/* This file is part of the dynarmic project. * Copyright (c) 2016 MerryMage * This software may be used and distributed according to the terms of the GNU * General Public License version 2 or any later version. */ #include "common/assert.h" #include "ir_emitter.h" namespace Dynarmic { namespace Arm { void IREmitter::Unimplemented() { } u32 IREmitter::PC() { u32 offset = current_location.TFlag() ? 4 : 8; return current_location.PC() + offset; } u32 IREmitter::AlignPC(size_t alignment) { u32 pc = PC(); return static_cast(pc - pc % alignment); } IR::Value IREmitter::Imm1(bool imm1) { return IR::Value(imm1); } IR::Value IREmitter::Imm8(u8 imm8) { return IR::Value(imm8); } IR::Value IREmitter::Imm32(u32 imm32) { return IR::Value(imm32); } IR::Value IREmitter::GetRegister(Reg reg) { if (reg == Reg::PC) { return Imm32(PC()); } return Inst(IR::Opcode::GetRegister, { IR::Value(reg) }); } IR::Value IREmitter::GetExtendedRegister(ExtReg reg) { if (reg >= Arm::ExtReg::S0 && reg <= Arm::ExtReg::S31) { return Inst(IR::Opcode::GetExtendedRegister32, {IR::Value(reg)}); } else if (reg >= Arm::ExtReg::D0 && reg <= Arm::ExtReg::D31) { return Inst(IR::Opcode::GetExtendedRegister64, {IR::Value(reg)}); } else { ASSERT_MSG(false, "Invalid reg."); } } void IREmitter::SetRegister(const Reg reg, const IR::Value& value) { ASSERT(reg != Reg::PC); Inst(IR::Opcode::SetRegister, { IR::Value(reg), value }); } void IREmitter::SetExtendedRegister(const ExtReg reg, const IR::Value& value) { if (reg >= Arm::ExtReg::S0 && reg <= Arm::ExtReg::S31) { Inst(IR::Opcode::SetExtendedRegister32, {IR::Value(reg), value}); } else if (reg >= Arm::ExtReg::D0 && reg <= Arm::ExtReg::D31) { Inst(IR::Opcode::SetExtendedRegister64, {IR::Value(reg), value}); } else { ASSERT_MSG(false, "Invalid reg."); } } void IREmitter::ALUWritePC(const IR::Value& value) { // This behaviour is ARM version-dependent. // The below implementation is for ARMv6k BranchWritePC(value); } void IREmitter::BranchWritePC(const IR::Value& value) { if (!current_location.TFlag()) { auto new_pc = And(value, Imm32(0xFFFFFFFC)); Inst(IR::Opcode::SetRegister, { IR::Value(Reg::PC), new_pc }); } else { auto new_pc = And(value, Imm32(0xFFFFFFFE)); Inst(IR::Opcode::SetRegister, { IR::Value(Reg::PC), new_pc }); } } void IREmitter::BXWritePC(const IR::Value& value) { Inst(IR::Opcode::BXWritePC, {value}); } void IREmitter::LoadWritePC(const IR::Value& value) { // This behaviour is ARM version-dependent. // The below implementation is for ARMv6k BXWritePC(value); } void IREmitter::CallSupervisor(const IR::Value& value) { Inst(IR::Opcode::CallSupervisor, {value}); } IR::Value IREmitter::GetCFlag() { return Inst(IR::Opcode::GetCFlag, {}); } void IREmitter::SetNFlag(const IR::Value& value) { Inst(IR::Opcode::SetNFlag, {value}); } void IREmitter::SetZFlag(const IR::Value& value) { Inst(IR::Opcode::SetZFlag, {value}); } void IREmitter::SetCFlag(const IR::Value& value) { Inst(IR::Opcode::SetCFlag, {value}); } void IREmitter::SetVFlag(const IR::Value& value) { Inst(IR::Opcode::SetVFlag, {value}); } void IREmitter::OrQFlag(const IR::Value& value) { Inst(IR::Opcode::OrQFlag, {value}); } IR::Value IREmitter::Pack2x32To1x64(const IR::Value& lo, const IR::Value& hi) { return Inst(IR::Opcode::Pack2x32To1x64, {lo, hi}); } IR::Value IREmitter::LeastSignificantWord(const IR::Value& value) { return Inst(IR::Opcode::LeastSignificantWord, {value}); } IREmitter::ResultAndCarry IREmitter::MostSignificantWord(const IR::Value& value) { auto result = Inst(IR::Opcode::MostSignificantWord, {value}); auto carry_out = Inst(IR::Opcode::GetCarryFromOp, {result}); return {result, carry_out}; } IR::Value IREmitter::LeastSignificantHalf(const IR::Value& value) { return Inst(IR::Opcode::LeastSignificantHalf, {value}); } IR::Value IREmitter::LeastSignificantByte(const IR::Value& value) { return Inst(IR::Opcode::LeastSignificantByte, {value}); } IR::Value IREmitter::MostSignificantBit(const IR::Value& value) { return Inst(IR::Opcode::MostSignificantBit, {value}); } IR::Value IREmitter::IsZero(const IR::Value& value) { return Inst(IR::Opcode::IsZero, {value}); } IR::Value IREmitter::IsZero64(const IR::Value& value) { return Inst(IR::Opcode::IsZero64, {value}); } IREmitter::ResultAndCarry IREmitter::LogicalShiftLeft(const IR::Value& value_in, const IR::Value& shift_amount, const IR::Value& carry_in) { auto result = Inst(IR::Opcode::LogicalShiftLeft, {value_in, shift_amount, carry_in}); auto carry_out = Inst(IR::Opcode::GetCarryFromOp, {result}); return {result, carry_out}; } IREmitter::ResultAndCarry IREmitter::LogicalShiftRight(const IR::Value& value_in, const IR::Value& shift_amount, const IR::Value& carry_in) { auto result = Inst(IR::Opcode::LogicalShiftRight, {value_in, shift_amount, carry_in}); auto carry_out = Inst(IR::Opcode::GetCarryFromOp, {result}); return {result, carry_out}; } IR::Value IREmitter::LogicalShiftRight64(const IR::Value& value_in, const IR::Value& shift_amount) { return Inst(IR::Opcode::LogicalShiftRight64, {value_in, shift_amount}); } IREmitter::ResultAndCarry IREmitter::ArithmeticShiftRight(const IR::Value& value_in, const IR::Value& shift_amount, const IR::Value& carry_in) { auto result = Inst(IR::Opcode::ArithmeticShiftRight, {value_in, shift_amount, carry_in}); auto carry_out = Inst(IR::Opcode::GetCarryFromOp, {result}); return {result, carry_out}; } IREmitter::ResultAndCarry IREmitter::RotateRight(const IR::Value& value_in, const IR::Value& shift_amount, const IR::Value& carry_in) { auto result = Inst(IR::Opcode::RotateRight, {value_in, shift_amount, carry_in}); auto carry_out = Inst(IR::Opcode::GetCarryFromOp, {result}); return {result, carry_out}; } IREmitter::ResultAndCarry IREmitter::RotateRightExtended(const IR::Value& value_in, const IR::Value& carry_in) { auto result = Inst(IR::Opcode::RotateRightExtended, {value_in, carry_in}); auto carry_out = Inst(IR::Opcode::GetCarryFromOp, {result}); return {result, carry_out}; } IREmitter::ResultAndCarryAndOverflow IREmitter::AddWithCarry(const IR::Value& a, const IR::Value& b, const IR::Value& carry_in) { auto result = Inst(IR::Opcode::AddWithCarry, {a, b, carry_in}); auto carry_out = Inst(IR::Opcode::GetCarryFromOp, {result}); auto overflow = Inst(IR::Opcode::GetOverflowFromOp, {result}); return {result, carry_out, overflow}; } IR::Value IREmitter::Add(const IR::Value& a, const IR::Value& b) { return Inst(IR::Opcode::AddWithCarry, {a, b, Imm1(0)}); } IR::Value IREmitter::Add64(const IR::Value& a, const IR::Value& b) { return Inst(IR::Opcode::Add64, {a, b}); } IREmitter::ResultAndCarryAndOverflow IREmitter::SubWithCarry(const IR::Value& a, const IR::Value& b, const IR::Value& carry_in) { // This is equivalent to AddWithCarry(a, Not(b), carry_in). auto result = Inst(IR::Opcode::SubWithCarry, {a, b, carry_in}); auto carry_out = Inst(IR::Opcode::GetCarryFromOp, {result}); auto overflow = Inst(IR::Opcode::GetOverflowFromOp, {result}); return {result, carry_out, overflow}; } IR::Value IREmitter::Sub(const IR::Value& a, const IR::Value& b) { return Inst(IR::Opcode::SubWithCarry, {a, b, Imm1(1)}); } IR::Value IREmitter::Sub64(const IR::Value& a, const IR::Value& b) { return Inst(IR::Opcode::Sub64, {a, b}); } IR::Value IREmitter::Mul(const IR::Value& a, const IR::Value& b) { return Inst(IR::Opcode::Mul, {a, b}); } IR::Value IREmitter::Mul64(const IR::Value& a, const IR::Value& b) { return Inst(IR::Opcode::Mul64, {a, b}); } IR::Value IREmitter::And(const IR::Value& a, const IR::Value& b) { return Inst(IR::Opcode::And, {a, b}); } IR::Value IREmitter::Eor(const IR::Value& a, const IR::Value& b) { return Inst(IR::Opcode::Eor, {a, b}); } IR::Value IREmitter::Or(const IR::Value& a, const IR::Value& b) { return Inst(IR::Opcode::Or, {a, b}); } IR::Value IREmitter::Not(const IR::Value& a) { return Inst(IR::Opcode::Not, {a}); } IR::Value IREmitter::SignExtendWordToLong(const IR::Value& a) { return Inst(IR::Opcode::SignExtendWordToLong, {a}); } IR::Value IREmitter::SignExtendHalfToWord(const IR::Value& a) { return Inst(IR::Opcode::SignExtendHalfToWord, {a}); } IR::Value IREmitter::SignExtendByteToWord(const IR::Value& a) { return Inst(IR::Opcode::SignExtendByteToWord, {a}); } IR::Value IREmitter::ZeroExtendWordToLong(const IR::Value& a) { return Inst(IR::Opcode::ZeroExtendWordToLong, {a}); } IR::Value IREmitter::ZeroExtendHalfToWord(const IR::Value& a) { return Inst(IR::Opcode::ZeroExtendHalfToWord, {a}); } IR::Value IREmitter::ZeroExtendByteToWord(const IR::Value& a) { return Inst(IR::Opcode::ZeroExtendByteToWord, {a}); } IR::Value IREmitter::ByteReverseWord(const IR::Value& a) { return Inst(IR::Opcode::ByteReverseWord, {a}); } IR::Value IREmitter::ByteReverseHalf(const IR::Value& a) { return Inst(IR::Opcode::ByteReverseHalf, {a}); } IR::Value IREmitter::ByteReverseDual(const IR::Value& a) { return Inst(IR::Opcode::ByteReverseDual, {a}); } IR::Value IREmitter::PackedSaturatedSubU8(const IR::Value& a, const IR::Value& b) { return Inst(IR::Opcode::PackedSaturatedSubU8, {a, b}); } IR::Value IREmitter::PackedSaturatedSubS8(const IR::Value& a, const IR::Value& b) { return Inst(IR::Opcode::PackedSaturatedSubS8, {a, b}); } IR::Value IREmitter::TransferToFP32(const IR::Value& a) { return Inst(IR::Opcode::TransferToFP32, {a}); } IR::Value IREmitter::TransferToFP64(const IR::Value& a) { return Inst(IR::Opcode::TransferToFP64, {a}); } IR::Value IREmitter::TransferFromFP32(const IR::Value& a) { return Inst(IR::Opcode::TransferFromFP32, {a}); } IR::Value IREmitter::TransferFromFP64(const IR::Value& a) { return Inst(IR::Opcode::TransferFromFP64, {a}); } IR::Value IREmitter::FPAbs32(const IR::Value& a) { return Inst(IR::Opcode::FPAbs32, {a}); } IR::Value IREmitter::FPAbs64(const IR::Value& a) { return Inst(IR::Opcode::FPAbs64, {a}); } IR::Value IREmitter::FPAdd32(const IR::Value& a, const IR::Value& b, bool fpscr_controlled) { ASSERT(fpscr_controlled); return Inst(IR::Opcode::FPAdd32, {a, b}); } IR::Value IREmitter::FPAdd64(const IR::Value& a, const IR::Value& b, bool fpscr_controlled) { ASSERT(fpscr_controlled); return Inst(IR::Opcode::FPAdd64, {a, b}); } IR::Value IREmitter::FPDiv32(const IR::Value& a, const IR::Value& b, bool fpscr_controlled) { ASSERT(fpscr_controlled); return Inst(IR::Opcode::FPDiv32, {a, b}); } IR::Value IREmitter::FPDiv64(const IR::Value& a, const IR::Value& b, bool fpscr_controlled) { ASSERT(fpscr_controlled); return Inst(IR::Opcode::FPDiv64, {a, b}); } IR::Value IREmitter::FPMul32(const IR::Value& a, const IR::Value& b, bool fpscr_controlled) { ASSERT(fpscr_controlled); return Inst(IR::Opcode::FPMul32, {a, b}); } IR::Value IREmitter::FPMul64(const IR::Value& a, const IR::Value& b, bool fpscr_controlled) { ASSERT(fpscr_controlled); return Inst(IR::Opcode::FPMul64, {a, b}); } IR::Value IREmitter::FPNeg32(const IR::Value& a) { return Inst(IR::Opcode::FPNeg32, {a}); } IR::Value IREmitter::FPNeg64(const IR::Value& a) { return Inst(IR::Opcode::FPNeg64, {a}); } IR::Value IREmitter::FPSqrt32(const IR::Value& a) { return Inst(IR::Opcode::FPSqrt32, {a}); } IR::Value IREmitter::FPSqrt64(const IR::Value& a) { return Inst(IR::Opcode::FPSqrt64, {a}); } IR::Value IREmitter::FPSub32(const IR::Value& a, const IR::Value& b, bool fpscr_controlled) { ASSERT(fpscr_controlled); return Inst(IR::Opcode::FPSub32, {a, b}); } IR::Value IREmitter::FPSub64(const IR::Value& a, const IR::Value& b, bool fpscr_controlled) { ASSERT(fpscr_controlled); return Inst(IR::Opcode::FPSub64, {a, b}); } void IREmitter::ClearExlcusive() { Inst(IR::Opcode::ClearExclusive, {}); } void IREmitter::SetExclusive(const IR::Value& vaddr, size_t byte_size) { ASSERT(byte_size == 1 || byte_size == 2 || byte_size == 4 || byte_size == 8 || byte_size == 16); Inst(IR::Opcode::SetExclusive, {vaddr, Imm8(u8(byte_size))}); } IR::Value IREmitter::ReadMemory8(const IR::Value& vaddr) { return Inst(IR::Opcode::ReadMemory8, {vaddr}); } IR::Value IREmitter::ReadMemory16(const IR::Value& vaddr) { auto value = Inst(IR::Opcode::ReadMemory16, {vaddr}); return current_location.EFlag() ? ByteReverseHalf(value) : value; } IR::Value IREmitter::ReadMemory32(const IR::Value& vaddr) { auto value = Inst(IR::Opcode::ReadMemory32, {vaddr}); return current_location.EFlag() ? ByteReverseWord(value) : value; } IR::Value IREmitter::ReadMemory64(const IR::Value& vaddr) { auto value = Inst(IR::Opcode::ReadMemory64, {vaddr}); return current_location.EFlag() ? ByteReverseDual(value) : value; } void IREmitter::WriteMemory8(const IR::Value& vaddr, const IR::Value& value) { Inst(IR::Opcode::WriteMemory8, {vaddr, value}); } void IREmitter::WriteMemory16(const IR::Value& vaddr, const IR::Value& value) { if (current_location.EFlag()) { auto v = ByteReverseHalf(value); Inst(IR::Opcode::WriteMemory16, {vaddr, v}); } else { Inst(IR::Opcode::WriteMemory16, {vaddr, value}); } } void IREmitter::WriteMemory32(const IR::Value& vaddr, const IR::Value& value) { if (current_location.EFlag()) { auto v = ByteReverseWord(value); Inst(IR::Opcode::WriteMemory32, {vaddr, v}); } else { Inst(IR::Opcode::WriteMemory32, {vaddr, value}); } } void IREmitter::WriteMemory64(const IR::Value& vaddr, const IR::Value& value) { if (current_location.EFlag()) { auto v = ByteReverseDual(value); Inst(IR::Opcode::WriteMemory64, {vaddr, v}); } else { Inst(IR::Opcode::WriteMemory64, {vaddr, value}); } } IR::Value IREmitter::ExclusiveWriteMemory8(const IR::Value& vaddr, const IR::Value& value) { return Inst(IR::Opcode::ExclusiveWriteMemory8, {vaddr, value}); } IR::Value IREmitter::ExclusiveWriteMemory16(const IR::Value& vaddr, const IR::Value& value) { if (current_location.EFlag()) { auto v = ByteReverseHalf(value); return Inst(IR::Opcode::ExclusiveWriteMemory16, {vaddr, v}); } else { return Inst(IR::Opcode::ExclusiveWriteMemory16, {vaddr, value}); } } IR::Value IREmitter::ExclusiveWriteMemory32(const IR::Value& vaddr, const IR::Value& value) { if (current_location.EFlag()) { auto v = ByteReverseWord(value); return Inst(IR::Opcode::ExclusiveWriteMemory32, {vaddr, v}); } else { return Inst(IR::Opcode::ExclusiveWriteMemory32, {vaddr, value}); } } IR::Value IREmitter::ExclusiveWriteMemory64(const IR::Value& vaddr, const IR::Value& value_lo, const IR::Value& value_hi) { if (current_location.EFlag()) { auto vlo = ByteReverseWord(value_lo); auto vhi = ByteReverseWord(value_hi); return Inst(IR::Opcode::ExclusiveWriteMemory64, {vaddr, vlo, vhi}); } else { return Inst(IR::Opcode::ExclusiveWriteMemory64, {vaddr, value_lo, value_hi}); } } void IREmitter::Breakpoint() { Inst(IR::Opcode::Breakpoint, {}); } void IREmitter::SetTerm(const IR::Terminal& terminal) { ASSERT_MSG(block.terminal.which() == 0, "Terminal has already been set."); block.terminal = terminal; } IR::Value IREmitter::Inst(IR::Opcode op, std::initializer_list args) { IR::Inst* inst = new(block.instruction_alloc_pool->Alloc()) IR::Inst(op); DEBUG_ASSERT(args.size() == inst->NumArgs()); std::for_each(args.begin(), args.end(), [&inst, op, index = size_t(0)](const auto& v) mutable { inst->SetArg(index, v); index++; }); block.instructions.Append(*inst); return IR::Value(inst); } } // namespace Arm } // namespace Dynarmic