/* This file is part of the dynarmic project. * Copyright (c) 2018 MerryMage * This software may be used and distributed according to the terms of the GNU * General Public License version 2 or any later version. */ #include #include #include #include #include #include "common/llvm_disassemble.h" #include "common/scope_exit.h" #include "frontend/A64/decoder/a64.h" #include "frontend/A64/location_descriptor.h" #include "frontend/A64/translate/translate.h" #include "frontend/ir/basic_block.h" #include "frontend/ir/opcodes.h" #include "inst_gen.h" #include "rand_int.h" #include "testenv.h" #include "unicorn_emu/unicorn.h" // Needs to be declaerd before static std::ostream& operator<<(std::ostream& o, const Dynarmic::A64::Vector& vec) { return o << fmt::format("{:016x}'{:016x}", vec[1], vec[0]); } #include #include using namespace Dynarmic; static Vector RandomVector() { return {RandInt(0, ~u64(0)), RandInt(0, ~u64(0))}; } static bool ShouldTestInst(u32 instruction, u64 pc, bool is_last_inst) { const A64::LocationDescriptor location{pc, {}}; IR::Block block{location}; bool should_continue = A64::TranslateSingleInstruction(block, location, instruction); if (!should_continue && !is_last_inst) return false; if (auto terminal = block.GetTerminal(); boost::get(&terminal)) return false; for (const auto& ir_inst : block) { switch (ir_inst.GetOpcode()) { case IR::Opcode::A64ExceptionRaised: case IR::Opcode::A64CallSupervisor: case IR::Opcode::A64DataCacheOperationRaised: case IR::Opcode::A64GetCNTPCT: return false; default: continue; } } return true; } static u32 GenRandomInst(u64 pc, bool is_last_inst) { static const std::vector instruction_generators = []{ const std::vector> list { #define INST(fn, name, bitstring) {#fn, bitstring}, #include "frontend/A64/decoder/a64.inc" #undef INST }; std::vector result; // List of instructions not to test const std::vector do_not_test { // Unimplemented in QEMU "STLLR", // Unimplemented in QEMU "LDLAR", // Dynarmic and QEMU currently differ on how the exclusive monitor's address range works. "STXR", "STLXR", "STXP", "STLXP", "LDXR", "LDAXR", "LDXP", "LDAXP", }; for (const auto& [fn, bitstring] : list) { if (fn == "UnallocatedEncoding") { continue; } if (std::find(do_not_test.begin(), do_not_test.end(), fn) != do_not_test.end()) { InstructionGenerator::AddInvalidInstruction(bitstring); continue; } result.emplace_back(InstructionGenerator{bitstring}); } // Manually added exceptions: // FMOV_float_imm for half-precision floats (QEMU doesn't have half-precision support yet). InstructionGenerator::AddInvalidInstruction("00011110111iiiiiiii10000000ddddd"); return result; }(); while (true) { const size_t index = RandInt(0, instruction_generators.size() - 1); const u32 instruction = instruction_generators[index].Generate(); if (ShouldTestInst(instruction, pc, is_last_inst)) { return instruction; } } } static u32 GenFloatInst(u64 pc, bool is_last_inst) { static const std::vector instruction_generators = []{ const std::vector> list { #define INST(fn, name, bitstring) {#fn, #name, bitstring}, #include "frontend/A64/decoder/a64.inc" #undef INST }; // List of instructions not to test const std::vector do_not_test { // QEMU's implementation of FCVT is incorrect "FCVT_float", }; std::vector result; for (const auto& [fn, name, bitstring] : list) { (void)name; if (fn[0] != 'F') { continue; } else if (std::find(do_not_test.begin(), do_not_test.end(), fn) != do_not_test.end()) { continue; } result.emplace_back(InstructionGenerator{bitstring}); } return result; }(); while (true) { const size_t index = RandInt(0, instruction_generators.size() - 1); const u32 instruction = instruction_generators[index].Generate(); if ((instruction & 0x00800000) == 0 && ShouldTestInst(instruction, pc, is_last_inst)) { return instruction; } } } static void RunTestInstance(const std::array& regs, const std::array& vecs, const size_t instructions_offset, const std::vector& instructions, const u32 pstate) { static TestEnv jit_env; static TestEnv uni_env; std::copy(instructions.begin(), instructions.end(), jit_env.code_mem.begin() + instructions_offset); std::copy(instructions.begin(), instructions.end(), uni_env.code_mem.begin() + instructions_offset); jit_env.code_mem[instructions.size() + instructions_offset] = 0x14000000; // B . uni_env.code_mem[instructions.size() + instructions_offset] = 0x14000000; // B . jit_env.modified_memory.clear(); uni_env.modified_memory.clear(); static Dynarmic::A64::Jit jit{Dynarmic::A64::UserConfig{&jit_env}}; static Unicorn uni{uni_env}; jit.SetRegisters(regs); jit.SetVectors(vecs); jit.SetPC(instructions_offset * 4); jit.SetSP(0x08000000); jit.SetFpcr(0); jit.SetPstate(pstate); jit.ClearCache(); uni.SetRegisters(regs); uni.SetVectors(vecs); uni.SetPC(instructions_offset * 4); uni.SetSP(0x08000000); uni.SetFpcr(0); uni.SetPstate(pstate); uni.ClearPageCache(); jit_env.ticks_left = instructions.size(); jit.Run(); uni_env.ticks_left = instructions.size(); uni.Run(); SCOPE_FAIL { fmt::print("Instruction Listing:\n"); for (u32 instruction : instructions) fmt::print("{:08x} {}\n", instruction, Common::DisassembleAArch64(instruction)); fmt::print("\n"); fmt::print("Initial register listing:\n"); for (size_t i = 0; i < regs.size(); ++i) fmt::print("{:3s}: {:016x}\n", static_cast(i), regs[i]); for (size_t i = 0; i < vecs.size(); ++i) fmt::print("{:3s}: {}\n", static_cast(i), vecs[i]); fmt::print("sp : 08000000\n"); fmt::print("pc : {:016x}\n", instructions_offset * 4); fmt::print("p : {:08x}\n", pstate); fmt::print("\n"); fmt::print("Final register listing:\n"); fmt::print(" unicorn dynarmic\n"); for (size_t i = 0; i < regs.size(); ++i) fmt::print("{:3s}: {:016x} {:016x} {}\n", static_cast(i), uni.GetRegisters()[i], jit.GetRegisters()[i], uni.GetRegisters()[i] != jit.GetRegisters()[i] ? "*" : ""); for (size_t i = 0; i < vecs.size(); ++i) fmt::print("{:3s}: {} {} {}\n", static_cast(i), uni.GetVectors()[i], jit.GetVectors()[i], uni.GetVectors()[i] != jit.GetVectors()[i] ? "*" : ""); fmt::print("sp : {:016x} {:016x} {}\n", uni.GetSP(), jit.GetSP(), uni.GetSP() != jit.GetSP() ? "*" : ""); fmt::print("pc : {:016x} {:016x} {}\n", uni.GetPC(), jit.GetPC(), uni.GetPC() != jit.GetPC() ? "*" : ""); fmt::print("p : {:08x} {:08x} {}\n", uni.GetPstate(), jit.GetPstate(), (uni.GetPstate() & 0xF0000000) != (jit.GetPstate() & 0xF0000000) ? "*" : ""); fmt::print("\n"); fmt::print("Modified memory:\n"); fmt::print(" uni dyn\n"); auto uni_iter = uni_env.modified_memory.begin(); auto jit_iter = jit_env.modified_memory.begin(); while (uni_iter != uni_env.modified_memory.end() || jit_iter != jit_env.modified_memory.end()) { if (uni_iter == uni_env.modified_memory.end() || (jit_iter != jit_env.modified_memory.end() && uni_iter->first > jit_iter->first)) { fmt::print("{:016x}: {:02x} *\n", jit_iter->first, jit_iter->second); jit_iter++; } else if (jit_iter == jit_env.modified_memory.end() || jit_iter->first > uni_iter->first) { fmt::print("{:016x}: {:02x} *\n", uni_iter->first, uni_iter->second); uni_iter++; } else if (uni_iter->first == jit_iter->first) { fmt::print("{:016x}: {:02x} {:02x} {}\n", uni_iter->first, uni_iter->second, jit_iter->second, uni_iter->second != jit_iter->second ? "*" : ""); uni_iter++; jit_iter++; } } fmt::print("\n"); fmt::print("x86_64:\n"); fmt::print("{}\n", jit.Disassemble()); }; REQUIRE(uni.GetPC() == jit.GetPC()); REQUIRE(uni.GetRegisters() == jit.GetRegisters()); REQUIRE(uni.GetVectors() == jit.GetVectors()); REQUIRE(uni.GetSP() == jit.GetSP()); REQUIRE((uni.GetPstate() & 0xF0000000) == (jit.GetPstate() & 0xF0000000)); REQUIRE(uni_env.modified_memory == jit_env.modified_memory); } TEST_CASE("A64: Single random instruction", "[a64]") { std::array regs; std::array vecs; std::vector instructions(1); for (size_t iteration = 0; iteration < 100000; ++iteration) { std::generate(regs.begin(), regs.end(), []{ return RandInt(0, ~u64(0)); }); std::generate(vecs.begin(), vecs.end(), RandomVector); instructions[0] = GenRandomInst(0, true); u32 pstate = RandInt(0, 0xF) << 28; INFO("Instruction: 0x" << std::hex << instructions[0]); RunTestInstance(regs, vecs, 100, instructions, pstate); } } TEST_CASE("A64: Floating point instructions", "[a64]") { std::array float_numbers { 0x00000000, // positive zero 0x00000001, // smallest positive denormal 0x00000076, // 0x00002b94, // 0x00636d24, // 0x007fffff, // largest positive denormal 0x00800000, // smallest positive normalised real 0x00800002, // 0x01398437, // 0x0ba98d27, // 0x0ba98d7a, // 0x751f853a, // 0x7f7ffff0, // 0x7f7fffff, // largest positive normalised real 0x7f800000, // positive infinity 0x7f800001, // first positive SNaN 0x7f984a37, // 0x7fbfffff, // last positive SNaN 0x7fc00000, // first positive QNaN 0x7fd9ba98, // 0x7fffffff, // last positive QNaN 0x80000000, // negative zero 0x80000001, // smallest negative denormal 0x80000076, // 0x80002b94, // 0x80636d24, // 0x807fffff, // largest negative denormal 0x80800000, // smallest negative normalised real 0x80800002, // 0x81398437, // 0x8ba98d27, // 0x8ba98d7a, // 0xf51f853a, // 0xff7ffff0, // 0xff7fffff, // largest negative normalised real 0xff800000, // negative infinity 0xff800001, // first negative SNaN 0xff984a37, // 0xffbfffff, // last negative SNaN 0xffc00000, // first negative QNaN 0xffd9ba98, // 0xffffffff, // last negative QNaN // some random numbers follow 0x4f3495cb, 0xe73a5134, 0x7c994e9e, 0x6164bd6c, 0x09503366, 0xbf5a97c9, 0xe6ff1a14, 0x77f31e2f, 0xaab4d7d8, 0x0966320b, 0xb26bddee, 0xb5c8e5d3, 0x317285d3, 0x3c9623b1, 0x51fd2c7c, 0x7b906a6c, 0x3f800000, 0x3dcccccd, 0x3f000000, 0x42280000, 0x3eaaaaab, 0xc1200000, 0xbf800000, 0xbf8147ae, 0x3f8147ae, 0x415df525, 0xc79b271e, 0x460e8c84, // some 64-bit-float upper-halves 0x7ff00000, // +SNaN / +Inf 0x7ff0abcd, // +SNaN 0x7ff80000, // +QNaN 0x7ff81234, // +QNaN 0xfff00000, // -SNaN / -Inf 0xfff05678, // -SNaN 0xfff80000, // -QNaN 0xfff809ef, // -QNaN 0x3ff00000, // Number near +1.0 0xbff00000, // Number near -1.0 }; const auto gen_float = [&]{ return float_numbers[RandInt(0, float_numbers.size() - 1)]; }; const auto gen_vector = [&]{ u64 upper = (gen_float() << 32) | gen_float(); u64 lower = (gen_float() << 32) | gen_float(); return Vector{lower, upper}; }; std::array regs; std::array vecs; std::vector instructions(1); for (size_t iteration = 0; iteration < 100000; ++iteration) { std::generate(regs.begin(), regs.end(), gen_float); std::generate(vecs.begin(), vecs.end(), gen_vector); instructions[0] = GenFloatInst(0, true); u32 pstate = RandInt(0, 0xF) << 28; INFO("Instruction: 0x" << std::hex << instructions[0]); RunTestInstance(regs, vecs, 100, instructions, pstate); } }