// Copyright 2014 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include #include #include "common/logging/log.h" #include "common/microprofile.h" #include "common/scope_exit.h" #include "core/arm/arm_interface.h" #include "core/core.h" #include "core/core_timing.h" #include "core/hle/kernel/address_arbiter.h" #include "core/hle/kernel/client_port.h" #include "core/hle/kernel/client_session.h" #include "core/hle/kernel/errors.h" #include "core/hle/kernel/event.h" #include "core/hle/kernel/handle_table.h" #include "core/hle/kernel/ipc.h" #include "core/hle/kernel/memory.h" #include "core/hle/kernel/mutex.h" #include "core/hle/kernel/process.h" #include "core/hle/kernel/resource_limit.h" #include "core/hle/kernel/semaphore.h" #include "core/hle/kernel/server_port.h" #include "core/hle/kernel/server_session.h" #include "core/hle/kernel/session.h" #include "core/hle/kernel/shared_memory.h" #include "core/hle/kernel/svc.h" #include "core/hle/kernel/svc_wrapper.h" #include "core/hle/kernel/thread.h" #include "core/hle/kernel/timer.h" #include "core/hle/kernel/vm_manager.h" #include "core/hle/kernel/wait_object.h" #include "core/hle/lock.h" #include "core/hle/result.h" #include "core/hle/service/service.h" namespace Kernel { enum ControlMemoryOperation { MEMOP_FREE = 1, MEMOP_RESERVE = 2, // This operation seems to be unsupported in the kernel MEMOP_COMMIT = 3, MEMOP_MAP = 4, MEMOP_UNMAP = 5, MEMOP_PROTECT = 6, MEMOP_OPERATION_MASK = 0xFF, MEMOP_REGION_APP = 0x100, MEMOP_REGION_SYSTEM = 0x200, MEMOP_REGION_BASE = 0x300, MEMOP_REGION_MASK = 0xF00, MEMOP_LINEAR = 0x10000, }; struct MemoryInfo { u32 base_address; u32 size; u32 permission; u32 state; }; struct PageInfo { u32 flags; }; /// Values accepted by svcGetSystemInfo's type parameter. enum class SystemInfoType { /** * Reports total used memory for all regions or a specific one, according to the extra * parameter. See `SystemInfoMemUsageRegion`. */ REGION_MEMORY_USAGE = 0, /** * Returns the memory usage for certain allocations done internally by the kernel. */ KERNEL_ALLOCATED_PAGES = 2, /** * "This returns the total number of processes which were launched directly by the kernel. * For the ARM11 NATIVE_FIRM kernel, this is 5, for processes sm, fs, pm, loader, and pxi." */ KERNEL_SPAWNED_PIDS = 26, }; /** * Accepted by svcGetSystemInfo param with REGION_MEMORY_USAGE type. Selects a region to query * memory usage of. */ enum class SystemInfoMemUsageRegion { ALL = 0, APPLICATION = 1, SYSTEM = 2, BASE = 3, }; class SVC : public SVCWrapper { public: SVC(Core::System& system); void CallSVC(u32 immediate); private: Core::System& system; Kernel::KernelSystem& kernel; friend class SVCWrapper; // ARM interfaces u32 GetReg(std::size_t n); void SetReg(std::size_t n, u32 value); // SVC interfaces ResultCode ControlMemory(u32* out_addr, u32 addr0, u32 addr1, u32 size, u32 operation, u32 permissions); void ExitProcess(); ResultCode MapMemoryBlock(Handle handle, u32 addr, u32 permissions, u32 other_permissions); ResultCode UnmapMemoryBlock(Handle handle, u32 addr); ResultCode ConnectToPort(Handle* out_handle, VAddr port_name_address); ResultCode SendSyncRequest(Handle handle); ResultCode CloseHandle(Handle handle); ResultCode WaitSynchronization1(Handle handle, s64 nano_seconds); ResultCode WaitSynchronizationN(s32* out, VAddr handles_address, s32 handle_count, bool wait_all, s64 nano_seconds); ResultCode ReplyAndReceive(s32* index, VAddr handles_address, s32 handle_count, Handle reply_target); ResultCode CreateAddressArbiter(Handle* out_handle); ResultCode ArbitrateAddress(Handle handle, u32 address, u32 type, u32 value, s64 nanoseconds); void Break(u8 break_reason); void OutputDebugString(VAddr address, s32 len); ResultCode GetResourceLimit(Handle* resource_limit, Handle process_handle); ResultCode GetResourceLimitCurrentValues(VAddr values, Handle resource_limit_handle, VAddr names, u32 name_count); ResultCode GetResourceLimitLimitValues(VAddr values, Handle resource_limit_handle, VAddr names, u32 name_count); ResultCode CreateThread(Handle* out_handle, u32 entry_point, u32 arg, VAddr stack_top, u32 priority, s32 processor_id); void ExitThread(); ResultCode GetThreadPriority(u32* priority, Handle handle); ResultCode SetThreadPriority(Handle handle, u32 priority); ResultCode CreateMutex(Handle* out_handle, u32 initial_locked); ResultCode ReleaseMutex(Handle handle); ResultCode GetProcessId(u32* process_id, Handle process_handle); ResultCode GetProcessIdOfThread(u32* process_id, Handle thread_handle); ResultCode GetThreadId(u32* thread_id, Handle handle); ResultCode CreateSemaphore(Handle* out_handle, s32 initial_count, s32 max_count); ResultCode ReleaseSemaphore(s32* count, Handle handle, s32 release_count); ResultCode QueryProcessMemory(MemoryInfo* memory_info, PageInfo* page_info, Handle process_handle, u32 addr); ResultCode QueryMemory(MemoryInfo* memory_info, PageInfo* page_info, u32 addr); ResultCode CreateEvent(Handle* out_handle, u32 reset_type); ResultCode DuplicateHandle(Handle* out, Handle handle); ResultCode SignalEvent(Handle handle); ResultCode ClearEvent(Handle handle); ResultCode CreateTimer(Handle* out_handle, u32 reset_type); ResultCode ClearTimer(Handle handle); ResultCode SetTimer(Handle handle, s64 initial, s64 interval); ResultCode CancelTimer(Handle handle); void SleepThread(s64 nanoseconds); s64 GetSystemTick(); ResultCode CreateMemoryBlock(Handle* out_handle, u32 addr, u32 size, u32 my_permission, u32 other_permission); ResultCode CreatePort(Handle* server_port, Handle* client_port, VAddr name_address, u32 max_sessions); ResultCode CreateSessionToPort(Handle* out_client_session, Handle client_port_handle); ResultCode CreateSession(Handle* server_session, Handle* client_session); ResultCode AcceptSession(Handle* out_server_session, Handle server_port_handle); ResultCode GetSystemInfo(s64* out, u32 type, s32 param); ResultCode GetProcessInfo(s64* out, Handle process_handle, u32 type); struct FunctionDef { using Func = void (SVC::*)(); u32 id; Func func; const char* name; }; static const FunctionDef SVC_Table[]; static const FunctionDef* GetSVCInfo(u32 func_num); }; /// Map application or GSP heap memory ResultCode SVC::ControlMemory(u32* out_addr, u32 addr0, u32 addr1, u32 size, u32 operation, u32 permissions) { LOG_DEBUG(Kernel_SVC, "called operation=0x{:08X}, addr0=0x{:08X}, addr1=0x{:08X}, " "size=0x{:X}, permissions=0x{:08X}", operation, addr0, addr1, size, permissions); if ((addr0 & Memory::PAGE_MASK) != 0 || (addr1 & Memory::PAGE_MASK) != 0) { return ERR_MISALIGNED_ADDRESS; } if ((size & Memory::PAGE_MASK) != 0) { return ERR_MISALIGNED_SIZE; } u32 region = operation & MEMOP_REGION_MASK; operation &= ~MEMOP_REGION_MASK; if (region != 0) { LOG_WARNING(Kernel_SVC, "ControlMemory with specified region not supported, region={:X}", region); } if ((permissions & (u32)MemoryPermission::ReadWrite) != permissions) { return ERR_INVALID_COMBINATION; } VMAPermission vma_permissions = (VMAPermission)permissions; auto& process = *kernel.GetCurrentProcess(); switch (operation & MEMOP_OPERATION_MASK) { case MEMOP_FREE: { // TODO(Subv): What happens if an application tries to FREE a block of memory that has a // SharedMemory pointing to it? if (addr0 >= Memory::HEAP_VADDR && addr0 < Memory::HEAP_VADDR_END) { ResultCode result = process.HeapFree(addr0, size); if (result.IsError()) return result; } else if (addr0 >= process.GetLinearHeapBase() && addr0 < process.GetLinearHeapLimit()) { ResultCode result = process.LinearFree(addr0, size); if (result.IsError()) return result; } else { return ERR_INVALID_ADDRESS; } *out_addr = addr0; break; } case MEMOP_COMMIT: { if (operation & MEMOP_LINEAR) { CASCADE_RESULT(*out_addr, process.LinearAllocate(addr0, size, vma_permissions)); } else { CASCADE_RESULT(*out_addr, process.HeapAllocate(addr0, size, vma_permissions)); } break; } case MEMOP_MAP: { CASCADE_CODE(process.Map(addr0, addr1, size, vma_permissions)); break; } case MEMOP_UNMAP: { CASCADE_CODE(process.Unmap(addr0, addr1, size, vma_permissions)); break; } case MEMOP_PROTECT: { ResultCode result = process.vm_manager.ReprotectRange(addr0, size, vma_permissions); if (result.IsError()) return result; break; } default: LOG_ERROR(Kernel_SVC, "unknown operation=0x{:08X}", operation); return ERR_INVALID_COMBINATION; } process.vm_manager.LogLayout(Log::Level::Trace); return RESULT_SUCCESS; } void SVC::ExitProcess() { SharedPtr current_process = kernel.GetCurrentProcess(); LOG_INFO(Kernel_SVC, "Process {} exiting", current_process->process_id); ASSERT_MSG(current_process->status == ProcessStatus::Running, "Process has already exited"); current_process->status = ProcessStatus::Exited; // Stop all the process threads that are currently waiting for objects. auto& thread_list = kernel.GetThreadManager().GetThreadList(); for (auto& thread : thread_list) { if (thread->owner_process != current_process) continue; if (thread == kernel.GetThreadManager().GetCurrentThread()) continue; // TODO(Subv): When are the other running/ready threads terminated? ASSERT_MSG(thread->status == ThreadStatus::WaitSynchAny || thread->status == ThreadStatus::WaitSynchAll, "Exiting processes with non-waiting threads is currently unimplemented"); thread->Stop(); } // Kill the current thread kernel.GetThreadManager().GetCurrentThread()->Stop(); system.PrepareReschedule(); } /// Maps a memory block to specified address ResultCode SVC::MapMemoryBlock(Handle handle, u32 addr, u32 permissions, u32 other_permissions) { LOG_TRACE(Kernel_SVC, "called memblock=0x{:08X}, addr=0x{:08X}, mypermissions=0x{:08X}, " "otherpermission={}", handle, addr, permissions, other_permissions); SharedPtr shared_memory = kernel.GetCurrentProcess()->handle_table.Get(handle); if (shared_memory == nullptr) return ERR_INVALID_HANDLE; MemoryPermission permissions_type = static_cast(permissions); switch (permissions_type) { case MemoryPermission::Read: case MemoryPermission::Write: case MemoryPermission::ReadWrite: case MemoryPermission::Execute: case MemoryPermission::ReadExecute: case MemoryPermission::WriteExecute: case MemoryPermission::ReadWriteExecute: case MemoryPermission::DontCare: return shared_memory->Map(kernel.GetCurrentProcess().get(), addr, permissions_type, static_cast(other_permissions)); default: LOG_ERROR(Kernel_SVC, "unknown permissions=0x{:08X}", permissions); } return ERR_INVALID_COMBINATION; } ResultCode SVC::UnmapMemoryBlock(Handle handle, u32 addr) { LOG_TRACE(Kernel_SVC, "called memblock=0x{:08X}, addr=0x{:08X}", handle, addr); // TODO(Subv): Return E0A01BF5 if the address is not in the application's heap SharedPtr current_process = kernel.GetCurrentProcess(); SharedPtr shared_memory = current_process->handle_table.Get(handle); if (shared_memory == nullptr) return ERR_INVALID_HANDLE; return shared_memory->Unmap(current_process.get(), addr); } /// Connect to an OS service given the port name, returns the handle to the port to out ResultCode SVC::ConnectToPort(Handle* out_handle, VAddr port_name_address) { if (!Memory::IsValidVirtualAddress(*kernel.GetCurrentProcess(), port_name_address)) return ERR_NOT_FOUND; static constexpr std::size_t PortNameMaxLength = 11; // Read 1 char beyond the max allowed port name to detect names that are too long. std::string port_name = Memory::ReadCString(port_name_address, PortNameMaxLength + 1); if (port_name.size() > PortNameMaxLength) return ERR_PORT_NAME_TOO_LONG; LOG_TRACE(Kernel_SVC, "called port_name={}", port_name); auto it = kernel.named_ports.find(port_name); if (it == kernel.named_ports.end()) { LOG_WARNING(Kernel_SVC, "tried to connect to unknown port: {}", port_name); return ERR_NOT_FOUND; } auto client_port = it->second; SharedPtr client_session; CASCADE_RESULT(client_session, client_port->Connect()); // Return the client session CASCADE_RESULT(*out_handle, kernel.GetCurrentProcess()->handle_table.Create(client_session)); return RESULT_SUCCESS; } /// Makes a blocking IPC call to an OS service. ResultCode SVC::SendSyncRequest(Handle handle) { SharedPtr session = kernel.GetCurrentProcess()->handle_table.Get(handle); if (session == nullptr) { return ERR_INVALID_HANDLE; } LOG_TRACE(Kernel_SVC, "called handle=0x{:08X}({})", handle, session->GetName()); system.PrepareReschedule(); return session->SendSyncRequest(kernel.GetThreadManager().GetCurrentThread()); } /// Close a handle ResultCode SVC::CloseHandle(Handle handle) { LOG_TRACE(Kernel_SVC, "Closing handle 0x{:08X}", handle); return kernel.GetCurrentProcess()->handle_table.Close(handle); } /// Wait for a handle to synchronize, timeout after the specified nanoseconds ResultCode SVC::WaitSynchronization1(Handle handle, s64 nano_seconds) { auto object = kernel.GetCurrentProcess()->handle_table.Get(handle); Thread* thread = kernel.GetThreadManager().GetCurrentThread(); if (object == nullptr) return ERR_INVALID_HANDLE; LOG_TRACE(Kernel_SVC, "called handle=0x{:08X}({}:{}), nanoseconds={}", handle, object->GetTypeName(), object->GetName(), nano_seconds); if (object->ShouldWait(thread)) { if (nano_seconds == 0) return RESULT_TIMEOUT; thread->wait_objects = {object}; object->AddWaitingThread(thread); thread->status = ThreadStatus::WaitSynchAny; // Create an event to wake the thread up after the specified nanosecond delay has passed thread->WakeAfterDelay(nano_seconds); thread->wakeup_callback = [](ThreadWakeupReason reason, SharedPtr thread, SharedPtr object) { ASSERT(thread->status == ThreadStatus::WaitSynchAny); if (reason == ThreadWakeupReason::Timeout) { thread->SetWaitSynchronizationResult(RESULT_TIMEOUT); return; } ASSERT(reason == ThreadWakeupReason::Signal); thread->SetWaitSynchronizationResult(RESULT_SUCCESS); // WaitSynchronization1 doesn't have an output index like WaitSynchronizationN, so we // don't have to do anything else here. }; system.PrepareReschedule(); // Note: The output of this SVC will be set to RESULT_SUCCESS if the thread // resumes due to a signal in its wait objects. // Otherwise we retain the default value of timeout. return RESULT_TIMEOUT; } object->Acquire(thread); return RESULT_SUCCESS; } /// Wait for the given handles to synchronize, timeout after the specified nanoseconds ResultCode SVC::WaitSynchronizationN(s32* out, VAddr handles_address, s32 handle_count, bool wait_all, s64 nano_seconds) { Thread* thread = kernel.GetThreadManager().GetCurrentThread(); if (!Memory::IsValidVirtualAddress(*kernel.GetCurrentProcess(), handles_address)) return ERR_INVALID_POINTER; // NOTE: on real hardware, there is no nullptr check for 'out' (tested with firmware 4.4). If // this happens, the running application will crash. ASSERT_MSG(out != nullptr, "invalid output pointer specified!"); // Check if 'handle_count' is invalid if (handle_count < 0) return ERR_OUT_OF_RANGE; using ObjectPtr = SharedPtr; std::vector objects(handle_count); for (int i = 0; i < handle_count; ++i) { Handle handle = Memory::Read32(handles_address + i * sizeof(Handle)); auto object = kernel.GetCurrentProcess()->handle_table.Get(handle); if (object == nullptr) return ERR_INVALID_HANDLE; objects[i] = object; } if (wait_all) { bool all_available = std::all_of(objects.begin(), objects.end(), [thread](const ObjectPtr& object) { return !object->ShouldWait(thread); }); if (all_available) { // We can acquire all objects right now, do so. for (auto& object : objects) object->Acquire(thread); // Note: In this case, the `out` parameter is not set, // and retains whatever value it had before. return RESULT_SUCCESS; } // Not all objects were available right now, prepare to suspend the thread. // If a timeout value of 0 was provided, just return the Timeout error code instead of // suspending the thread. if (nano_seconds == 0) return RESULT_TIMEOUT; // Put the thread to sleep thread->status = ThreadStatus::WaitSynchAll; // Add the thread to each of the objects' waiting threads. for (auto& object : objects) { object->AddWaitingThread(thread); } thread->wait_objects = std::move(objects); // Create an event to wake the thread up after the specified nanosecond delay has passed thread->WakeAfterDelay(nano_seconds); thread->wakeup_callback = [](ThreadWakeupReason reason, SharedPtr thread, SharedPtr object) { ASSERT(thread->status == ThreadStatus::WaitSynchAll); if (reason == ThreadWakeupReason::Timeout) { thread->SetWaitSynchronizationResult(RESULT_TIMEOUT); return; } ASSERT(reason == ThreadWakeupReason::Signal); thread->SetWaitSynchronizationResult(RESULT_SUCCESS); // The wait_all case does not update the output index. }; system.PrepareReschedule(); // This value gets set to -1 by default in this case, it is not modified after this. *out = -1; // Note: The output of this SVC will be set to RESULT_SUCCESS if the thread resumes due to // a signal in one of its wait objects. return RESULT_TIMEOUT; } else { // Find the first object that is acquirable in the provided list of objects auto itr = std::find_if(objects.begin(), objects.end(), [thread](const ObjectPtr& object) { return !object->ShouldWait(thread); }); if (itr != objects.end()) { // We found a ready object, acquire it and set the result value WaitObject* object = itr->get(); object->Acquire(thread); *out = static_cast(std::distance(objects.begin(), itr)); return RESULT_SUCCESS; } // No objects were ready to be acquired, prepare to suspend the thread. // If a timeout value of 0 was provided, just return the Timeout error code instead of // suspending the thread. if (nano_seconds == 0) return RESULT_TIMEOUT; // Put the thread to sleep thread->status = ThreadStatus::WaitSynchAny; // Add the thread to each of the objects' waiting threads. for (std::size_t i = 0; i < objects.size(); ++i) { WaitObject* object = objects[i].get(); object->AddWaitingThread(thread); } thread->wait_objects = std::move(objects); // Note: If no handles and no timeout were given, then the thread will deadlock, this is // consistent with hardware behavior. // Create an event to wake the thread up after the specified nanosecond delay has passed thread->WakeAfterDelay(nano_seconds); thread->wakeup_callback = [](ThreadWakeupReason reason, SharedPtr thread, SharedPtr object) { ASSERT(thread->status == ThreadStatus::WaitSynchAny); if (reason == ThreadWakeupReason::Timeout) { thread->SetWaitSynchronizationResult(RESULT_TIMEOUT); return; } ASSERT(reason == ThreadWakeupReason::Signal); thread->SetWaitSynchronizationResult(RESULT_SUCCESS); thread->SetWaitSynchronizationOutput(thread->GetWaitObjectIndex(object.get())); }; system.PrepareReschedule(); // Note: The output of this SVC will be set to RESULT_SUCCESS if the thread resumes due to a // signal in one of its wait objects. // Otherwise we retain the default value of timeout, and -1 in the out parameter *out = -1; return RESULT_TIMEOUT; } } static ResultCode ReceiveIPCRequest(SharedPtr server_session, SharedPtr thread) { if (server_session->parent->client == nullptr) { return ERR_SESSION_CLOSED_BY_REMOTE; } VAddr target_address = thread->GetCommandBufferAddress(); VAddr source_address = server_session->currently_handling->GetCommandBufferAddress(); ResultCode translation_result = TranslateCommandBuffer(server_session->currently_handling, thread, source_address, target_address, server_session->mapped_buffer_context, false); // If a translation error occurred, immediately resume the client thread. if (translation_result.IsError()) { // Set the output of SendSyncRequest in the client thread to the translation output. server_session->currently_handling->SetWaitSynchronizationResult(translation_result); server_session->currently_handling->ResumeFromWait(); server_session->currently_handling = nullptr; // TODO(Subv): This path should try to wait again on the same objects. ASSERT_MSG(false, "ReplyAndReceive translation error behavior unimplemented"); } return translation_result; } /// In a single operation, sends a IPC reply and waits for a new request. ResultCode SVC::ReplyAndReceive(s32* index, VAddr handles_address, s32 handle_count, Handle reply_target) { if (!Memory::IsValidVirtualAddress(*kernel.GetCurrentProcess(), handles_address)) return ERR_INVALID_POINTER; // Check if 'handle_count' is invalid if (handle_count < 0) return ERR_OUT_OF_RANGE; using ObjectPtr = SharedPtr; std::vector objects(handle_count); SharedPtr current_process = kernel.GetCurrentProcess(); for (int i = 0; i < handle_count; ++i) { Handle handle = Memory::Read32(handles_address + i * sizeof(Handle)); auto object = current_process->handle_table.Get(handle); if (object == nullptr) return ERR_INVALID_HANDLE; objects[i] = object; } // We are also sending a command reply. // Do not send a reply if the command id in the command buffer is 0xFFFF. Thread* thread = kernel.GetThreadManager().GetCurrentThread(); u32 cmd_buff_header = Memory::Read32(thread->GetCommandBufferAddress()); IPC::Header header{cmd_buff_header}; if (reply_target != 0 && header.command_id != 0xFFFF) { auto session = current_process->handle_table.Get(reply_target); if (session == nullptr) return ERR_INVALID_HANDLE; auto request_thread = std::move(session->currently_handling); // Mark the request as "handled". session->currently_handling = nullptr; // Error out if there's no request thread or the session was closed. // TODO(Subv): Is the same error code (ClosedByRemote) returned for both of these cases? if (request_thread == nullptr || session->parent->client == nullptr) { *index = -1; return ERR_SESSION_CLOSED_BY_REMOTE; } VAddr source_address = thread->GetCommandBufferAddress(); VAddr target_address = request_thread->GetCommandBufferAddress(); ResultCode translation_result = TranslateCommandBuffer(thread, request_thread, source_address, target_address, session->mapped_buffer_context, true); // Note: The real kernel seems to always panic if the Server->Client buffer translation // fails for whatever reason. ASSERT(translation_result.IsSuccess()); // Note: The scheduler is not invoked here. request_thread->ResumeFromWait(); } if (handle_count == 0) { *index = 0; // The kernel uses this value as a placeholder for the real error, and returns it when we // pass no handles and do not perform any reply. if (reply_target == 0 || header.command_id == 0xFFFF) return ResultCode(0xE7E3FFFF); return RESULT_SUCCESS; } // Find the first object that is acquirable in the provided list of objects auto itr = std::find_if(objects.begin(), objects.end(), [thread](const ObjectPtr& object) { return !object->ShouldWait(thread); }); if (itr != objects.end()) { // We found a ready object, acquire it and set the result value WaitObject* object = itr->get(); object->Acquire(thread); *index = static_cast(std::distance(objects.begin(), itr)); if (object->GetHandleType() != HandleType::ServerSession) return RESULT_SUCCESS; auto server_session = static_cast(object); return ReceiveIPCRequest(server_session, thread); } // No objects were ready to be acquired, prepare to suspend the thread. // Put the thread to sleep thread->status = ThreadStatus::WaitSynchAny; // Add the thread to each of the objects' waiting threads. for (std::size_t i = 0; i < objects.size(); ++i) { WaitObject* object = objects[i].get(); object->AddWaitingThread(thread); } thread->wait_objects = std::move(objects); thread->wakeup_callback = [](ThreadWakeupReason reason, SharedPtr thread, SharedPtr object) { ASSERT(thread->status == ThreadStatus::WaitSynchAny); ASSERT(reason == ThreadWakeupReason::Signal); ResultCode result = RESULT_SUCCESS; if (object->GetHandleType() == HandleType::ServerSession) { auto server_session = DynamicObjectCast(object); result = ReceiveIPCRequest(server_session, thread); } thread->SetWaitSynchronizationResult(result); thread->SetWaitSynchronizationOutput(thread->GetWaitObjectIndex(object.get())); }; system.PrepareReschedule(); // Note: The output of this SVC will be set to RESULT_SUCCESS if the thread resumes due to a // signal in one of its wait objects, or to 0xC8A01836 if there was a translation error. // By default the index is set to -1. *index = -1; return RESULT_SUCCESS; } /// Create an address arbiter (to allocate access to shared resources) ResultCode SVC::CreateAddressArbiter(Handle* out_handle) { SharedPtr arbiter = kernel.CreateAddressArbiter(); CASCADE_RESULT(*out_handle, kernel.GetCurrentProcess()->handle_table.Create(std::move(arbiter))); LOG_TRACE(Kernel_SVC, "returned handle=0x{:08X}", *out_handle); return RESULT_SUCCESS; } /// Arbitrate address ResultCode SVC::ArbitrateAddress(Handle handle, u32 address, u32 type, u32 value, s64 nanoseconds) { LOG_TRACE(Kernel_SVC, "called handle=0x{:08X}, address=0x{:08X}, type=0x{:08X}, value=0x{:08X}", handle, address, type, value); SharedPtr arbiter = kernel.GetCurrentProcess()->handle_table.Get(handle); if (arbiter == nullptr) return ERR_INVALID_HANDLE; auto res = arbiter->ArbitrateAddress(kernel.GetThreadManager().GetCurrentThread(), static_cast(type), address, value, nanoseconds); // TODO(Subv): Identify in which specific cases this call should cause a reschedule. system.PrepareReschedule(); return res; } void SVC::Break(u8 break_reason) { LOG_CRITICAL(Debug_Emulated, "Emulated program broke execution!"); std::string reason_str; switch (break_reason) { case 0: reason_str = "PANIC"; break; case 1: reason_str = "ASSERT"; break; case 2: reason_str = "USER"; break; default: reason_str = "UNKNOWN"; break; } LOG_CRITICAL(Debug_Emulated, "Break reason: {}", reason_str); } /// Used to output a message on a debug hardware unit - does nothing on a retail unit void SVC::OutputDebugString(VAddr address, s32 len) { if (len <= 0) { return; } std::string string(len, ' '); Memory::ReadBlock(address, string.data(), len); LOG_DEBUG(Debug_Emulated, "{}", string); } /// Get resource limit ResultCode SVC::GetResourceLimit(Handle* resource_limit, Handle process_handle) { LOG_TRACE(Kernel_SVC, "called process=0x{:08X}", process_handle); SharedPtr current_process = kernel.GetCurrentProcess(); SharedPtr process = current_process->handle_table.Get(process_handle); if (process == nullptr) return ERR_INVALID_HANDLE; CASCADE_RESULT(*resource_limit, current_process->handle_table.Create(process->resource_limit)); return RESULT_SUCCESS; } /// Get resource limit current values ResultCode SVC::GetResourceLimitCurrentValues(VAddr values, Handle resource_limit_handle, VAddr names, u32 name_count) { LOG_TRACE(Kernel_SVC, "called resource_limit={:08X}, names={:08X}, name_count={}", resource_limit_handle, names, name_count); SharedPtr resource_limit = kernel.GetCurrentProcess()->handle_table.Get(resource_limit_handle); if (resource_limit == nullptr) return ERR_INVALID_HANDLE; for (unsigned int i = 0; i < name_count; ++i) { u32 name = Memory::Read32(names + i * sizeof(u32)); s64 value = resource_limit->GetCurrentResourceValue(name); Memory::Write64(values + i * sizeof(u64), value); } return RESULT_SUCCESS; } /// Get resource limit max values ResultCode SVC::GetResourceLimitLimitValues(VAddr values, Handle resource_limit_handle, VAddr names, u32 name_count) { LOG_TRACE(Kernel_SVC, "called resource_limit={:08X}, names={:08X}, name_count={}", resource_limit_handle, names, name_count); SharedPtr resource_limit = kernel.GetCurrentProcess()->handle_table.Get(resource_limit_handle); if (resource_limit == nullptr) return ERR_INVALID_HANDLE; for (unsigned int i = 0; i < name_count; ++i) { u32 name = Memory::Read32(names + i * sizeof(u32)); s64 value = resource_limit->GetMaxResourceValue(name); Memory::Write64(values + i * sizeof(u64), value); } return RESULT_SUCCESS; } /// Creates a new thread ResultCode SVC::CreateThread(Handle* out_handle, u32 entry_point, u32 arg, VAddr stack_top, u32 priority, s32 processor_id) { std::string name = fmt::format("thread-{:08X}", entry_point); if (priority > ThreadPrioLowest) { return ERR_OUT_OF_RANGE; } SharedPtr current_process = kernel.GetCurrentProcess(); SharedPtr& resource_limit = current_process->resource_limit; if (resource_limit->GetMaxResourceValue(ResourceTypes::PRIORITY) > priority) { return ERR_NOT_AUTHORIZED; } if (processor_id == ThreadProcessorIdDefault) { // Set the target CPU to the one specified in the process' exheader. processor_id = current_process->ideal_processor; ASSERT(processor_id != ThreadProcessorIdDefault); } switch (processor_id) { case ThreadProcessorId0: break; case ThreadProcessorIdAll: LOG_INFO(Kernel_SVC, "Newly created thread is allowed to be run in any Core, unimplemented."); break; case ThreadProcessorId1: LOG_ERROR(Kernel_SVC, "Newly created thread must run in the SysCore (Core1), unimplemented."); break; default: // TODO(bunnei): Implement support for other processor IDs ASSERT_MSG(false, "Unsupported thread processor ID: {}", processor_id); break; } CASCADE_RESULT(SharedPtr thread, kernel.CreateThread(name, entry_point, priority, arg, processor_id, stack_top, *current_process)); thread->context->SetFpscr(FPSCR_DEFAULT_NAN | FPSCR_FLUSH_TO_ZERO | FPSCR_ROUND_TOZERO); // 0x03C00000 CASCADE_RESULT(*out_handle, current_process->handle_table.Create(std::move(thread))); system.PrepareReschedule(); LOG_TRACE(Kernel_SVC, "called entrypoint=0x{:08X} ({}), arg=0x{:08X}, stacktop=0x{:08X}, " "threadpriority=0x{:08X}, processorid=0x{:08X} : created handle=0x{:08X}", entry_point, name, arg, stack_top, priority, processor_id, *out_handle); return RESULT_SUCCESS; } /// Called when a thread exits void SVC::ExitThread() { LOG_TRACE(Kernel_SVC, "called, pc=0x{:08X}", system.CPU().GetPC()); kernel.GetThreadManager().ExitCurrentThread(); system.PrepareReschedule(); } /// Gets the priority for the specified thread ResultCode SVC::GetThreadPriority(u32* priority, Handle handle) { const SharedPtr thread = kernel.GetCurrentProcess()->handle_table.Get(handle); if (thread == nullptr) return ERR_INVALID_HANDLE; *priority = thread->GetPriority(); return RESULT_SUCCESS; } /// Sets the priority for the specified thread ResultCode SVC::SetThreadPriority(Handle handle, u32 priority) { if (priority > ThreadPrioLowest) { return ERR_OUT_OF_RANGE; } SharedPtr thread = kernel.GetCurrentProcess()->handle_table.Get(handle); if (thread == nullptr) return ERR_INVALID_HANDLE; // Note: The kernel uses the current process's resource limit instead of // the one from the thread owner's resource limit. SharedPtr& resource_limit = kernel.GetCurrentProcess()->resource_limit; if (resource_limit->GetMaxResourceValue(ResourceTypes::PRIORITY) > priority) { return ERR_NOT_AUTHORIZED; } thread->SetPriority(priority); thread->UpdatePriority(); // Update the mutexes that this thread is waiting for for (auto& mutex : thread->pending_mutexes) mutex->UpdatePriority(); system.PrepareReschedule(); return RESULT_SUCCESS; } /// Create a mutex ResultCode SVC::CreateMutex(Handle* out_handle, u32 initial_locked) { SharedPtr mutex = kernel.CreateMutex(initial_locked != 0); mutex->name = fmt::format("mutex-{:08x}", system.CPU().GetReg(14)); CASCADE_RESULT(*out_handle, kernel.GetCurrentProcess()->handle_table.Create(std::move(mutex))); LOG_TRACE(Kernel_SVC, "called initial_locked={} : created handle=0x{:08X}", initial_locked ? "true" : "false", *out_handle); return RESULT_SUCCESS; } /// Release a mutex ResultCode SVC::ReleaseMutex(Handle handle) { LOG_TRACE(Kernel_SVC, "called handle=0x{:08X}", handle); SharedPtr mutex = kernel.GetCurrentProcess()->handle_table.Get(handle); if (mutex == nullptr) return ERR_INVALID_HANDLE; return mutex->Release(kernel.GetThreadManager().GetCurrentThread()); } /// Get the ID of the specified process ResultCode SVC::GetProcessId(u32* process_id, Handle process_handle) { LOG_TRACE(Kernel_SVC, "called process=0x{:08X}", process_handle); const SharedPtr process = kernel.GetCurrentProcess()->handle_table.Get(process_handle); if (process == nullptr) return ERR_INVALID_HANDLE; *process_id = process->process_id; return RESULT_SUCCESS; } /// Get the ID of the process that owns the specified thread ResultCode SVC::GetProcessIdOfThread(u32* process_id, Handle thread_handle) { LOG_TRACE(Kernel_SVC, "called thread=0x{:08X}", thread_handle); const SharedPtr thread = kernel.GetCurrentProcess()->handle_table.Get(thread_handle); if (thread == nullptr) return ERR_INVALID_HANDLE; const SharedPtr process = thread->owner_process; ASSERT_MSG(process != nullptr, "Invalid parent process for thread={:#010X}", thread_handle); *process_id = process->process_id; return RESULT_SUCCESS; } /// Get the ID for the specified thread. ResultCode SVC::GetThreadId(u32* thread_id, Handle handle) { LOG_TRACE(Kernel_SVC, "called thread=0x{:08X}", handle); const SharedPtr thread = kernel.GetCurrentProcess()->handle_table.Get(handle); if (thread == nullptr) return ERR_INVALID_HANDLE; *thread_id = thread->GetThreadId(); return RESULT_SUCCESS; } /// Creates a semaphore ResultCode SVC::CreateSemaphore(Handle* out_handle, s32 initial_count, s32 max_count) { CASCADE_RESULT(SharedPtr semaphore, kernel.CreateSemaphore(initial_count, max_count)); semaphore->name = fmt::format("semaphore-{:08x}", system.CPU().GetReg(14)); CASCADE_RESULT(*out_handle, kernel.GetCurrentProcess()->handle_table.Create(std::move(semaphore))); LOG_TRACE(Kernel_SVC, "called initial_count={}, max_count={}, created handle=0x{:08X}", initial_count, max_count, *out_handle); return RESULT_SUCCESS; } /// Releases a certain number of slots in a semaphore ResultCode SVC::ReleaseSemaphore(s32* count, Handle handle, s32 release_count) { LOG_TRACE(Kernel_SVC, "called release_count={}, handle=0x{:08X}", release_count, handle); SharedPtr semaphore = kernel.GetCurrentProcess()->handle_table.Get(handle); if (semaphore == nullptr) return ERR_INVALID_HANDLE; CASCADE_RESULT(*count, semaphore->Release(release_count)); return RESULT_SUCCESS; } /// Query process memory ResultCode SVC::QueryProcessMemory(MemoryInfo* memory_info, PageInfo* page_info, Handle process_handle, u32 addr) { SharedPtr process = kernel.GetCurrentProcess()->handle_table.Get(process_handle); if (process == nullptr) return ERR_INVALID_HANDLE; auto vma = process->vm_manager.FindVMA(addr); if (vma == process->vm_manager.vma_map.end()) return ERR_INVALID_ADDRESS; auto permissions = vma->second.permissions; auto state = vma->second.meminfo_state; // Query(Process)Memory merges vma with neighbours when they share the same state and // permissions, regardless of their physical mapping. auto mismatch = [permissions, state](const std::pair& v) { return v.second.permissions != permissions || v.second.meminfo_state != state; }; std::reverse_iterator rvma(vma); auto lower = std::find_if(rvma, process->vm_manager.vma_map.crend(), mismatch); --lower; auto upper = std::find_if(vma, process->vm_manager.vma_map.cend(), mismatch); --upper; memory_info->base_address = lower->second.base; memory_info->permission = static_cast(permissions); memory_info->size = upper->second.base + upper->second.size - lower->second.base; memory_info->state = static_cast(state); page_info->flags = 0; LOG_TRACE(Kernel_SVC, "called process=0x{:08X} addr=0x{:08X}", process_handle, addr); return RESULT_SUCCESS; } /// Query memory ResultCode SVC::QueryMemory(MemoryInfo* memory_info, PageInfo* page_info, u32 addr) { return QueryProcessMemory(memory_info, page_info, CurrentProcess, addr); } /// Create an event ResultCode SVC::CreateEvent(Handle* out_handle, u32 reset_type) { SharedPtr evt = kernel.CreateEvent(static_cast(reset_type), fmt::format("event-{:08x}", system.CPU().GetReg(14))); CASCADE_RESULT(*out_handle, kernel.GetCurrentProcess()->handle_table.Create(std::move(evt))); LOG_TRACE(Kernel_SVC, "called reset_type=0x{:08X} : created handle=0x{:08X}", reset_type, *out_handle); return RESULT_SUCCESS; } /// Duplicates a kernel handle ResultCode SVC::DuplicateHandle(Handle* out, Handle handle) { CASCADE_RESULT(*out, kernel.GetCurrentProcess()->handle_table.Duplicate(handle)); LOG_TRACE(Kernel_SVC, "duplicated 0x{:08X} to 0x{:08X}", handle, *out); return RESULT_SUCCESS; } /// Signals an event ResultCode SVC::SignalEvent(Handle handle) { LOG_TRACE(Kernel_SVC, "called event=0x{:08X}", handle); SharedPtr evt = kernel.GetCurrentProcess()->handle_table.Get(handle); if (evt == nullptr) return ERR_INVALID_HANDLE; evt->Signal(); return RESULT_SUCCESS; } /// Clears an event ResultCode SVC::ClearEvent(Handle handle) { LOG_TRACE(Kernel_SVC, "called event=0x{:08X}", handle); SharedPtr evt = kernel.GetCurrentProcess()->handle_table.Get(handle); if (evt == nullptr) return ERR_INVALID_HANDLE; evt->Clear(); return RESULT_SUCCESS; } /// Creates a timer ResultCode SVC::CreateTimer(Handle* out_handle, u32 reset_type) { SharedPtr timer = kernel.CreateTimer( static_cast(reset_type), fmt ::format("timer-{:08x}", system.CPU().GetReg(14))); CASCADE_RESULT(*out_handle, kernel.GetCurrentProcess()->handle_table.Create(std::move(timer))); LOG_TRACE(Kernel_SVC, "called reset_type=0x{:08X} : created handle=0x{:08X}", reset_type, *out_handle); return RESULT_SUCCESS; } /// Clears a timer ResultCode SVC::ClearTimer(Handle handle) { LOG_TRACE(Kernel_SVC, "called timer=0x{:08X}", handle); SharedPtr timer = kernel.GetCurrentProcess()->handle_table.Get(handle); if (timer == nullptr) return ERR_INVALID_HANDLE; timer->Clear(); return RESULT_SUCCESS; } /// Starts a timer ResultCode SVC::SetTimer(Handle handle, s64 initial, s64 interval) { LOG_TRACE(Kernel_SVC, "called timer=0x{:08X}", handle); if (initial < 0 || interval < 0) { return ERR_OUT_OF_RANGE_KERNEL; } SharedPtr timer = kernel.GetCurrentProcess()->handle_table.Get(handle); if (timer == nullptr) return ERR_INVALID_HANDLE; timer->Set(initial, interval); return RESULT_SUCCESS; } /// Cancels a timer ResultCode SVC::CancelTimer(Handle handle) { LOG_TRACE(Kernel_SVC, "called timer=0x{:08X}", handle); SharedPtr timer = kernel.GetCurrentProcess()->handle_table.Get(handle); if (timer == nullptr) return ERR_INVALID_HANDLE; timer->Cancel(); return RESULT_SUCCESS; } /// Sleep the current thread void SVC::SleepThread(s64 nanoseconds) { LOG_TRACE(Kernel_SVC, "called nanoseconds={}", nanoseconds); ThreadManager& thread_manager = kernel.GetThreadManager(); // Don't attempt to yield execution if there are no available threads to run, // this way we avoid a useless reschedule to the idle thread. if (nanoseconds == 0 && !thread_manager.HaveReadyThreads()) return; // Sleep current thread and check for next thread to schedule thread_manager.WaitCurrentThread_Sleep(); // Create an event to wake the thread up after the specified nanosecond delay has passed thread_manager.GetCurrentThread()->WakeAfterDelay(nanoseconds); system.PrepareReschedule(); } /// This returns the total CPU ticks elapsed since the CPU was powered-on s64 SVC::GetSystemTick() { s64 result = system.CoreTiming().GetTicks(); // Advance time to defeat dumb games (like Cubic Ninja) that busy-wait for the frame to end. // Measured time between two calls on a 9.2 o3DS with Ninjhax 1.1b system.CoreTiming().AddTicks(150); return result; } /// Creates a memory block at the specified address with the specified permissions and size ResultCode SVC::CreateMemoryBlock(Handle* out_handle, u32 addr, u32 size, u32 my_permission, u32 other_permission) { if (size % Memory::PAGE_SIZE != 0) return ERR_MISALIGNED_SIZE; SharedPtr shared_memory = nullptr; auto VerifyPermissions = [](MemoryPermission permission) { // SharedMemory blocks can not be created with Execute permissions switch (permission) { case MemoryPermission::None: case MemoryPermission::Read: case MemoryPermission::Write: case MemoryPermission::ReadWrite: case MemoryPermission::DontCare: return true; default: return false; } }; if (!VerifyPermissions(static_cast(my_permission)) || !VerifyPermissions(static_cast(other_permission))) return ERR_INVALID_COMBINATION; // TODO(Subv): Processes with memory type APPLICATION are not allowed // to create memory blocks with addr = 0, any attempts to do so // should return error 0xD92007EA. if ((addr < Memory::PROCESS_IMAGE_VADDR || addr + size > Memory::SHARED_MEMORY_VADDR_END) && addr != 0) { return ERR_INVALID_ADDRESS; } SharedPtr current_process = kernel.GetCurrentProcess(); // When trying to create a memory block with address = 0, // if the process has the Shared Device Memory flag in the exheader, // then we have to allocate from the same region as the caller process instead of the BASE // region. MemoryRegion region = MemoryRegion::BASE; if (addr == 0 && current_process->flags.shared_device_mem) region = current_process->flags.memory_region; CASCADE_RESULT(shared_memory, kernel.CreateSharedMemory( current_process.get(), size, static_cast(my_permission), static_cast(other_permission), addr, region)); CASCADE_RESULT(*out_handle, current_process->handle_table.Create(std::move(shared_memory))); LOG_WARNING(Kernel_SVC, "called addr=0x{:08X}", addr); return RESULT_SUCCESS; } ResultCode SVC::CreatePort(Handle* server_port, Handle* client_port, VAddr name_address, u32 max_sessions) { // TODO(Subv): Implement named ports. ASSERT_MSG(name_address == 0, "Named ports are currently unimplemented"); SharedPtr current_process = kernel.GetCurrentProcess(); auto ports = kernel.CreatePortPair(max_sessions); CASCADE_RESULT(*client_port, current_process->handle_table.Create( std::move(std::get>(ports)))); // Note: The 3DS kernel also leaks the client port handle if the server port handle fails to be // created. CASCADE_RESULT(*server_port, current_process->handle_table.Create( std::move(std::get>(ports)))); LOG_TRACE(Kernel_SVC, "called max_sessions={}", max_sessions); return RESULT_SUCCESS; } ResultCode SVC::CreateSessionToPort(Handle* out_client_session, Handle client_port_handle) { SharedPtr current_process = kernel.GetCurrentProcess(); SharedPtr client_port = current_process->handle_table.Get(client_port_handle); if (client_port == nullptr) return ERR_INVALID_HANDLE; CASCADE_RESULT(auto session, client_port->Connect()); CASCADE_RESULT(*out_client_session, current_process->handle_table.Create(std::move(session))); return RESULT_SUCCESS; } ResultCode SVC::CreateSession(Handle* server_session, Handle* client_session) { auto sessions = kernel.CreateSessionPair(); SharedPtr current_process = kernel.GetCurrentProcess(); auto& server = std::get>(sessions); CASCADE_RESULT(*server_session, current_process->handle_table.Create(std::move(server))); auto& client = std::get>(sessions); CASCADE_RESULT(*client_session, current_process->handle_table.Create(std::move(client))); LOG_TRACE(Kernel_SVC, "called"); return RESULT_SUCCESS; } ResultCode SVC::AcceptSession(Handle* out_server_session, Handle server_port_handle) { SharedPtr current_process = kernel.GetCurrentProcess(); SharedPtr server_port = current_process->handle_table.Get(server_port_handle); if (server_port == nullptr) return ERR_INVALID_HANDLE; CASCADE_RESULT(auto session, server_port->Accept()); CASCADE_RESULT(*out_server_session, current_process->handle_table.Create(std::move(session))); return RESULT_SUCCESS; } ResultCode SVC::GetSystemInfo(s64* out, u32 type, s32 param) { LOG_TRACE(Kernel_SVC, "called type={} param={}", type, param); switch ((SystemInfoType)type) { case SystemInfoType::REGION_MEMORY_USAGE: switch ((SystemInfoMemUsageRegion)param) { case SystemInfoMemUsageRegion::ALL: *out = kernel.GetMemoryRegion(MemoryRegion::APPLICATION)->used + kernel.GetMemoryRegion(MemoryRegion::SYSTEM)->used + kernel.GetMemoryRegion(MemoryRegion::BASE)->used; break; case SystemInfoMemUsageRegion::APPLICATION: *out = kernel.GetMemoryRegion(MemoryRegion::APPLICATION)->used; break; case SystemInfoMemUsageRegion::SYSTEM: *out = kernel.GetMemoryRegion(MemoryRegion::SYSTEM)->used; break; case SystemInfoMemUsageRegion::BASE: *out = kernel.GetMemoryRegion(MemoryRegion::BASE)->used; break; default: LOG_ERROR(Kernel_SVC, "unknown GetSystemInfo type=0 region: param={}", param); *out = 0; break; } break; case SystemInfoType::KERNEL_ALLOCATED_PAGES: LOG_ERROR(Kernel_SVC, "unimplemented GetSystemInfo type=2 param={}", param); *out = 0; break; case SystemInfoType::KERNEL_SPAWNED_PIDS: *out = 5; break; default: LOG_ERROR(Kernel_SVC, "unknown GetSystemInfo type={} param={}", type, param); *out = 0; break; } // This function never returns an error, even if invalid parameters were passed. return RESULT_SUCCESS; } ResultCode SVC::GetProcessInfo(s64* out, Handle process_handle, u32 type) { LOG_TRACE(Kernel_SVC, "called process=0x{:08X} type={}", process_handle, type); SharedPtr process = kernel.GetCurrentProcess()->handle_table.Get(process_handle); if (process == nullptr) return ERR_INVALID_HANDLE; switch (type) { case 0: case 2: // TODO(yuriks): Type 0 returns a slightly higher number than type 2, but I'm not sure // what's the difference between them. *out = process->memory_used; if (*out % Memory::PAGE_SIZE != 0) { LOG_ERROR(Kernel_SVC, "called, memory size not page-aligned"); return ERR_MISALIGNED_SIZE; } break; case 1: case 3: case 4: case 5: case 6: case 7: case 8: // These are valid, but not implemented yet LOG_ERROR(Kernel_SVC, "unimplemented GetProcessInfo type={}", type); break; case 20: *out = Memory::FCRAM_PADDR - process->GetLinearHeapAreaAddress(); break; case 21: case 22: case 23: // These return a different error value than higher invalid values LOG_ERROR(Kernel_SVC, "unknown GetProcessInfo type={}", type); return ERR_NOT_IMPLEMENTED; default: LOG_ERROR(Kernel_SVC, "unknown GetProcessInfo type={}", type); return ERR_INVALID_ENUM_VALUE; } return RESULT_SUCCESS; } const SVC::FunctionDef SVC::SVC_Table[] = { {0x00, nullptr, "Unknown"}, {0x01, &SVC::Wrap<&SVC::ControlMemory>, "ControlMemory"}, {0x02, &SVC::Wrap<&SVC::QueryMemory>, "QueryMemory"}, {0x03, &SVC::ExitProcess, "ExitProcess"}, {0x04, nullptr, "GetProcessAffinityMask"}, {0x05, nullptr, "SetProcessAffinityMask"}, {0x06, nullptr, "GetProcessIdealProcessor"}, {0x07, nullptr, "SetProcessIdealProcessor"}, {0x08, &SVC::Wrap<&SVC::CreateThread>, "CreateThread"}, {0x09, &SVC::ExitThread, "ExitThread"}, {0x0A, &SVC::Wrap<&SVC::SleepThread>, "SleepThread"}, {0x0B, &SVC::Wrap<&SVC::GetThreadPriority>, "GetThreadPriority"}, {0x0C, &SVC::Wrap<&SVC::SetThreadPriority>, "SetThreadPriority"}, {0x0D, nullptr, "GetThreadAffinityMask"}, {0x0E, nullptr, "SetThreadAffinityMask"}, {0x0F, nullptr, "GetThreadIdealProcessor"}, {0x10, nullptr, "SetThreadIdealProcessor"}, {0x11, nullptr, "GetCurrentProcessorNumber"}, {0x12, nullptr, "Run"}, {0x13, &SVC::Wrap<&SVC::CreateMutex>, "CreateMutex"}, {0x14, &SVC::Wrap<&SVC::ReleaseMutex>, "ReleaseMutex"}, {0x15, &SVC::Wrap<&SVC::CreateSemaphore>, "CreateSemaphore"}, {0x16, &SVC::Wrap<&SVC::ReleaseSemaphore>, "ReleaseSemaphore"}, {0x17, &SVC::Wrap<&SVC::CreateEvent>, "CreateEvent"}, {0x18, &SVC::Wrap<&SVC::SignalEvent>, "SignalEvent"}, {0x19, &SVC::Wrap<&SVC::ClearEvent>, "ClearEvent"}, {0x1A, &SVC::Wrap<&SVC::CreateTimer>, "CreateTimer"}, {0x1B, &SVC::Wrap<&SVC::SetTimer>, "SetTimer"}, {0x1C, &SVC::Wrap<&SVC::CancelTimer>, "CancelTimer"}, {0x1D, &SVC::Wrap<&SVC::ClearTimer>, "ClearTimer"}, {0x1E, &SVC::Wrap<&SVC::CreateMemoryBlock>, "CreateMemoryBlock"}, {0x1F, &SVC::Wrap<&SVC::MapMemoryBlock>, "MapMemoryBlock"}, {0x20, &SVC::Wrap<&SVC::UnmapMemoryBlock>, "UnmapMemoryBlock"}, {0x21, &SVC::Wrap<&SVC::CreateAddressArbiter>, "CreateAddressArbiter"}, {0x22, &SVC::Wrap<&SVC::ArbitrateAddress>, "ArbitrateAddress"}, {0x23, &SVC::Wrap<&SVC::CloseHandle>, "CloseHandle"}, {0x24, &SVC::Wrap<&SVC::WaitSynchronization1>, "WaitSynchronization1"}, {0x25, &SVC::Wrap<&SVC::WaitSynchronizationN>, "WaitSynchronizationN"}, {0x26, nullptr, "SignalAndWait"}, {0x27, &SVC::Wrap<&SVC::DuplicateHandle>, "DuplicateHandle"}, {0x28, &SVC::Wrap<&SVC::GetSystemTick>, "GetSystemTick"}, {0x29, nullptr, "GetHandleInfo"}, {0x2A, &SVC::Wrap<&SVC::GetSystemInfo>, "GetSystemInfo"}, {0x2B, &SVC::Wrap<&SVC::GetProcessInfo>, "GetProcessInfo"}, {0x2C, nullptr, "GetThreadInfo"}, {0x2D, &SVC::Wrap<&SVC::ConnectToPort>, "ConnectToPort"}, {0x2E, nullptr, "SendSyncRequest1"}, {0x2F, nullptr, "SendSyncRequest2"}, {0x30, nullptr, "SendSyncRequest3"}, {0x31, nullptr, "SendSyncRequest4"}, {0x32, &SVC::Wrap<&SVC::SendSyncRequest>, "SendSyncRequest"}, {0x33, nullptr, "OpenProcess"}, {0x34, nullptr, "OpenThread"}, {0x35, &SVC::Wrap<&SVC::GetProcessId>, "GetProcessId"}, {0x36, &SVC::Wrap<&SVC::GetProcessIdOfThread>, "GetProcessIdOfThread"}, {0x37, &SVC::Wrap<&SVC::GetThreadId>, "GetThreadId"}, {0x38, &SVC::Wrap<&SVC::GetResourceLimit>, "GetResourceLimit"}, {0x39, &SVC::Wrap<&SVC::GetResourceLimitLimitValues>, "GetResourceLimitLimitValues"}, {0x3A, &SVC::Wrap<&SVC::GetResourceLimitCurrentValues>, "GetResourceLimitCurrentValues"}, {0x3B, nullptr, "GetThreadContext"}, {0x3C, &SVC::Wrap<&SVC::Break>, "Break"}, {0x3D, &SVC::Wrap<&SVC::OutputDebugString>, "OutputDebugString"}, {0x3E, nullptr, "ControlPerformanceCounter"}, {0x3F, nullptr, "Unknown"}, {0x40, nullptr, "Unknown"}, {0x41, nullptr, "Unknown"}, {0x42, nullptr, "Unknown"}, {0x43, nullptr, "Unknown"}, {0x44, nullptr, "Unknown"}, {0x45, nullptr, "Unknown"}, {0x46, nullptr, "Unknown"}, {0x47, &SVC::Wrap<&SVC::CreatePort>, "CreatePort"}, {0x48, &SVC::Wrap<&SVC::CreateSessionToPort>, "CreateSessionToPort"}, {0x49, &SVC::Wrap<&SVC::CreateSession>, "CreateSession"}, {0x4A, &SVC::Wrap<&SVC::AcceptSession>, "AcceptSession"}, {0x4B, nullptr, "ReplyAndReceive1"}, {0x4C, nullptr, "ReplyAndReceive2"}, {0x4D, nullptr, "ReplyAndReceive3"}, {0x4E, nullptr, "ReplyAndReceive4"}, {0x4F, &SVC::Wrap<&SVC::ReplyAndReceive>, "ReplyAndReceive"}, {0x50, nullptr, "BindInterrupt"}, {0x51, nullptr, "UnbindInterrupt"}, {0x52, nullptr, "InvalidateProcessDataCache"}, {0x53, nullptr, "StoreProcessDataCache"}, {0x54, nullptr, "FlushProcessDataCache"}, {0x55, nullptr, "StartInterProcessDma"}, {0x56, nullptr, "StopDma"}, {0x57, nullptr, "GetDmaState"}, {0x58, nullptr, "RestartDma"}, {0x59, nullptr, "SetGpuProt"}, {0x5A, nullptr, "SetWifiEnabled"}, {0x5B, nullptr, "Unknown"}, {0x5C, nullptr, "Unknown"}, {0x5D, nullptr, "Unknown"}, {0x5E, nullptr, "Unknown"}, {0x5F, nullptr, "Unknown"}, {0x60, nullptr, "DebugActiveProcess"}, {0x61, nullptr, "BreakDebugProcess"}, {0x62, nullptr, "TerminateDebugProcess"}, {0x63, nullptr, "GetProcessDebugEvent"}, {0x64, nullptr, "ContinueDebugEvent"}, {0x65, nullptr, "GetProcessList"}, {0x66, nullptr, "GetThreadList"}, {0x67, nullptr, "GetDebugThreadContext"}, {0x68, nullptr, "SetDebugThreadContext"}, {0x69, nullptr, "QueryDebugProcessMemory"}, {0x6A, nullptr, "ReadProcessMemory"}, {0x6B, nullptr, "WriteProcessMemory"}, {0x6C, nullptr, "SetHardwareBreakPoint"}, {0x6D, nullptr, "GetDebugThreadParam"}, {0x6E, nullptr, "Unknown"}, {0x6F, nullptr, "Unknown"}, {0x70, nullptr, "ControlProcessMemory"}, {0x71, nullptr, "MapProcessMemory"}, {0x72, nullptr, "UnmapProcessMemory"}, {0x73, nullptr, "CreateCodeSet"}, {0x74, nullptr, "RandomStub"}, {0x75, nullptr, "CreateProcess"}, {0x76, nullptr, "TerminateProcess"}, {0x77, nullptr, "SetProcessResourceLimits"}, {0x78, nullptr, "CreateResourceLimit"}, {0x79, nullptr, "SetResourceLimitValues"}, {0x7A, nullptr, "AddCodeSegment"}, {0x7B, nullptr, "Backdoor"}, {0x7C, nullptr, "KernelSetState"}, {0x7D, &SVC::Wrap<&SVC::QueryProcessMemory>, "QueryProcessMemory"}, }; const SVC::FunctionDef* SVC::GetSVCInfo(u32 func_num) { if (func_num >= ARRAY_SIZE(SVC_Table)) { LOG_ERROR(Kernel_SVC, "unknown svc=0x{:02X}", func_num); return nullptr; } return &SVC_Table[func_num]; } MICROPROFILE_DEFINE(Kernel_SVC, "Kernel", "SVC", MP_RGB(70, 200, 70)); void SVC::CallSVC(u32 immediate) { MICROPROFILE_SCOPE(Kernel_SVC); // Lock the global kernel mutex when we enter the kernel HLE. std::lock_guard lock(HLE::g_hle_lock); DEBUG_ASSERT_MSG(kernel.GetCurrentProcess()->status == ProcessStatus::Running, "Running threads from exiting processes is unimplemented"); const FunctionDef* info = GetSVCInfo(immediate); if (info) { if (info->func) { (this->*(info->func))(); } else { LOG_ERROR(Kernel_SVC, "unimplemented SVC function {}(..)", info->name); } } } SVC::SVC(Core::System& system) : system(system), kernel(system.Kernel()) {} u32 SVC::GetReg(std::size_t n) { return system.CPU().GetReg(static_cast(n)); } void SVC::SetReg(std::size_t n, u32 value) { system.CPU().SetReg(static_cast(n), value); } SVCContext::SVCContext(Core::System& system) : impl(std::make_unique(system)) {} SVCContext::~SVCContext() = default; void SVCContext::CallSVC(u32 immediate) { impl->CallSVC(immediate); } } // namespace Kernel