/* This file is part of the dynarmic project. * Copyright (c) 2016 MerryMage * SPDX-License-Identifier: 0BSD */ #include <algorithm> #include <array> #include <cstdio> #include <functional> #include <tuple> #include <type_traits> #include <vector> #include <catch2/catch_test_macros.hpp> #include <mcl/bit/bit_count.hpp> #include <mcl/bit/swap.hpp> #include <mcl/scope_exit.hpp> #include <mcl/stdint.hpp> #include "../fuzz_util.h" #include "../rand_int.h" #include "../unicorn_emu/a32_unicorn.h" #include "./testenv.h" #include "dynarmic/common/fp/fpcr.h" #include "dynarmic/common/fp/fpsr.h" #include "dynarmic/common/llvm_disassemble.h" #include "dynarmic/common/variant_util.h" #include "dynarmic/frontend/A32/ITState.h" #include "dynarmic/frontend/A32/a32_location_descriptor.h" #include "dynarmic/frontend/A32/a32_types.h" #include "dynarmic/frontend/A32/translate/a32_translate.h" #include "dynarmic/interface/A32/a32.h" #include "dynarmic/ir/basic_block.h" #include "dynarmic/ir/location_descriptor.h" #include "dynarmic/ir/opcodes.h" // Must be declared last for all necessary operator<< to be declared prior to this. #include <fmt/format.h> #include <fmt/ostream.h> namespace { using namespace Dynarmic; template<typename Fn> bool AnyLocationDescriptorForTerminalHas(IR::Terminal terminal, Fn fn) { return Common::VisitVariant<bool>(terminal, [&](auto t) -> bool { using T = std::decay_t<decltype(t)>; if constexpr (std::is_same_v<T, IR::Term::Invalid>) { return false; } else if constexpr (std::is_same_v<T, IR::Term::ReturnToDispatch>) { return false; } else if constexpr (std::is_same_v<T, IR::Term::LinkBlock>) { return fn(t.next); } else if constexpr (std::is_same_v<T, IR::Term::LinkBlockFast>) { return fn(t.next); } else if constexpr (std::is_same_v<T, IR::Term::PopRSBHint>) { return false; } else if constexpr (std::is_same_v<T, IR::Term::Interpret>) { return fn(t.next); } else if constexpr (std::is_same_v<T, IR::Term::FastDispatchHint>) { return false; } else if constexpr (std::is_same_v<T, IR::Term::If>) { return AnyLocationDescriptorForTerminalHas(t.then_, fn) || AnyLocationDescriptorForTerminalHas(t.else_, fn); } else if constexpr (std::is_same_v<T, IR::Term::CheckBit>) { return AnyLocationDescriptorForTerminalHas(t.then_, fn) || AnyLocationDescriptorForTerminalHas(t.else_, fn); } else if constexpr (std::is_same_v<T, IR::Term::CheckHalt>) { return AnyLocationDescriptorForTerminalHas(t.else_, fn); } else { ASSERT_MSG(false, "Invalid terminal type"); return false; } }); } bool ShouldTestInst(u32 instruction, u32 pc, bool is_thumb, bool is_last_inst, A32::ITState it_state = {}) { const A32::LocationDescriptor location = A32::LocationDescriptor{pc, {}, {}}.SetTFlag(is_thumb).SetIT(it_state); IR::Block block{location}; const bool should_continue = A32::TranslateSingleInstruction(block, location, instruction); if (!should_continue && !is_last_inst) { return false; } if (auto terminal = block.GetTerminal(); boost::get<IR::Term::Interpret>(&terminal)) { return false; } if (AnyLocationDescriptorForTerminalHas(block.GetTerminal(), [&](IR::LocationDescriptor ld) { return A32::LocationDescriptor{ld}.PC() <= pc; })) { return false; } for (const auto& ir_inst : block) { switch (ir_inst.GetOpcode()) { case IR::Opcode::A32ExceptionRaised: case IR::Opcode::A32CallSupervisor: case IR::Opcode::A32CoprocInternalOperation: case IR::Opcode::A32CoprocSendOneWord: case IR::Opcode::A32CoprocSendTwoWords: case IR::Opcode::A32CoprocGetOneWord: case IR::Opcode::A32CoprocGetTwoWords: case IR::Opcode::A32CoprocLoadWords: case IR::Opcode::A32CoprocStoreWords: return false; // Currently unimplemented in Unicorn case IR::Opcode::FPVectorRecipEstimate16: case IR::Opcode::FPVectorRSqrtEstimate16: case IR::Opcode::VectorPolynomialMultiplyLong64: return false; default: continue; } } return true; } u32 GenRandomArmInst(u32 pc, bool is_last_inst) { static const struct InstructionGeneratorInfo { std::vector<InstructionGenerator> generators; std::vector<InstructionGenerator> invalid; } instructions = [] { const std::vector<std::tuple<std::string, const char*>> list{ #define INST(fn, name, bitstring) {#fn, bitstring}, #include "dynarmic/frontend/A32/decoder/arm.inc" #include "dynarmic/frontend/A32/decoder/asimd.inc" #include "dynarmic/frontend/A32/decoder/vfp.inc" #undef INST }; std::vector<InstructionGenerator> generators; std::vector<InstructionGenerator> invalid; // List of instructions not to test static constexpr std::array do_not_test{ // Translating load/stores "arm_LDRBT", "arm_LDRBT", "arm_LDRHT", "arm_LDRHT", "arm_LDRSBT", "arm_LDRSBT", "arm_LDRSHT", "arm_LDRSHT", "arm_LDRT", "arm_LDRT", "arm_STRBT", "arm_STRBT", "arm_STRHT", "arm_STRHT", "arm_STRT", "arm_STRT", // Exclusive load/stores "arm_LDREXB", "arm_LDREXD", "arm_LDREXH", "arm_LDREX", "arm_LDAEXB", "arm_LDAEXD", "arm_LDAEXH", "arm_LDAEX", "arm_STREXB", "arm_STREXD", "arm_STREXH", "arm_STREX", "arm_STLEXB", "arm_STLEXD", "arm_STLEXH", "arm_STLEX", "arm_SWP", "arm_SWPB", // Elevated load/store multiple instructions. "arm_LDM_eret", "arm_LDM_usr", "arm_STM_usr", // Hint instructions "arm_NOP", "arm_PLD_imm", "arm_PLD_reg", "arm_SEV", "arm_WFE", "arm_WFI", "arm_YIELD", // E, T, J "arm_BLX_reg", "arm_BLX_imm", "arm_BXJ", "arm_SETEND", // Coprocessor "arm_CDP", "arm_LDC", "arm_MCR", "arm_MCRR", "arm_MRC", "arm_MRRC", "arm_STC", // System "arm_CPS", "arm_RFE", "arm_SRS", // Undefined "arm_UDF", // FPSCR is inaccurate "vfp_VMRS", // Incorrect Unicorn implementations "asimd_VRECPS", // Unicorn does not fuse the multiply and subtraction, resulting in being off by 1ULP. "asimd_VRSQRTS", // Unicorn does not fuse the multiply and subtraction, resulting in being off by 1ULP. "vfp_VCVT_from_fixed", // Unicorn does not do round-to-nearest-even for this instruction correctly. }; for (const auto& [fn, bitstring] : list) { if (std::find(do_not_test.begin(), do_not_test.end(), fn) != do_not_test.end()) { invalid.emplace_back(InstructionGenerator{bitstring}); continue; } generators.emplace_back(InstructionGenerator{bitstring}); } return InstructionGeneratorInfo{generators, invalid}; }(); while (true) { const size_t index = RandInt<size_t>(0, instructions.generators.size() - 1); const u32 inst = instructions.generators[index].Generate(); if ((instructions.generators[index].Mask() & 0xF0000000) == 0 && (inst & 0xF0000000) == 0xF0000000) { continue; } if (ShouldTestInst(inst, pc, false, is_last_inst)) { return inst; } } } std::vector<u16> GenRandomThumbInst(u32 pc, bool is_last_inst, A32::ITState it_state = {}) { static const struct InstructionGeneratorInfo { std::vector<InstructionGenerator> generators; std::vector<InstructionGenerator> invalid; } instructions = [] { const std::vector<std::tuple<std::string, const char*>> list{ #define INST(fn, name, bitstring) {#fn, bitstring}, #include "dynarmic/frontend/A32/decoder/thumb16.inc" #include "dynarmic/frontend/A32/decoder/thumb32.inc" #undef INST }; const std::vector<std::tuple<std::string, const char*>> vfp_list{ #define INST(fn, name, bitstring) {#fn, bitstring}, #include "dynarmic/frontend/A32/decoder/vfp.inc" #undef INST }; const std::vector<std::tuple<std::string, const char*>> asimd_list{ #define INST(fn, name, bitstring) {#fn, bitstring}, #include "dynarmic/frontend/A32/decoder/asimd.inc" #undef INST }; std::vector<InstructionGenerator> generators; std::vector<InstructionGenerator> invalid; // List of instructions not to test static constexpr std::array do_not_test{ "thumb16_BKPT", "thumb16_IT", "thumb16_SETEND", // Exclusive load/stores "thumb32_LDREX", "thumb32_LDREXB", "thumb32_LDREXD", "thumb32_LDREXH", "thumb32_STREX", "thumb32_STREXB", "thumb32_STREXD", "thumb32_STREXH", // FPSCR is inaccurate "vfp_VMRS", // Unicorn is incorrect? "thumb32_MRS_reg", "thumb32_MSR_reg", // Unicorn has incorrect implementation (incorrect rounding and unsets CPSR.T??) "vfp_VCVT_to_fixed", "vfp_VCVT_from_fixed", "asimd_VRECPS", // Unicorn does not fuse the multiply and subtraction, resulting in being off by 1ULP. "asimd_VRSQRTS", // Unicorn does not fuse the multiply and subtraction, resulting in being off by 1ULP. // Coprocessor "thumb32_CDP", "thumb32_LDC", "thumb32_MCR", "thumb32_MCRR", "thumb32_MRC", "thumb32_MRRC", "thumb32_STC", }; for (const auto& [fn, bitstring] : list) { if (std::find(do_not_test.begin(), do_not_test.end(), fn) != do_not_test.end()) { invalid.emplace_back(InstructionGenerator{bitstring}); continue; } generators.emplace_back(InstructionGenerator{bitstring}); } for (const auto& [fn, bs] : vfp_list) { std::string bitstring = bs; if (bitstring.substr(0, 4) == "cccc" || bitstring.substr(0, 4) == "----") { bitstring.replace(0, 4, "1110"); } if (std::find(do_not_test.begin(), do_not_test.end(), fn) != do_not_test.end()) { invalid.emplace_back(InstructionGenerator{bitstring.c_str()}); continue; } generators.emplace_back(InstructionGenerator{bitstring.c_str()}); } for (const auto& [fn, bs] : asimd_list) { std::string bitstring = bs; if (bitstring.substr(0, 7) == "1111001") { const char U = bitstring[7]; bitstring.replace(0, 8, "111-1111"); bitstring[3] = U; } else if (bitstring.substr(0, 8) == "11110100") { bitstring.replace(0, 8, "11111001"); } else { ASSERT_FALSE("Unhandled ASIMD instruction: {} {}", fn, bs); } if (std::find(do_not_test.begin(), do_not_test.end(), fn) != do_not_test.end()) { invalid.emplace_back(InstructionGenerator{bitstring.c_str()}); continue; } generators.emplace_back(InstructionGenerator{bitstring.c_str()}); } return InstructionGeneratorInfo{generators, invalid}; }(); while (true) { const size_t index = RandInt<size_t>(0, instructions.generators.size() - 1); const u32 inst = instructions.generators[index].Generate(); const bool is_four_bytes = (inst >> 16) != 0; if (ShouldTestInst(is_four_bytes ? mcl::bit::swap_halves_32(inst) : inst, pc, true, is_last_inst, it_state)) { if (is_four_bytes) return {static_cast<u16>(inst >> 16), static_cast<u16>(inst)}; return {static_cast<u16>(inst)}; } } } template<typename TestEnv> Dynarmic::A32::UserConfig GetUserConfig(TestEnv& testenv) { Dynarmic::A32::UserConfig user_config; user_config.optimizations &= ~OptimizationFlag::FastDispatch; user_config.callbacks = &testenv; user_config.always_little_endian = true; return user_config; } template<typename TestEnv> static void RunTestInstance(Dynarmic::A32::Jit& jit, A32Unicorn<TestEnv>& uni, TestEnv& jit_env, TestEnv& uni_env, const typename A32Unicorn<TestEnv>::RegisterArray& regs, const typename A32Unicorn<TestEnv>::ExtRegArray& vecs, const std::vector<typename TestEnv::InstructionType>& instructions, const u32 cpsr, const u32 fpscr, const size_t ticks_left) { const u32 initial_pc = regs[15]; const u32 num_words = initial_pc / sizeof(typename TestEnv::InstructionType); const u32 code_mem_size = num_words + static_cast<u32>(instructions.size()); const u32 expected_end_pc = code_mem_size * sizeof(typename TestEnv::InstructionType); jit_env.code_mem.resize(code_mem_size); uni_env.code_mem.resize(code_mem_size); std::fill(jit_env.code_mem.begin(), jit_env.code_mem.end(), TestEnv::infinite_loop); std::fill(uni_env.code_mem.begin(), uni_env.code_mem.end(), TestEnv::infinite_loop); std::copy(instructions.begin(), instructions.end(), jit_env.code_mem.begin() + num_words); std::copy(instructions.begin(), instructions.end(), uni_env.code_mem.begin() + num_words); jit_env.PadCodeMem(); uni_env.PadCodeMem(); jit_env.modified_memory.clear(); uni_env.modified_memory.clear(); jit_env.interrupts.clear(); uni_env.interrupts.clear(); jit.Regs() = regs; jit.ExtRegs() = vecs; jit.SetFpscr(fpscr); jit.SetCpsr(cpsr); jit.ClearCache(); uni.SetRegisters(regs); uni.SetExtRegs(vecs); uni.SetFpscr(fpscr); uni.EnableFloatingPointAccess(); uni.SetCpsr(cpsr); uni.ClearPageCache(); jit_env.ticks_left = ticks_left; jit.Run(); uni_env.ticks_left = instructions.size(); // Unicorn counts thumb instructions weirdly. uni.Run(); SCOPE_FAIL { fmt::print("Instruction Listing:\n"); fmt::print("{}\n", Common::DisassembleAArch32(std::is_same_v<TestEnv, ThumbTestEnv>, initial_pc, (const u8*)instructions.data(), instructions.size() * sizeof(instructions[0]))); fmt::print("Initial register listing:\n"); for (size_t i = 0; i < regs.size(); ++i) { fmt::print("{:3s}: {:08x}\n", static_cast<A32::Reg>(i), regs[i]); } for (size_t i = 0; i < vecs.size(); ++i) { fmt::print("{:3s}: {:08x}\n", static_cast<A32::ExtReg>(i), vecs[i]); } fmt::print("cpsr {:08x}\n", cpsr); fmt::print("fpcr {:08x}\n", fpscr); fmt::print("fpcr.AHP {}\n", FP::FPCR{fpscr}.AHP()); fmt::print("fpcr.DN {}\n", FP::FPCR{fpscr}.DN()); fmt::print("fpcr.FZ {}\n", FP::FPCR{fpscr}.FZ()); fmt::print("fpcr.RMode {}\n", static_cast<size_t>(FP::FPCR{fpscr}.RMode())); fmt::print("fpcr.FZ16 {}\n", FP::FPCR{fpscr}.FZ16()); fmt::print("\n"); fmt::print("Final register listing:\n"); fmt::print(" unicorn dynarmic\n"); const auto uni_regs = uni.GetRegisters(); for (size_t i = 0; i < regs.size(); ++i) { fmt::print("{:3s}: {:08x} {:08x} {}\n", static_cast<A32::Reg>(i), uni_regs[i], jit.Regs()[i], uni_regs[i] != jit.Regs()[i] ? "*" : ""); } const auto uni_ext_regs = uni.GetExtRegs(); for (size_t i = 0; i < vecs.size(); ++i) { fmt::print("s{:2d}: {:08x} {:08x} {}\n", static_cast<size_t>(i), uni_ext_regs[i], jit.ExtRegs()[i], uni_ext_regs[i] != jit.ExtRegs()[i] ? "*" : ""); } fmt::print("cpsr {:08x} {:08x} {}\n", uni.GetCpsr(), jit.Cpsr(), uni.GetCpsr() != jit.Cpsr() ? "*" : ""); fmt::print("fpsr {:08x} {:08x} {}\n", uni.GetFpscr(), jit.Fpscr(), (uni.GetFpscr() & 0xF0000000) != (jit.Fpscr() & 0xF0000000) ? "*" : ""); fmt::print("\n"); fmt::print("Modified memory:\n"); fmt::print(" uni dyn\n"); auto uni_iter = uni_env.modified_memory.begin(); auto jit_iter = jit_env.modified_memory.begin(); while (uni_iter != uni_env.modified_memory.end() || jit_iter != jit_env.modified_memory.end()) { if (uni_iter == uni_env.modified_memory.end() || (jit_iter != jit_env.modified_memory.end() && uni_iter->first > jit_iter->first)) { fmt::print("{:08x}: {:02x} *\n", jit_iter->first, jit_iter->second); jit_iter++; } else if (jit_iter == jit_env.modified_memory.end() || jit_iter->first > uni_iter->first) { fmt::print("{:08x}: {:02x} *\n", uni_iter->first, uni_iter->second); uni_iter++; } else if (uni_iter->first == jit_iter->first) { fmt::print("{:08x}: {:02x} {:02x} {}\n", uni_iter->first, uni_iter->second, jit_iter->second, uni_iter->second != jit_iter->second ? "*" : ""); uni_iter++; jit_iter++; } } fmt::print("\n"); fmt::print("x86_64:\n"); jit.DumpDisassembly(); fmt::print("Interrupts:\n"); for (const auto& i : uni_env.interrupts) { std::puts(i.c_str()); } }; REQUIRE(uni_env.code_mem_modified_by_guest == jit_env.code_mem_modified_by_guest); if (uni_env.code_mem_modified_by_guest) { return; } // Qemu doesn't do Thumb transitions?? { const u32 uni_pc = uni.GetPC(); const bool is_thumb = (jit.Cpsr() & (1 << 5)) != 0; const u32 new_uni_pc = uni_pc & (is_thumb ? 0xFFFFFFFE : 0xFFFFFFFC); uni.SetPC(new_uni_pc); } if (uni.GetRegisters()[15] > jit.Regs()[15]) { int trials = 0; while (jit.Regs()[15] >= initial_pc && jit.Regs()[15] < expected_end_pc && trials++ < 100 && uni.GetRegisters()[15] != jit.Regs()[15]) { fmt::print("Warning: Possible unicorn overrrun, attempt recovery\n"); jit.Step(); } } REQUIRE(uni.GetRegisters() == jit.Regs()); REQUIRE(uni.GetExtRegs() == jit.ExtRegs()); REQUIRE((uni.GetCpsr() & 0xFFFFFDDF) == (jit.Cpsr() & 0xFFFFFDDF)); REQUIRE((uni.GetFpscr() & 0xF8000000) == (jit.Fpscr() & 0xF8000000)); REQUIRE(uni_env.modified_memory == jit_env.modified_memory); REQUIRE(uni_env.interrupts.empty()); } } // Anonymous namespace TEST_CASE("A32: Single random arm instruction", "[arm]") { ArmTestEnv jit_env{}; ArmTestEnv uni_env{}; Dynarmic::A32::Jit jit{GetUserConfig(jit_env)}; A32Unicorn<ArmTestEnv> uni{uni_env}; A32Unicorn<ArmTestEnv>::RegisterArray regs; A32Unicorn<ArmTestEnv>::ExtRegArray ext_reg; std::vector<u32> instructions(1); for (size_t iteration = 0; iteration < 100000; ++iteration) { std::generate(regs.begin(), regs.end(), [] { return RandInt<u32>(0, ~u32(0)); }); std::generate(ext_reg.begin(), ext_reg.end(), [] { return RandInt<u32>(0, ~u32(0)); }); const u32 start_address = 100; const u32 cpsr = (RandInt<u32>(0, 0xF) << 28) | 0x10; const u32 fpcr = RandomFpcr(); instructions[0] = GenRandomArmInst(start_address, true); INFO("Instruction: 0x" << std::hex << instructions[0]); regs[15] = start_address; RunTestInstance(jit, uni, jit_env, uni_env, regs, ext_reg, instructions, cpsr, fpcr, 1); } } TEST_CASE("A32: Small random arm block", "[arm]") { ArmTestEnv jit_env{}; ArmTestEnv uni_env{}; Dynarmic::A32::Jit jit{GetUserConfig(jit_env)}; A32Unicorn<ArmTestEnv> uni{uni_env}; A32Unicorn<ArmTestEnv>::RegisterArray regs; A32Unicorn<ArmTestEnv>::ExtRegArray ext_reg; std::vector<u32> instructions(5); for (size_t iteration = 0; iteration < 100000; ++iteration) { std::generate(regs.begin(), regs.end(), [] { return RandInt<u32>(0, ~u32(0)); }); std::generate(ext_reg.begin(), ext_reg.end(), [] { return RandInt<u32>(0, ~u32(0)); }); const u32 start_address = 100; const u32 cpsr = (RandInt<u32>(0, 0xF) << 28) | 0x10; const u32 fpcr = RandomFpcr(); instructions[0] = GenRandomArmInst(start_address + 0, false); instructions[1] = GenRandomArmInst(start_address + 4, false); instructions[2] = GenRandomArmInst(start_address + 8, false); instructions[3] = GenRandomArmInst(start_address + 12, false); instructions[4] = GenRandomArmInst(start_address + 16, true); INFO("Instruction 1: 0x" << std::hex << instructions[0]); INFO("Instruction 2: 0x" << std::hex << instructions[1]); INFO("Instruction 3: 0x" << std::hex << instructions[2]); INFO("Instruction 4: 0x" << std::hex << instructions[3]); INFO("Instruction 5: 0x" << std::hex << instructions[4]); regs[15] = start_address; RunTestInstance(jit, uni, jit_env, uni_env, regs, ext_reg, instructions, cpsr, fpcr, 5); } } TEST_CASE("A32: Large random arm block", "[arm]") { ArmTestEnv jit_env{}; ArmTestEnv uni_env{}; Dynarmic::A32::Jit jit{GetUserConfig(jit_env)}; A32Unicorn<ArmTestEnv> uni{uni_env}; A32Unicorn<ArmTestEnv>::RegisterArray regs; A32Unicorn<ArmTestEnv>::ExtRegArray ext_reg; constexpr size_t instruction_count = 100; std::vector<u32> instructions(instruction_count); for (size_t iteration = 0; iteration < 10000; ++iteration) { std::generate(regs.begin(), regs.end(), [] { return RandInt<u32>(0, ~u32(0)); }); std::generate(ext_reg.begin(), ext_reg.end(), [] { return RandInt<u32>(0, ~u32(0)); }); const u64 start_address = 100; const u32 cpsr = (RandInt<u32>(0, 0xF) << 28) | 0x10; const u32 fpcr = RandomFpcr(); for (size_t j = 0; j < instruction_count; ++j) { instructions[j] = GenRandomArmInst(start_address + j * 4, j == instruction_count - 1); } regs[15] = start_address; RunTestInstance(jit, uni, jit_env, uni_env, regs, ext_reg, instructions, cpsr, fpcr, 100); } } TEST_CASE("A32: Single random thumb instruction", "[thumb]") { ThumbTestEnv jit_env{}; ThumbTestEnv uni_env{}; Dynarmic::A32::Jit jit{GetUserConfig(jit_env)}; A32Unicorn<ThumbTestEnv> uni{uni_env}; A32Unicorn<ThumbTestEnv>::RegisterArray regs; A32Unicorn<ThumbTestEnv>::ExtRegArray ext_reg; std::vector<u16> instructions; for (size_t iteration = 0; iteration < 100000; ++iteration) { std::generate(regs.begin(), regs.end(), [] { return RandInt<u32>(0, ~u32(0)); }); std::generate(ext_reg.begin(), ext_reg.end(), [] { return RandInt<u32>(0, ~u32(0)); }); const u32 start_address = 100; const u32 cpsr = (RandInt<u32>(0, 0xF) << 28) | 0x1F0; const u32 fpcr = RandomFpcr(); instructions = GenRandomThumbInst(start_address, true); INFO("Instruction: 0x" << std::hex << instructions[0]); regs[15] = start_address; RunTestInstance(jit, uni, jit_env, uni_env, regs, ext_reg, instructions, cpsr, fpcr, 1); } } TEST_CASE("A32: Single random thumb instruction (offset)", "[thumb]") { ThumbTestEnv jit_env{}; ThumbTestEnv uni_env{}; Dynarmic::A32::Jit jit{GetUserConfig(jit_env)}; A32Unicorn<ThumbTestEnv> uni{uni_env}; A32Unicorn<ThumbTestEnv>::RegisterArray regs; A32Unicorn<ThumbTestEnv>::ExtRegArray ext_reg; std::vector<u16> instructions; for (size_t iteration = 0; iteration < 100000; ++iteration) { std::generate(regs.begin(), regs.end(), [] { return RandInt<u32>(0, ~u32(0)); }); std::generate(ext_reg.begin(), ext_reg.end(), [] { return RandInt<u32>(0, ~u32(0)); }); const u32 start_address = 100; const u32 cpsr = (RandInt<u32>(0, 0xF) << 28) | 0x1F0; const u32 fpcr = RandomFpcr(); instructions.clear(); instructions.push_back(0xbf00); // NOP const std::vector<u16> inst = GenRandomThumbInst(start_address + 2, true); instructions.insert(instructions.end(), inst.begin(), inst.end()); INFO("Instruction: 0x" << std::hex << inst[0]); regs[15] = start_address; RunTestInstance(jit, uni, jit_env, uni_env, regs, ext_reg, instructions, cpsr, fpcr, 2); } } TEST_CASE("A32: Small random thumb block", "[thumb]") { ThumbTestEnv jit_env{}; ThumbTestEnv uni_env{}; Dynarmic::A32::Jit jit{GetUserConfig(jit_env)}; A32Unicorn<ThumbTestEnv> uni{uni_env}; A32Unicorn<ThumbTestEnv>::RegisterArray regs; A32Unicorn<ThumbTestEnv>::ExtRegArray ext_reg; std::vector<u16> instructions; for (size_t iteration = 0; iteration < 100000; ++iteration) { std::generate(regs.begin(), regs.end(), [] { return RandInt<u32>(0, ~u32(0)); }); std::generate(ext_reg.begin(), ext_reg.end(), [] { return RandInt<u32>(0, ~u32(0)); }); const u32 start_address = 100; const u32 cpsr = (RandInt<u32>(0, 0xF) << 28) | 0x1F0; const u32 fpcr = RandomFpcr(); instructions.clear(); for (size_t i = 0; i < 5; i++) { const std::vector<u16> inst = GenRandomThumbInst(start_address + instructions.size() * 2, i == 4); instructions.insert(instructions.end(), inst.begin(), inst.end()); } regs[15] = start_address; RunTestInstance(jit, uni, jit_env, uni_env, regs, ext_reg, instructions, cpsr, fpcr, 5); } } TEST_CASE("A32: Test thumb IT instruction", "[thumb]") { ThumbTestEnv jit_env{}; ThumbTestEnv uni_env{}; Dynarmic::A32::Jit jit{GetUserConfig(jit_env)}; A32Unicorn<ThumbTestEnv> uni{uni_env}; A32Unicorn<ThumbTestEnv>::RegisterArray regs; A32Unicorn<ThumbTestEnv>::ExtRegArray ext_reg; std::vector<u16> instructions; for (size_t iteration = 0; iteration < 100000; ++iteration) { std::generate(regs.begin(), regs.end(), [] { return RandInt<u32>(0, ~u32(0)); }); std::generate(ext_reg.begin(), ext_reg.end(), [] { return RandInt<u32>(0, ~u32(0)); }); const size_t pre_instructions = RandInt<size_t>(0, 3); const size_t post_instructions = RandInt<size_t>(5, 8); const u32 start_address = 100; const u32 cpsr = (RandInt<u32>(0, 0xF) << 28) | 0x1F0; const u32 fpcr = RandomFpcr(); instructions.clear(); for (size_t i = 0; i < pre_instructions; i++) { const std::vector<u16> inst = GenRandomThumbInst(start_address + instructions.size() * 2, false); instructions.insert(instructions.end(), inst.begin(), inst.end()); } // Emit IT instruction A32::ITState it_state = [&] { while (true) { const u16 imm8 = RandInt<u16>(0, 0xFF); if (mcl::bit::get_bits<0, 3>(imm8) == 0b0000 || mcl::bit::get_bits<4, 7>(imm8) == 0b1111 || (mcl::bit::get_bits<4, 7>(imm8) == 0b1110 && mcl::bit::count_ones(mcl::bit::get_bits<0, 3>(imm8)) != 1)) { continue; } instructions.push_back(0b1011111100000000 | imm8); return A32::ITState{static_cast<u8>(imm8)}; } }(); for (size_t i = 0; i < post_instructions; i++) { const std::vector<u16> inst = GenRandomThumbInst(start_address + instructions.size() * 2, i == post_instructions - 1, it_state); instructions.insert(instructions.end(), inst.begin(), inst.end()); it_state = it_state.Advance(); } regs[15] = start_address; RunTestInstance(jit, uni, jit_env, uni_env, regs, ext_reg, instructions, cpsr, fpcr, pre_instructions + 1 + post_instructions); } }