ticks; } /** * Updates the value of the cpu clock scaling to the new percentage. */ void UpdateClockSpeed(u32 cpu_clock_percentage); std::chrono::microseconds GetGlobalTimeUs() const; std::shared_ptr GetTimer(std::size_t cpu_id); private: s64 global_timer = 0; // unordered_map stores each element separately as a linked list node so pointers to // elements remain stable regardless of rehashes/resizing. std::unordered_map event_types = {}; std::vector> timers; std::shared_ptr current_timer; // Stores a scaling for the internal clockspeed. Changing this number results in // under/overclocking the guest cpu double cpu_clock_scale = 1.0; template void serialize(Archive& ar, const unsigned int) { // event_types set during initialization of other things ar& global_timer; ar& timers; ar& current_timer; } friend class boost::serialization::access; }; } // namespace Core