// Copyright 2008 Dolphin Emulator Project / 2017 Citra Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include #include #include #include "common/assert.h" #include "common/logging/log.h" #include "core/core_timing.h" namespace Core { // Sort by time, unless the times are the same, in which case sort by the order added to the queue bool Timing::Event::operator>(const Event& right) const { return std::tie(time, fifo_order) > std::tie(right.time, right.fifo_order); } bool Timing::Event::operator<(const Event& right) const { return std::tie(time, fifo_order) < std::tie(right.time, right.fifo_order); } TimingEventType* Timing::RegisterEvent(const std::string& name, TimedCallback callback) { // check for existing type with same name. // we want event type names to remain unique so that we can use them for serialization. auto info = event_types.emplace(name, TimingEventType{}); TimingEventType* event_type = &info.first->second; event_type->name = &info.first->first; event_type->callback = callback; return event_type; } Timing::~Timing() { MoveEvents(); } u64 Timing::GetTicks() const { u64 ticks = static_cast(global_timer); if (!is_global_timer_sane) { ticks += slice_length - downcount; } return ticks; } void Timing::AddTicks(u64 ticks) { downcount -= ticks; } u64 Timing::GetIdleTicks() const { return static_cast(idled_cycles); } void Timing::ScheduleEvent(s64 cycles_into_future, const TimingEventType* event_type, u64 userdata) { ASSERT(event_type != nullptr); s64 timeout = GetTicks() + cycles_into_future; // If this event needs to be scheduled before the next advance(), force one early if (!is_global_timer_sane) ForceExceptionCheck(cycles_into_future); event_queue.emplace_back(Event{timeout, event_fifo_id++, userdata, event_type}); std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>()); } void Timing::ScheduleEventThreadsafe(s64 cycles_into_future, const TimingEventType* event_type, u64 userdata) { ts_queue.Push(Event{global_timer + cycles_into_future, 0, userdata, event_type}); } void Timing::UnscheduleEvent(const TimingEventType* event_type, u64 userdata) { auto itr = std::remove_if(event_queue.begin(), event_queue.end(), [&](const Event& e) { return e.type == event_type && e.userdata == userdata; }); // Removing random items breaks the invariant so we have to re-establish it. if (itr != event_queue.end()) { event_queue.erase(itr, event_queue.end()); std::make_heap(event_queue.begin(), event_queue.end(), std::greater<>()); } } void Timing::RemoveEvent(const TimingEventType* event_type) { auto itr = std::remove_if(event_queue.begin(), event_queue.end(), [&](const Event& e) { return e.type == event_type; }); // Removing random items breaks the invariant so we have to re-establish it. if (itr != event_queue.end()) { event_queue.erase(itr, event_queue.end()); std::make_heap(event_queue.begin(), event_queue.end(), std::greater<>()); } } void Timing::RemoveNormalAndThreadsafeEvent(const TimingEventType* event_type) { MoveEvents(); RemoveEvent(event_type); } void Timing::ForceExceptionCheck(s64 cycles) { cycles = std::max(0, cycles); if (downcount > cycles) { slice_length -= downcount - cycles; downcount = cycles; } } void Timing::MoveEvents() { for (Event ev; ts_queue.Pop(ev);) { ev.fifo_order = event_fifo_id++; event_queue.emplace_back(std::move(ev)); std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>()); } } void Timing::Advance() { MoveEvents(); s64 cycles_executed = slice_length - downcount; global_timer += cycles_executed; slice_length = MAX_SLICE_LENGTH; is_global_timer_sane = true; while (!event_queue.empty() && event_queue.front().time <= global_timer) { Event evt = std::move(event_queue.front()); std::pop_heap(event_queue.begin(), event_queue.end(), std::greater<>()); event_queue.pop_back(); if (event_types.find(*evt.type->name) == event_types.end()) { LOG_ERROR(Core, "Unknown queued event"); continue; } evt.type->callback(evt.userdata, global_timer - evt.time); } is_global_timer_sane = false; // Still events left (scheduled in the future) if (!event_queue.empty()) { slice_length = static_cast( std::min(event_queue.front().time - global_timer, MAX_SLICE_LENGTH)); } downcount = slice_length; } void Timing::Idle() { idled_cycles += downcount; downcount = 0; } std::chrono::microseconds Timing::GetGlobalTimeUs() const { return std::chrono::microseconds{GetTicks() * 1000000 / BASE_CLOCK_RATE_ARM11}; } s64 Timing::GetDowncount() const { return downcount; } } // namespace Core