load_store: Simplify implementation

* Remove dead code
* Standardise code style with rest of code base
This commit is contained in:
MerryMage 2017-02-16 20:40:01 +00:00
parent 058f7b5de6
commit f2dd82967f

View file

@ -41,50 +41,38 @@ bool ArmTranslatorVisitor::arm_STRT() {
ASSERT_MSG(false, "System instructions unimplemented"); ASSERT_MSG(false, "System instructions unimplemented");
} }
static IR::Value GetAddressingMode(IR::IREmitter& ir, bool P, bool U, bool W, Reg n, IR::Value index) { static IR::Value GetAddress(IR::IREmitter& ir, bool P, bool U, bool W, Reg n, IR::Value offset) {
IR::Value address; const bool index = P;
if (P) { const bool add = U;
// Pre-indexed addressing const bool wback = !P || W;
if (n == Reg::PC && index.IsImmediate()) {
address = U ? ir.Imm32(ir.AlignPC(4) + index.GetU32()) : ir.Imm32(ir.AlignPC(4) - index.GetU32()); const auto offset_addr = add ? ir.Add(ir.GetRegister(n), offset) : ir.Sub(ir.GetRegister(n), offset);
} else { const auto address = index ? offset_addr : ir.GetRegister(n);
address = U ? ir.Add(ir.GetRegister(n), index) : ir.Sub(ir.GetRegister(n), index);
if (wback) {
ir.SetRegister(n, offset_addr);
} }
// Wrote calculated address back to the base register
if (W) {
ir.SetRegister(n, address);
}
} else {
// Post-indexed addressing
address = (n == Reg::PC) ? ir.Imm32(ir.AlignPC(4)) : ir.GetRegister(n);
if (U) {
ir.SetRegister(n, ir.Add(ir.GetRegister(n), index));
} else {
ir.SetRegister(n, ir.Sub(ir.GetRegister(n), index));
}
// TODO(bunnei): Handle W=1 mode, which in this scenario does an unprivileged (User mode) access.
}
return address; return address;
} }
bool ArmTranslatorVisitor::arm_LDR_lit(Cond cond, bool U, Reg t, Imm12 imm12) { bool ArmTranslatorVisitor::arm_LDR_lit(Cond cond, bool U, Reg t, Imm12 imm12) {
bool P = true, W = false; const bool add = U;
// LDR <Rt>, [PC, #+/-<imm>]
if (ConditionPassed(cond)) { if (ConditionPassed(cond)) {
const auto data = ir.ReadMemory32(GetAddressingMode(ir, P, U, W, Reg::PC, ir.Imm32(imm12))); const u32 base = ir.AlignPC(4);
const u32 address = add ? (base + imm12) : (base - imm12);
const auto data = ir.ReadMemory32(ir.Imm32(address));
if (t == Reg::PC) { if (t == Reg::PC) {
ir.BXWritePC(data); ir.LoadWritePC(data);
ir.SetTerm(IR::Term::ReturnToDispatch{}); ir.SetTerm(IR::Term::ReturnToDispatch{});
return false; return false;
} }
ir.SetRegister(t, data); ir.SetRegister(t, data);
} }
return true; return true;
} }
@ -95,11 +83,17 @@ bool ArmTranslatorVisitor::arm_LDR_imm(Cond cond, bool P, bool U, bool W, Reg n,
if ((!P || W) && n == t) if ((!P || W) && n == t)
return UnpredictableInstruction(); return UnpredictableInstruction();
const u32 imm32 = imm12;
// LDR <Rt>, [<Rn>, #+/-<imm>]{!}
// LDR <Rt>, [<Rn>], #+/-<imm>
if (ConditionPassed(cond)) { if (ConditionPassed(cond)) {
const auto data = ir.ReadMemory32(GetAddressingMode(ir, P, U, W, n, ir.Imm32(imm12))); const auto offset = ir.Imm32(imm32);
const auto address = GetAddress(ir, P, U, W, n, offset);
const auto data = ir.ReadMemory32(address);
if (t == Reg::PC) { if (t == Reg::PC) {
ir.BXWritePC(data); ir.LoadWritePC(data);
if (!P && W && n == Reg::R13) if (!P && W && n == Reg::R13)
ir.SetTerm(IR::Term::PopRSBHint{}); ir.SetTerm(IR::Term::PopRSBHint{});
else else
@ -109,7 +103,6 @@ bool ArmTranslatorVisitor::arm_LDR_imm(Cond cond, bool P, bool U, bool W, Reg n,
ir.SetRegister(t, data); ir.SetRegister(t, data);
} }
return true; return true;
} }
@ -120,19 +113,21 @@ bool ArmTranslatorVisitor::arm_LDR_reg(Cond cond, bool P, bool U, bool W, Reg n,
if ((!P || W) && (n == Reg::PC || n == t)) if ((!P || W) && (n == Reg::PC || n == t))
return UnpredictableInstruction(); return UnpredictableInstruction();
// LDR <Rt>, [<Rn>, #+/-<Rm>]{!}
// LDR <Rt>, [<Rn>], #+/-<Rm>
if (ConditionPassed(cond)) { if (ConditionPassed(cond)) {
const auto shifted = EmitImmShift(ir.GetRegister(m), shift, imm5, ir.GetCFlag()); const auto offset = EmitImmShift(ir.GetRegister(m), shift, imm5, ir.GetCFlag()).result;
const auto data = ir.ReadMemory32(GetAddressingMode(ir, P, U, W, n, shifted.result)); const auto address = GetAddress(ir, P, U, W, n, offset);
const auto data = ir.ReadMemory32(address);
if (t == Reg::PC) { if (t == Reg::PC) {
ir.BXWritePC(data); ir.LoadWritePC(data);
ir.SetTerm(IR::Term::ReturnToDispatch{}); ir.SetTerm(IR::Term::ReturnToDispatch{});
return false; return false;
} }
ir.SetRegister(t, data); ir.SetRegister(t, data);
} }
return true; return true;
} }
@ -140,19 +135,17 @@ bool ArmTranslatorVisitor::arm_LDRB_lit(Cond cond, bool U, Reg t, Imm12 imm12) {
if (t == Reg::PC) if (t == Reg::PC)
return UnpredictableInstruction(); return UnpredictableInstruction();
bool P = true, W = false; const u32 imm32 = imm12;
if (ConditionPassed(cond)) { const bool add = U;
const auto data = ir.ZeroExtendByteToWord(ir.ReadMemory8(GetAddressingMode(ir, P, U, W, Reg::PC, ir.Imm32(imm12))));
if (t == Reg::PC) { // LDRB <Rt>, [PC, #+/-<imm>]
ir.ALUWritePC(ir.Add(data, ir.Imm32(4))); if (ConditionPassed(cond)) {
ir.SetTerm(IR::Term::ReturnToDispatch{}); const u32 base = ir.AlignPC(4);
return false; const u32 address = add ? (base + imm32) : (base - imm32);
} const auto data = ir.ZeroExtendByteToWord(ir.ReadMemory8(ir.Imm32(address)));
ir.SetRegister(t, data); ir.SetRegister(t, data);
} }
return true; return true;
} }
@ -165,18 +158,17 @@ bool ArmTranslatorVisitor::arm_LDRB_imm(Cond cond, bool P, bool U, bool W, Reg n
if (t == Reg::PC) if (t == Reg::PC)
return UnpredictableInstruction(); return UnpredictableInstruction();
if (ConditionPassed(cond)) { const u32 imm32 = imm12;
const auto data = ir.ZeroExtendByteToWord(ir.ReadMemory8(GetAddressingMode(ir, P, U, W, n, ir.Imm32(imm12))));
if (t == Reg::PC) { // LDRB <Rt>, [<Rn>, #+/-<imm>]{!}
ir.ALUWritePC(ir.Add(data, ir.Imm32(4))); // LDRB <Rt>, [<Rn>], #+/-<imm>
ir.SetTerm(IR::Term::ReturnToDispatch{}); if (ConditionPassed(cond)) {
return false; const auto offset = ir.Imm32(imm32);
} const auto address = GetAddress(ir, P, U, W, n, offset);
const auto data = ir.ZeroExtendByteToWord(ir.ReadMemory8(address));
ir.SetRegister(t, data); ir.SetRegister(t, data);
} }
return true; return true;
} }
@ -187,19 +179,15 @@ bool ArmTranslatorVisitor::arm_LDRB_reg(Cond cond, bool P, bool U, bool W, Reg n
if ((!P || W) && (n == Reg::PC || n == t)) if ((!P || W) && (n == Reg::PC || n == t))
return UnpredictableInstruction(); return UnpredictableInstruction();
// LDRB <Rt>, [<Rn>, #+/-<Rm>]{!}
// LDRB <Rt>, [<Rn>], #+/-<Rm>
if (ConditionPassed(cond)) { if (ConditionPassed(cond)) {
const auto shifted = EmitImmShift(ir.GetRegister(m), shift, imm5, ir.GetCFlag()); const auto offset = EmitImmShift(ir.GetRegister(m), shift, imm5, ir.GetCFlag()).result;
const auto data = ir.ZeroExtendByteToWord(ir.ReadMemory8(GetAddressingMode(ir, P, U, W, n, shifted.result))); const auto address = GetAddress(ir, P, U, W, n, offset);
const auto data = ir.ZeroExtendByteToWord(ir.ReadMemory8(address));
if (t == Reg::PC) {
ir.ALUWritePC(ir.Add(data, ir.Imm32(4)));
ir.SetTerm(IR::Term::ReturnToDispatch{});
return false;
}
ir.SetRegister(t, data); ir.SetRegister(t, data);
} }
return true; return true;
} }
@ -209,43 +197,20 @@ bool ArmTranslatorVisitor::arm_LDRD_lit(Cond cond, bool U, Reg t, Imm4 imm8a, Im
if (t+1 == Reg::PC) if (t+1 == Reg::PC)
return UnpredictableInstruction(); return UnpredictableInstruction();
bool P = true, W = false; const Reg t2 = t+1;
const u32 imm32 = (imm8a << 4) | imm8b;
const bool add = U;
// LDRD <Rt>, <Rt2>, [PC, #+/-<imm>]
if (ConditionPassed(cond)) { if (ConditionPassed(cond)) {
const auto address_a = GetAddressingMode(ir, P, U, W, Reg::PC, ir.Imm32(imm8a << 4 | imm8b)); const u32 base = ir.AlignPC(4);
const auto address_b = ir.Add(address_a, ir.Imm32(4)); const u32 address = add ? (base + imm32) : (base - imm32);
auto data_a = ir.ReadMemory32(address_a); const auto data_a = ir.ReadMemory32(ir.Imm32(address));
auto data_b = ir.ReadMemory32(address_b); const auto data_b = ir.ReadMemory32(ir.Imm32(address + 4));
switch (t) {
case Reg::PC:
data_a = ir.Add(data_a, ir.Imm32(4));
break;
case Reg::LR:
data_b = ir.Add(data_b, ir.Imm32(4));
break;
default:
break;
}
if (t == Reg::PC) {
ir.ALUWritePC(data_a);
} else {
ir.SetRegister(t, data_a); ir.SetRegister(t, data_a);
ir.SetRegister(t2, data_b);
} }
const Reg reg_b = static_cast<Reg>(std::min(t + 1, Reg::R15));
if (reg_b == Reg::PC) {
ir.ALUWritePC(data_b);
} else {
ir.SetRegister(reg_b, data_b);
}
if (t == Reg::PC || reg_b == Reg::PC) {
ir.SetTerm(IR::Term::ReturnToDispatch{});
return false;
}
}
return true; return true;
} }
@ -261,42 +226,21 @@ bool ArmTranslatorVisitor::arm_LDRD_imm(Cond cond, bool P, bool U, bool W, Reg n
if (t+1 == Reg::PC) if (t+1 == Reg::PC)
return UnpredictableInstruction(); return UnpredictableInstruction();
const Reg t2 = t+1;
const u32 imm32 = (imm8a << 4) | imm8b;
// LDRD <Rt>, [<Rn>, #+/-<imm>]{!}
// LDRD <Rt>, [<Rn>], #+/-<imm>
if (ConditionPassed(cond)) { if (ConditionPassed(cond)) {
const auto address_a = GetAddressingMode(ir, P, U, W, n, ir.Imm32(imm8a << 4 | imm8b)); const auto offset = ir.Imm32(imm32);
const auto address_a = GetAddress(ir, P, U, W, n, offset);
const auto address_b = ir.Add(address_a, ir.Imm32(4)); const auto address_b = ir.Add(address_a, ir.Imm32(4));
auto data_a = ir.ReadMemory32(address_a); const auto data_a = ir.ReadMemory32(address_a);
auto data_b = ir.ReadMemory32(address_b); const auto data_b = ir.ReadMemory32(address_b);
switch (t) {
case Reg::PC:
data_a = ir.Add(data_a, ir.Imm32(4));
break;
case Reg::LR:
data_b = ir.Add(data_b, ir.Imm32(4));
break;
default:
break;
}
if (t == Reg::PC) {
ir.ALUWritePC(data_a);
} else {
ir.SetRegister(t, data_a); ir.SetRegister(t, data_a);
ir.SetRegister(t2, data_b);
} }
const Reg reg_b = static_cast<Reg>(std::min(t + 1, Reg::R15));
if (reg_b == Reg::PC) {
ir.ALUWritePC(data_b);
} else {
ir.SetRegister(reg_b, data_b);
}
if (t == Reg::PC || reg_b == Reg::PC) {
ir.SetTerm(IR::Term::ReturnToDispatch{});
return false;
}
}
return true; return true;
} }
@ -310,42 +254,20 @@ bool ArmTranslatorVisitor::arm_LDRD_reg(Cond cond, bool P, bool U, bool W, Reg n
if ((!P || W) && (n == Reg::PC || n == t || n == t+1)) if ((!P || W) && (n == Reg::PC || n == t || n == t+1))
return UnpredictableInstruction(); return UnpredictableInstruction();
const Reg t2 = t+1;
// LDRD <Rt>, [<Rn>, #+/-<Rm>]{!}
// LDRD <Rt>, [<Rn>], #+/-<Rm>
if (ConditionPassed(cond)) { if (ConditionPassed(cond)) {
const auto address_a = GetAddressingMode(ir, P, U, W, n, ir.GetRegister(m)); const auto offset = ir.GetRegister(m);
const auto address_a = GetAddress(ir, P, U, W, n, offset);
const auto address_b = ir.Add(address_a, ir.Imm32(4)); const auto address_b = ir.Add(address_a, ir.Imm32(4));
auto data_a = ir.ReadMemory32(address_a); const auto data_a = ir.ReadMemory32(address_a);
auto data_b = ir.ReadMemory32(address_b); const auto data_b = ir.ReadMemory32(address_b);
switch (t) {
case Reg::PC:
data_a = ir.Add(data_a, ir.Imm32(4));
break;
case Reg::LR:
data_b = ir.Add(data_b, ir.Imm32(4));
break;
default:
break;
}
if (t == Reg::PC) {
ir.ALUWritePC(data_a);
} else {
ir.SetRegister(t, data_a); ir.SetRegister(t, data_a);
ir.SetRegister(t2, data_b);
} }
const Reg reg_b = static_cast<Reg>(std::min(t + 1, Reg::R15));
if (reg_b == Reg::PC) {
ir.ALUWritePC(data_b);
} else {
ir.SetRegister(reg_b, data_b);
}
if (t == Reg::PC || reg_b == Reg::PC) {
ir.SetTerm(IR::Term::ReturnToDispatch{});
return false;
}
}
return true; return true;
} }
@ -356,18 +278,17 @@ bool ArmTranslatorVisitor::arm_LDRH_lit(Cond cond, bool P, bool U, bool W, Reg t
if (t == Reg::PC) if (t == Reg::PC)
return UnpredictableInstruction(); return UnpredictableInstruction();
if (ConditionPassed(cond)) { const u32 imm32 = (imm8a << 4) | imm8b;
const auto data = ir.ZeroExtendHalfToWord(ir.ReadMemory16(GetAddressingMode(ir, P, U, W, Reg::PC, ir.Imm32(imm8a << 4 | imm8b)))); const bool add = U;
if (t == Reg::PC) { // LDRH <Rt>, [PC, #-/+<imm>]
ir.ALUWritePC(ir.Add(data, ir.Imm32(4))); if (ConditionPassed(cond)) {
ir.SetTerm(IR::Term::ReturnToDispatch{}); const u32 base = ir.AlignPC(4);
return false; const u32 address = add ? (base + imm32) : (base - imm32);
} const auto data = ir.ZeroExtendHalfToWord(ir.ReadMemory16(ir.Imm32(address)));
ir.SetRegister(t, data); ir.SetRegister(t, data);
} }
return true; return true;
} }
@ -380,18 +301,17 @@ bool ArmTranslatorVisitor::arm_LDRH_imm(Cond cond, bool P, bool U, bool W, Reg n
if (t == Reg::PC) if (t == Reg::PC)
return UnpredictableInstruction(); return UnpredictableInstruction();
if (ConditionPassed(cond)) { const u32 imm32 = (imm8a << 4) | imm8b;
const auto data = ir.ZeroExtendHalfToWord(ir.ReadMemory16(GetAddressingMode(ir, P, U, W, n, ir.Imm32(imm8a << 4 | imm8b))));
if (t == Reg::PC) { // LDRH <Rt>, [<Rn>, #+/-<imm>]{!}
ir.ALUWritePC(ir.Add(data, ir.Imm32(4))); // LDRH <Rt>, [<Rn>], #+/-<imm>
ir.SetTerm(IR::Term::ReturnToDispatch{}); if (ConditionPassed(cond)) {
return false; const auto offset = ir.Imm32(imm32);
} const auto address = GetAddress(ir, P, U, W, n, offset);
const auto data = ir.ZeroExtendHalfToWord(ir.ReadMemory16(address));
ir.SetRegister(t, data); ir.SetRegister(t, data);
} }
return true; return true;
} }
@ -402,18 +322,15 @@ bool ArmTranslatorVisitor::arm_LDRH_reg(Cond cond, bool P, bool U, bool W, Reg n
if ((!P || W) && (n == Reg::PC || n == t)) if ((!P || W) && (n == Reg::PC || n == t))
return UnpredictableInstruction(); return UnpredictableInstruction();
// LDRH <Rt>, [<Rn>, #+/-<Rm>]{!}
// LDRH <Rt>, [<Rn>], #+/-<Rm>
if (ConditionPassed(cond)) { if (ConditionPassed(cond)) {
const auto data = ir.ZeroExtendHalfToWord(ir.ReadMemory16(GetAddressingMode(ir, P, U, W, n, ir.GetRegister(m)))); const auto offset = ir.GetRegister(m);
const auto address = GetAddress(ir, P, U, W, n, offset);
if (t == Reg::PC) { const auto data = ir.ZeroExtendHalfToWord(ir.ReadMemory16(address));
ir.ALUWritePC(ir.Add(data, ir.Imm32(4)));
ir.SetTerm(IR::Term::ReturnToDispatch{});
return false;
}
ir.SetRegister(t, data); ir.SetRegister(t, data);
} }
return true; return true;
} }
@ -421,19 +338,17 @@ bool ArmTranslatorVisitor::arm_LDRSB_lit(Cond cond, bool U, Reg t, Imm4 imm8a, I
if (t == Reg::PC) if (t == Reg::PC)
return UnpredictableInstruction(); return UnpredictableInstruction();
bool P = true, W = false; const u32 imm32 = (imm8a << 4) | imm8b;
if (ConditionPassed(cond)) { const bool add = U;
const auto data = ir.SignExtendByteToWord(ir.ReadMemory8(GetAddressingMode(ir, P, U, W, Reg::PC, ir.Imm32(imm8a << 4 | imm8b))));
if (t == Reg::PC) { // LDRSB <Rt>, [PC, #+/-<imm>]
ir.ALUWritePC(ir.Add(data, ir.Imm32(4))); if (ConditionPassed(cond)) {
ir.SetTerm(IR::Term::ReturnToDispatch{}); const u32 base = ir.AlignPC(4);
return false; const u32 address = add ? (base + imm32) : (base - imm32);
} const auto data = ir.SignExtendByteToWord(ir.ReadMemory8(ir.Imm32(address)));
ir.SetRegister(t, data); ir.SetRegister(t, data);
} }
return true; return true;
} }
@ -446,18 +361,17 @@ bool ArmTranslatorVisitor::arm_LDRSB_imm(Cond cond, bool P, bool U, bool W, Reg
if (t == Reg::PC) if (t == Reg::PC)
return UnpredictableInstruction(); return UnpredictableInstruction();
if (ConditionPassed(cond)) { const u32 imm32 = (imm8a << 4) | imm8b;
const auto data = ir.SignExtendByteToWord(ir.ReadMemory8(GetAddressingMode(ir, P, U, W, n, ir.Imm32(imm8a << 4 | imm8b))));
if (t == Reg::PC) { // LDRSB <Rt>, [<Rn>, #+/-<imm>]{!}
ir.ALUWritePC(ir.Add(data, ir.Imm32(4))); // LDRSB <Rt>, [<Rn>], #+/-<imm>
ir.SetTerm(IR::Term::ReturnToDispatch{}); if (ConditionPassed(cond)) {
return false; const auto offset = ir.Imm32(imm32);
} const auto address = GetAddress(ir, P, U, W, n, offset);
const auto data = ir.SignExtendByteToWord(ir.ReadMemory8(address));
ir.SetRegister(t, data); ir.SetRegister(t, data);
} }
return true; return true;
} }
@ -468,18 +382,15 @@ bool ArmTranslatorVisitor::arm_LDRSB_reg(Cond cond, bool P, bool U, bool W, Reg
if ((!P || W) && (n == Reg::PC || n == t)) if ((!P || W) && (n == Reg::PC || n == t))
return UnpredictableInstruction(); return UnpredictableInstruction();
// LDRSB <Rt>, [<Rn>, #+/-<Rm>]{!}
// LDRSB <Rt>, [<Rn>], #+/-<Rm>
if (ConditionPassed(cond)) { if (ConditionPassed(cond)) {
const auto data = ir.SignExtendByteToWord(ir.ReadMemory8(GetAddressingMode(ir, P, U, W, n, ir.GetRegister(m)))); const auto offset = ir.GetRegister(m);
const auto address = GetAddress(ir, P, U, W, n, offset);
if (t == Reg::PC) { const auto data = ir.SignExtendByteToWord(ir.ReadMemory8(address));
ir.ALUWritePC(ir.Add(data, ir.Imm32(4)));
ir.SetTerm(IR::Term::ReturnToDispatch{});
return false;
}
ir.SetRegister(t, data); ir.SetRegister(t, data);
} }
return true; return true;
} }
@ -487,19 +398,17 @@ bool ArmTranslatorVisitor::arm_LDRSH_lit(Cond cond, bool U, Reg t, Imm4 imm8a, I
if (t == Reg::PC) if (t == Reg::PC)
return UnpredictableInstruction(); return UnpredictableInstruction();
bool P = true, W = false; const u32 imm32 = (imm8a << 4) | imm8b;
if (ConditionPassed(cond)) { const bool add = U;
const auto data = ir.SignExtendHalfToWord(ir.ReadMemory16(GetAddressingMode(ir, P, U, W, Reg::PC, ir.Imm32(imm8a << 4 | imm8b))));
if (t == Reg::PC) { // LDRSH <Rt>, [PC, #-/+<imm>]
ir.ALUWritePC(ir.Add(data, ir.Imm32(4))); if (ConditionPassed(cond)) {
ir.SetTerm(IR::Term::ReturnToDispatch{}); const u32 base = ir.AlignPC(4);
return false; const u32 address = add ? (base + imm32) : (base - imm32);
} const auto data = ir.SignExtendHalfToWord(ir.ReadMemory16(ir.Imm32(address)));
ir.SetRegister(t, data); ir.SetRegister(t, data);
} }
return true; return true;
} }
@ -512,18 +421,17 @@ bool ArmTranslatorVisitor::arm_LDRSH_imm(Cond cond, bool P, bool U, bool W, Reg
if (t == Reg::PC) if (t == Reg::PC)
return UnpredictableInstruction(); return UnpredictableInstruction();
if (ConditionPassed(cond)) { const u32 imm32 = (imm8a << 4) | imm8b;
const auto data = ir.SignExtendHalfToWord(ir.ReadMemory16(GetAddressingMode(ir, P, U, W, n, ir.Imm32(imm8a << 4 | imm8b))));
if (t == Reg::PC) { // LDRSH <Rt>, [<Rn>, #+/-<imm>]{!}
ir.ALUWritePC(ir.Add(data, ir.Imm32(4))); // LDRSH <Rt>, [<Rn>], #+/-<imm>
ir.SetTerm(IR::Term::ReturnToDispatch{}); if (ConditionPassed(cond)) {
return false; const auto offset = ir.Imm32(imm32);
} const auto address = GetAddress(ir, P, U, W, n, offset);
const auto data = ir.SignExtendHalfToWord(ir.ReadMemory16(address));
ir.SetRegister(t, data); ir.SetRegister(t, data);
} }
return true; return true;
} }
@ -534,18 +442,15 @@ bool ArmTranslatorVisitor::arm_LDRSH_reg(Cond cond, bool P, bool U, bool W, Reg
if ((!P || W) && (n == Reg::PC || n == t)) if ((!P || W) && (n == Reg::PC || n == t))
return UnpredictableInstruction(); return UnpredictableInstruction();
// LDRSH <Rt>, [<Rn>, #+/-<Rm>]{!}
// LDRSH <Rt>, [<Rn>], #+/-<Rm>
if (ConditionPassed(cond)) { if (ConditionPassed(cond)) {
const auto data = ir.SignExtendHalfToWord(ir.ReadMemory16(GetAddressingMode(ir, P, U, W, n, ir.GetRegister(m)))); const auto offset = ir.GetRegister(m);
const auto address = GetAddress(ir, P, U, W, n, offset);
if (t == Reg::PC) { const auto data = ir.SignExtendHalfToWord(ir.ReadMemory16(address));
ir.ALUWritePC(ir.Add(data, ir.Imm32(4)));
ir.SetTerm(IR::Term::ReturnToDispatch{});
return false;
}
ir.SetRegister(t, data); ir.SetRegister(t, data);
} }
return true; return true;
} }
@ -553,11 +458,13 @@ bool ArmTranslatorVisitor::arm_STR_imm(Cond cond, bool P, bool U, bool W, Reg n,
if (W && (n == Reg::PC || n == t)) if (W && (n == Reg::PC || n == t))
return UnpredictableInstruction(); return UnpredictableInstruction();
// STR <Rt>, [<Rn>, #+/-<imm>]{!}
// STR <Rt>, [<Rn>], #+/-<imm>
if (ConditionPassed(cond)) { if (ConditionPassed(cond)) {
const auto address = GetAddressingMode(ir, P, U, W, n, ir.Imm32(imm12)); const auto offset = ir.Imm32(imm12);
const auto address = GetAddress(ir, P, U, W, n, offset);
ir.WriteMemory32(address, ir.GetRegister(t)); ir.WriteMemory32(address, ir.GetRegister(t));
} }
return true; return true;
} }
@ -568,12 +475,13 @@ bool ArmTranslatorVisitor::arm_STR_reg(Cond cond, bool P, bool U, bool W, Reg n,
if (W && (n == Reg::PC || n == t)) if (W && (n == Reg::PC || n == t))
return UnpredictableInstruction(); return UnpredictableInstruction();
// STR <Rt>, [<Rn>, #+/-<Rm>]{!}
// STR <Rt>, [<Rn>], #+/-<Rm>
if (ConditionPassed(cond)) { if (ConditionPassed(cond)) {
const auto shifted = EmitImmShift(ir.GetRegister(m), shift, imm5, ir.GetCFlag()); const auto offset = EmitImmShift(ir.GetRegister(m), shift, imm5, ir.GetCFlag()).result;
const auto address = GetAddressingMode(ir, P, U, W, n, shifted.result); const auto address = GetAddress(ir, P, U, W, n, offset);
ir.WriteMemory32(address, ir.GetRegister(t)); ir.WriteMemory32(address, ir.GetRegister(t));
} }
return true; return true;
} }
@ -584,12 +492,13 @@ bool ArmTranslatorVisitor::arm_STRB_imm(Cond cond, bool P, bool U, bool W, Reg n
if (W && (n == Reg::PC || n == t)) if (W && (n == Reg::PC || n == t))
return UnpredictableInstruction(); return UnpredictableInstruction();
// STRB <Rt>, [<Rn>, #+/-<imm>]{!}
// STRB <Rt>, [<Rn>], #+/-<imm>
if (ConditionPassed(cond)) { if (ConditionPassed(cond)) {
const auto address = GetAddressingMode(ir, P, U, W, n, ir.Imm32(imm12)); const auto offset = ir.Imm32(imm12);
const auto value = (t == Reg::PC) ? ir.Imm8(static_cast<u8>(ir.PC() - 8)) : ir.GetRegister(t); const auto address = GetAddress(ir, P, U, W, n, offset);
ir.WriteMemory8(address, ir.LeastSignificantByte(value)); ir.WriteMemory8(address, ir.LeastSignificantByte(ir.GetRegister(t)));
} }
return true; return true;
} }
@ -600,47 +509,47 @@ bool ArmTranslatorVisitor::arm_STRB_reg(Cond cond, bool P, bool U, bool W, Reg n
if (W && (n == Reg::PC || n == t)) if (W && (n == Reg::PC || n == t))
return UnpredictableInstruction(); return UnpredictableInstruction();
// STRB <Rt>, [<Rn>, #+/-<Rm>]{!}
// STRB <Rt>, [<Rn>], #+/-<Rm>
if (ConditionPassed(cond)) { if (ConditionPassed(cond)) {
const auto shifted = EmitImmShift(ir.GetRegister(m), shift, imm5, ir.GetCFlag()); const auto offset = EmitImmShift(ir.GetRegister(m), shift, imm5, ir.GetCFlag()).result;
const auto address = GetAddressingMode(ir, P, U, W, n, shifted.result); const auto address = GetAddress(ir, P, U, W, n, offset);
const auto value = (t == Reg::PC) ? ir.Imm8(static_cast<u8>(ir.PC() - 8)) : ir.GetRegister(t); ir.WriteMemory8(address, ir.LeastSignificantByte(ir.GetRegister(t)));
ir.WriteMemory8(address, ir.LeastSignificantByte(value));
} }
return true; return true;
} }
bool ArmTranslatorVisitor::arm_STRD_imm(Cond cond, bool P, bool U, bool W, Reg n, Reg t, Imm4 imm8a, Imm4 imm8b) { bool ArmTranslatorVisitor::arm_STRD_imm(Cond cond, bool P, bool U, bool W, Reg n, Reg t, Imm4 imm8a, Imm4 imm8b) {
if (size_t(t) % 2 != 0) if (size_t(t) % 2 != 0)
return UnpredictableInstruction(); return UnpredictableInstruction();
if (!P && W) if (!P && W)
return UnpredictableInstruction(); return UnpredictableInstruction();
const u32 imm32 = imm8a << 4 | imm8b;
const Reg t2 = t + 1; const Reg t2 = t + 1;
if (W && (n == Reg::PC || n == t || n == t2)) if (W && (n == Reg::PC || n == t || n == t2))
return UnpredictableInstruction(); return UnpredictableInstruction();
if (t2 == Reg::PC) if (t2 == Reg::PC)
return UnpredictableInstruction(); return UnpredictableInstruction();
// STRD <Rt>, [<Rn>, #+/-<imm>]{!}
// STRD <Rt>, [<Rn>], #+/-<imm>
if (ConditionPassed(cond)) { if (ConditionPassed(cond)) {
const auto address_a = GetAddressingMode(ir, P, U, W, n, ir.Imm32(imm8a << 4 | imm8b)); const auto offset = ir.Imm32(imm32);
const auto address_a = GetAddress(ir, P, U, W, n, offset);
const auto address_b = ir.Add(address_a, ir.Imm32(4)); const auto address_b = ir.Add(address_a, ir.Imm32(4));
const auto value_a = ir.GetRegister(t); const auto value_a = ir.GetRegister(t);
const auto value_b = ir.GetRegister(t2); const auto value_b = ir.GetRegister(t2);
ir.WriteMemory32(address_a, value_a); ir.WriteMemory32(address_a, value_a);
ir.WriteMemory32(address_b, value_b); ir.WriteMemory32(address_b, value_b);
} }
return true; return true;
} }
bool ArmTranslatorVisitor::arm_STRD_reg(Cond cond, bool P, bool U, bool W, Reg n, Reg t, Reg m) { bool ArmTranslatorVisitor::arm_STRD_reg(Cond cond, bool P, bool U, bool W, Reg n, Reg t, Reg m) {
if (size_t(t) % 2 != 0) if (size_t(t) % 2 != 0)
return UnpredictableInstruction(); return UnpredictableInstruction();
if (!P && W) if (!P && W)
return UnpredictableInstruction(); return UnpredictableInstruction();
@ -648,51 +557,54 @@ bool ArmTranslatorVisitor::arm_STRD_reg(Cond cond, bool P, bool U, bool W, Reg n
if (t2 == Reg::PC || m == Reg::PC) if (t2 == Reg::PC || m == Reg::PC)
return UnpredictableInstruction(); return UnpredictableInstruction();
if (W && (n == Reg::PC || n == t || n == t2)) if (W && (n == Reg::PC || n == t || n == t2))
return UnpredictableInstruction(); return UnpredictableInstruction();
// STRD <Rt>, [<Rn>, #+/-<Rm>]{!}
// STRD <Rt>, [<Rn>], #+/-<Rm>
if (ConditionPassed(cond)) { if (ConditionPassed(cond)) {
const auto address_a = GetAddressingMode(ir, P, U, W, n, ir.GetRegister(m)); const auto offset = ir.GetRegister(m);
const auto address_a = GetAddress(ir, P, U, W, n, offset);
const auto address_b = ir.Add(address_a, ir.Imm32(4)); const auto address_b = ir.Add(address_a, ir.Imm32(4));
const auto value_a = ir.GetRegister(t); const auto value_a = ir.GetRegister(t);
const auto value_b = ir.GetRegister(t2); const auto value_b = ir.GetRegister(t2);
ir.WriteMemory32(address_a, value_a); ir.WriteMemory32(address_a, value_a);
ir.WriteMemory32(address_b, value_b); ir.WriteMemory32(address_b, value_b);
} }
return true; return true;
} }
bool ArmTranslatorVisitor::arm_STRH_imm(Cond cond, bool P, bool U, bool W, Reg n, Reg t, Imm4 imm8a, Imm4 imm8b) { bool ArmTranslatorVisitor::arm_STRH_imm(Cond cond, bool P, bool U, bool W, Reg n, Reg t, Imm4 imm8a, Imm4 imm8b) {
if (t == Reg::PC) if (t == Reg::PC)
return UnpredictableInstruction(); return UnpredictableInstruction();
if (W && (n == Reg::PC || n == t)) if (W && (n == Reg::PC || n == t))
return UnpredictableInstruction(); return UnpredictableInstruction();
if (ConditionPassed(cond)) { const u32 imm32 = imm8a << 4 | imm8b;
const auto address = GetAddressingMode(ir, P, U, W, n, ir.Imm32(imm8a << 4 | imm8b));
const auto value = (t == Reg::PC) ? ir.Imm32(ir.PC() - 8) : ir.GetRegister(t);
ir.WriteMemory16(address, ir.LeastSignificantHalf(value));
}
// STRH <Rt>, [<Rn>, #+/-<imm>]{!}
// STRH <Rt>, [<Rn>], #+/-<imm>
if (ConditionPassed(cond)) {
const auto offset = ir.Imm32(imm32);
const auto address = GetAddress(ir, P, U, W, n, offset);
ir.WriteMemory16(address, ir.LeastSignificantHalf(ir.GetRegister(t)));
}
return true; return true;
} }
bool ArmTranslatorVisitor::arm_STRH_reg(Cond cond, bool P, bool U, bool W, Reg n, Reg t, Reg m) { bool ArmTranslatorVisitor::arm_STRH_reg(Cond cond, bool P, bool U, bool W, Reg n, Reg t, Reg m) {
if (t == Reg::PC || m == Reg::PC) if (t == Reg::PC || m == Reg::PC)
return UnpredictableInstruction(); return UnpredictableInstruction();
if (W && (n == Reg::PC || n == t)) if (W && (n == Reg::PC || n == t))
return UnpredictableInstruction(); return UnpredictableInstruction();
// STRH <Rt>, [<Rn>, #+/-<Rm>]{!}
// STRH <Rt>, [<Rn>], #+/-<Rm>
if (ConditionPassed(cond)) { if (ConditionPassed(cond)) {
const auto address = GetAddressingMode(ir, P, U, W, n, ir.GetRegister(m)); const auto offset = ir.GetRegister(m);
const auto value = (t == Reg::PC) ? ir.Imm32(ir.PC() - 8) : ir.GetRegister(t); const auto address = GetAddress(ir, P, U, W, n, offset);
ir.WriteMemory16(address, ir.LeastSignificantHalf(value)); ir.WriteMemory16(address, ir.LeastSignificantHalf(ir.GetRegister(t)));
} }
return true; return true;
} }