// Copyright 2014 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #pragma once #include #include #include #include #include #include #include #include #include "common/common_types.h" #include "common/memory_ref.h" #include "core/mmio.h" class ARM_Interface; namespace Kernel { class Process; } namespace AudioCore { class DspInterface; } namespace Memory { // Are defined in a system header #undef PAGE_SIZE #undef PAGE_MASK /** * Page size used by the ARM architecture. This is the smallest granularity with which memory can * be mapped. */ const u32 PAGE_SIZE = 0x1000; const u32 PAGE_MASK = PAGE_SIZE - 1; const int PAGE_BITS = 12; const std::size_t PAGE_TABLE_NUM_ENTRIES = 1 << (32 - PAGE_BITS); enum class PageType { /// Page is unmapped and should cause an access error. Unmapped, /// Page is mapped to regular memory. This is the only type you can get pointers to. Memory, /// Page is mapped to regular memory, but also needs to check for rasterizer cache flushing and /// invalidation RasterizerCachedMemory, /// Page is mapped to a I/O region. Writing and reading to this page is handled by functions. Special, }; struct SpecialRegion { VAddr base; u32 size; MMIORegionPointer handler; private: template void serialize(Archive& ar, const unsigned int file_version) { ar& base; ar& size; ar& handler; } friend class boost::serialization::access; }; /** * A (reasonably) fast way of allowing switchable and remappable process address spaces. It loosely * mimics the way a real CPU page table works, but instead is optimized for minimal decoding and * fetching requirements when accessing. In the usual case of an access to regular memory, it only * requires an indexed fetch and a check for NULL. */ struct PageTable { /** * Array of memory pointers backing each page. An entry can only be non-null if the * corresponding entry in the `attributes` array is of type `Memory`. */ // The reason for this rigmarole is to keep the 'raw' and 'refs' arrays in sync. // We need 'raw' for dynarmic and 'refs' for serialization struct Pointers { struct Entry { Entry(Pointers& pointers_, VAddr idx_) : pointers(pointers_), idx(idx_) {} inline void operator=(MemoryRef value) { pointers.refs[idx] = value; pointers.raw[idx] = value.GetPtr(); } inline operator u8*() { return pointers.raw[idx]; } private: Pointers& pointers; VAddr idx; }; inline Entry operator[](VAddr idx) { return Entry(*this, idx); } inline u8* operator[](VAddr idx) const { return raw[idx]; } inline Entry operator[](std::size_t idx) { return Entry(*this, static_cast(idx)); } private: std::array raw; std::array refs; friend struct PageTable; }; Pointers pointers; /** * Contains MMIO handlers that back memory regions whose entries in the `attribute` array is of * type `Special`. */ std::vector special_regions; /** * Array of fine grained page attributes. If it is set to any value other than `Memory`, then * the corresponding entry in `pointers` MUST be set to null. */ std::array attributes; inline std::array& GetPointerArray() { return pointers.raw; } void Clear(); private: template void serialize(Archive& ar, const unsigned int) { ar& pointers.refs; ar& special_regions; ar& attributes; for (auto i = 0; i < PAGE_TABLE_NUM_ENTRIES; i++) { pointers.raw[i] = pointers.refs[i].GetPtr(); } } friend class boost::serialization::access; }; /// Physical memory regions as seen from the ARM11 enum : PAddr { /// IO register area IO_AREA_PADDR = 0x10100000, IO_AREA_SIZE = 0x00400000, ///< IO area size (4MB) IO_AREA_PADDR_END = IO_AREA_PADDR + IO_AREA_SIZE, /// MPCore internal memory region MPCORE_RAM_PADDR = 0x17E00000, MPCORE_RAM_SIZE = 0x00002000, ///< MPCore internal memory size (8KB) MPCORE_RAM_PADDR_END = MPCORE_RAM_PADDR + MPCORE_RAM_SIZE, /// Video memory VRAM_PADDR = 0x18000000, VRAM_SIZE = 0x00600000, ///< VRAM size (6MB) VRAM_PADDR_END = VRAM_PADDR + VRAM_SIZE, /// New 3DS additional memory. Supposedly faster than regular FCRAM. Part of it can be used by /// applications and system modules if mapped via the ExHeader. N3DS_EXTRA_RAM_PADDR = 0x1F000000, N3DS_EXTRA_RAM_SIZE = 0x00400000, ///< New 3DS additional memory size (4MB) N3DS_EXTRA_RAM_PADDR_END = N3DS_EXTRA_RAM_PADDR + N3DS_EXTRA_RAM_SIZE, /// DSP memory DSP_RAM_PADDR = 0x1FF00000, DSP_RAM_SIZE = 0x00080000, ///< DSP memory size (512KB) DSP_RAM_PADDR_END = DSP_RAM_PADDR + DSP_RAM_SIZE, /// AXI WRAM AXI_WRAM_PADDR = 0x1FF80000, AXI_WRAM_SIZE = 0x00080000, ///< AXI WRAM size (512KB) AXI_WRAM_PADDR_END = AXI_WRAM_PADDR + AXI_WRAM_SIZE, /// Main FCRAM FCRAM_PADDR = 0x20000000, FCRAM_SIZE = 0x08000000, ///< FCRAM size on the Old 3DS (128MB) FCRAM_N3DS_SIZE = 0x10000000, ///< FCRAM size on the New 3DS (256MB) FCRAM_PADDR_END = FCRAM_PADDR + FCRAM_SIZE, FCRAM_N3DS_PADDR_END = FCRAM_PADDR + FCRAM_N3DS_SIZE, }; enum class Region { FCRAM, VRAM, DSP, N3DS }; /// Virtual user-space memory regions enum : VAddr { /// Where the application text, data and bss reside. PROCESS_IMAGE_VADDR = 0x00100000, PROCESS_IMAGE_MAX_SIZE = 0x03F00000, PROCESS_IMAGE_VADDR_END = PROCESS_IMAGE_VADDR + PROCESS_IMAGE_MAX_SIZE, /// Area where IPC buffers are mapped onto. IPC_MAPPING_VADDR = 0x04000000, IPC_MAPPING_SIZE = 0x04000000, IPC_MAPPING_VADDR_END = IPC_MAPPING_VADDR + IPC_MAPPING_SIZE, /// Application heap (includes stack). HEAP_VADDR = 0x08000000, HEAP_SIZE = 0x08000000, HEAP_VADDR_END = HEAP_VADDR + HEAP_SIZE, /// Area where shared memory buffers are mapped onto. SHARED_MEMORY_VADDR = 0x10000000, SHARED_MEMORY_SIZE = 0x04000000, SHARED_MEMORY_VADDR_END = SHARED_MEMORY_VADDR + SHARED_MEMORY_SIZE, /// Maps 1:1 to an offset in FCRAM. Used for HW allocations that need to be linear in physical /// memory. LINEAR_HEAP_VADDR = 0x14000000, LINEAR_HEAP_SIZE = 0x08000000, LINEAR_HEAP_VADDR_END = LINEAR_HEAP_VADDR + LINEAR_HEAP_SIZE, /// Maps 1:1 to New 3DS additional memory N3DS_EXTRA_RAM_VADDR = 0x1E800000, N3DS_EXTRA_RAM_VADDR_END = N3DS_EXTRA_RAM_VADDR + N3DS_EXTRA_RAM_SIZE, /// Maps 1:1 to the IO register area. IO_AREA_VADDR = 0x1EC00000, IO_AREA_VADDR_END = IO_AREA_VADDR + IO_AREA_SIZE, /// Maps 1:1 to VRAM. VRAM_VADDR = 0x1F000000, VRAM_VADDR_END = VRAM_VADDR + VRAM_SIZE, /// Maps 1:1 to DSP memory. DSP_RAM_VADDR = 0x1FF00000, DSP_RAM_VADDR_END = DSP_RAM_VADDR + DSP_RAM_SIZE, /// Read-only page containing kernel and system configuration values. CONFIG_MEMORY_VADDR = 0x1FF80000, CONFIG_MEMORY_SIZE = 0x00001000, CONFIG_MEMORY_VADDR_END = CONFIG_MEMORY_VADDR + CONFIG_MEMORY_SIZE, /// Usually read-only page containing mostly values read from hardware. SHARED_PAGE_VADDR = 0x1FF81000, SHARED_PAGE_SIZE = 0x00001000, SHARED_PAGE_VADDR_END = SHARED_PAGE_VADDR + SHARED_PAGE_SIZE, /// Area where TLS (Thread-Local Storage) buffers are allocated. TLS_AREA_VADDR = 0x1FF82000, TLS_ENTRY_SIZE = 0x200, /// Equivalent to LINEAR_HEAP_VADDR, but expanded to cover the extra memory in the New 3DS. NEW_LINEAR_HEAP_VADDR = 0x30000000, NEW_LINEAR_HEAP_SIZE = 0x10000000, NEW_LINEAR_HEAP_VADDR_END = NEW_LINEAR_HEAP_VADDR + NEW_LINEAR_HEAP_SIZE, }; /** * Flushes any externally cached rasterizer resources touching the given region. */ void RasterizerFlushRegion(PAddr start, u32 size); /** * Invalidates any externally cached rasterizer resources touching the given region. */ void RasterizerInvalidateRegion(PAddr start, u32 size); /** * Flushes and invalidates any externally cached rasterizer resources touching the given region. */ void RasterizerFlushAndInvalidateRegion(PAddr start, u32 size); enum class FlushMode { /// Write back modified surfaces to RAM Flush, /// Remove region from the cache Invalidate, /// Write back modified surfaces to RAM, and also remove them from the cache FlushAndInvalidate, }; /** * Flushes and invalidates any externally cached rasterizer resources touching the given virtual * address region. */ void RasterizerFlushVirtualRegion(VAddr start, u32 size, FlushMode mode); class MemorySystem { public: MemorySystem(); ~MemorySystem(); /** * Maps an allocated buffer onto a region of the emulated process address space. * * @param page_table The page table of the emulated process. * @param base The address to start mapping at. Must be page-aligned. * @param size The amount of bytes to map. Must be page-aligned. * @param target Buffer with the memory backing the mapping. Must be of length at least `size`. */ void MapMemoryRegion(PageTable& page_table, VAddr base, u32 size, MemoryRef target); /** * Maps a region of the emulated process address space as a IO region. * @param page_table The page table of the emulated process. * @param base The address to start mapping at. Must be page-aligned. * @param size The amount of bytes to map. Must be page-aligned. * @param mmio_handler The handler that backs the mapping. */ void MapIoRegion(PageTable& page_table, VAddr base, u32 size, MMIORegionPointer mmio_handler); void UnmapRegion(PageTable& page_table, VAddr base, u32 size); /// Currently active page table void SetCurrentPageTable(PageTable* page_table); PageTable* GetCurrentPageTable() const; u8 Read8(VAddr addr); u16 Read16(VAddr addr); u32 Read32(VAddr addr); u64 Read64(VAddr addr); void Write8(VAddr addr, u8 data); void Write16(VAddr addr, u16 data); void Write32(VAddr addr, u32 data); void Write64(VAddr addr, u64 data); void ReadBlock(const Kernel::Process& process, VAddr src_addr, void* dest_buffer, std::size_t size); void WriteBlock(const Kernel::Process& process, VAddr dest_addr, const void* src_buffer, std::size_t size); void ZeroBlock(const Kernel::Process& process, VAddr dest_addr, const std::size_t size); void CopyBlock(const Kernel::Process& process, VAddr dest_addr, VAddr src_addr, std::size_t size); void CopyBlock(const Kernel::Process& dest_process, const Kernel::Process& src_process, VAddr dest_addr, VAddr src_addr, std::size_t size); std::string ReadCString(VAddr vaddr, std::size_t max_length); /** * Gets a pointer to the memory region beginning at the specified physical address. */ u8* GetPhysicalPointer(PAddr address); MemoryRef GetPhysicalRef(PAddr address); u8* GetPointer(VAddr vaddr); bool IsValidPhysicalAddress(PAddr paddr); /// Gets offset in FCRAM from a pointer inside FCRAM range u32 GetFCRAMOffset(const u8* pointer); /// Gets pointer in FCRAM with given offset u8* GetFCRAMPointer(u32 offset); /// Gets a serializable ref to FCRAM with the given offset MemoryRef GetFCRAMRef(u32 offset); /** * Mark each page touching the region as cached. */ void RasterizerMarkRegionCached(PAddr start, u32 size, bool cached); /// Registers page table for rasterizer cache marking void RegisterPageTable(PageTable* page_table); /// Unregisters page table for rasterizer cache marking void UnregisterPageTable(PageTable* page_table); void SetDSP(AudioCore::DspInterface& dsp); private: template T Read(const VAddr vaddr); template void Write(const VAddr vaddr, const T data); /** * Gets the pointer for virtual memory where the page is marked as RasterizerCachedMemory. * This is used to access the memory where the page pointer is nullptr due to rasterizer cache. * Since the cache only happens on linear heap or VRAM, we know the exact physical address and * pointer of such virtual address */ MemoryRef GetPointerForRasterizerCache(VAddr addr); void MapPages(PageTable& page_table, u32 base, u32 size, MemoryRef memory, PageType type); class Impl; std::unique_ptr impl; friend class boost::serialization::access; template void serialize(Archive& ar, const unsigned int file_version); public: template class BackingMemImpl; }; /// Determines if the given VAddr is valid for the specified process. bool IsValidVirtualAddress(const Kernel::Process& process, VAddr vaddr); } // namespace Memory BOOST_CLASS_EXPORT_KEY(Memory::MemorySystem::BackingMemImpl) BOOST_CLASS_EXPORT_KEY(Memory::MemorySystem::BackingMemImpl) BOOST_CLASS_EXPORT_KEY(Memory::MemorySystem::BackingMemImpl) BOOST_CLASS_EXPORT_KEY(Memory::MemorySystem::BackingMemImpl)