// Licensed under GPLv2 or any later version // Refer to the license.txt file included. // Copyright 2014 Tony Wasserka // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // * Neither the name of the owner nor the names of its contributors may // be used to endorse or promote products derived from this software // without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #pragma once #include #include #include #include "common/common_funcs.h" /* * Abstract bitfield class * * Allows endianness-independent access to individual bitfields within some raw * integer value. The assembly generated by this class is identical to the * usage of raw bitfields, so it's a perfectly fine replacement. * * For BitField, X is the distance of the bitfield to the LSB of the * raw value, Y is the length in bits of the bitfield. Z is an integer type * which determines the sign of the bitfield. Z must have the same size as the * raw integer. * * * General usage: * * Create a new union with the raw integer value as a member. * Then for each bitfield you want to expose, add a BitField member * in the union. The template parameters are the bit offset and the number * of desired bits. * * Changes in the bitfield members will then get reflected in the raw integer * value and vice-versa. * * * Sample usage: * * union SomeRegister * { * u32 hex; * * BitField<0,7,u32> first_seven_bits; // unsigned * BitField<7,8,u32> next_eight_bits; // unsigned * BitField<3,15,s32> some_signed_fields; // signed * }; * * This is equivalent to the little-endian specific code: * * union SomeRegister * { * u32 hex; * * struct * { * u32 first_seven_bits : 7; * u32 next_eight_bits : 8; * }; * struct * { * u32 : 3; // padding * s32 some_signed_fields : 15; * }; * }; * * * Caveats: * * 1) * BitField provides automatic casting from and to the storage type where * appropriate. However, when using non-typesafe functions like printf, an * explicit cast must be performed on the BitField object to make sure it gets * passed correctly, e.g.: * printf("Value: %d", (s32)some_register.some_signed_fields); * * 2) * Not really a caveat, but potentially irritating: This class is used in some * packed structures that do not guarantee proper alignment. Therefore we have * to use #pragma pack here not to pack the members of the class, but instead * to break GCC's assumption that the members of the class are aligned on * sizeof(StorageType). * TODO(neobrain): Confirm that this is a proper fix and not just masking * symptoms. */ #pragma pack(1) template struct BitField { private: // StorageType is T for non-enum types and the underlying type of T if // T is an enumeration. Note that T is wrapped within an enable_if in the // former case to workaround compile errors which arise when using // std::underlying_type::type directly. using StorageType = typename std::conditional_t::value, std::underlying_type, std::enable_if>::type; // Unsigned version of StorageType using StorageTypeU = std::make_unsigned_t; public: BitField& operator=(const BitField&) = default; /// Constants to allow limited introspection of fields if needed static constexpr size_t position = Position; static constexpr size_t bits = Bits; static constexpr StorageType mask = (((StorageTypeU)~0) >> (8 * sizeof(T) - bits)) << position; /** * Formats a value by masking and shifting it according to the field parameters. A value * containing several bitfields can be assembled by formatting each of their values and ORing * the results together. */ static constexpr FORCE_INLINE StorageType FormatValue(const T& value) { return ((StorageType)value << position) & mask; } /** * Extracts a value from the passed storage. In most situations prefer use the member functions * (such as Value() or operator T), but this can be used to extract a value from a bitfield * union in a constexpr context. */ static constexpr FORCE_INLINE T ExtractValue(const StorageType& storage) { if (std::numeric_limits::is_signed) { std::size_t shift = 8 * sizeof(T) - bits; return (T)((storage << (shift - position)) >> shift); } else { return (T)((storage & mask) >> position); } } // This constructor and assignment operator might be considered ambiguous: // Would they initialize the storage or just the bitfield? // Hence, delete them. Use the Assign method to set bitfield values! BitField(T val) = delete; BitField& operator=(T val) = delete; // Force default constructor to be created // so that we can use this within unions constexpr BitField() = default; FORCE_INLINE operator T() const { return Value(); } FORCE_INLINE void Assign(const T& value) { storage = (storage & ~mask) | FormatValue(value); } FORCE_INLINE T Value() const { return ExtractValue(storage); } // TODO: we may want to change this to explicit operator bool() if it's bug-free in VS2015 FORCE_INLINE bool ToBool() const { return Value() != 0; } private: StorageType storage; static_assert(bits + position <= 8 * sizeof(T), "Bitfield out of range"); // And, you know, just in case people specify something stupid like bits=position=0x80000000 static_assert(position < 8 * sizeof(T), "Invalid position"); static_assert(bits <= 8 * sizeof(T), "Invalid number of bits"); static_assert(bits > 0, "Invalid number of bits"); static_assert(std::is_pod::value, "Invalid base type"); }; #pragma pack() #if (__GNUC__ >= 5) || defined(__clang__) || defined(_MSC_VER) static_assert(std::is_trivially_copyable>::value, "BitField must be trivially copyable"); #endif