/* This file is part of the dynarmic project. * Copyright (c) 2016 MerryMage * This software may be used and distributed according to the terms of the GNU * General Public License version 2 or any later version. */ #include #include #include #include #include #include "common/common_types.h" #include "frontend/disassembler.h" #include "interface/interface.h" #include "rand_int.h" #include "skyeye_interpreter/dyncom/arm_dyncom_interpreter.h" #include "skyeye_interpreter/skyeye_common/armstate.h" struct WriteRecord { size_t size; u32 address; u64 data; }; static bool operator==(const WriteRecord& a, const WriteRecord& b) { return std::tie(a.size, a.address, a.data) == std::tie(b.size, b.address, b.data); } static std::array code_mem{}; static std::vector write_records; static bool IsReadOnlyMemory(u32 vaddr); static u8 MemoryRead8(u32 vaddr); static u16 MemoryRead16(u32 vaddr); static u32 MemoryRead32(u32 vaddr); static u64 MemoryRead64(u32 vaddr); static void MemoryWrite8(u32 vaddr, u8 value); static void MemoryWrite16(u32 vaddr, u16 value); static void MemoryWrite32(u32 vaddr, u32 value); static void MemoryWrite64(u32 vaddr, u64 value); static void InterpreterFallback(u32 pc, Dynarmic::Jit* jit); static Dynarmic::UserCallbacks GetUserCallbacks(); static bool IsReadOnlyMemory(u32 vaddr) { return vaddr < code_mem.size(); } static u8 MemoryRead8(u32 vaddr) { return static_cast(vaddr); } static u16 MemoryRead16(u32 vaddr) { return static_cast(vaddr); } static u32 MemoryRead32(u32 vaddr) { if (vaddr < code_mem.size() * sizeof(u16)) { size_t index = vaddr / sizeof(u16); return code_mem[index] | (code_mem[index+1] << 16); } return vaddr; } static u64 MemoryRead64(u32 vaddr) { return vaddr; } static void MemoryWrite8(u32 vaddr, u8 value){ write_records.push_back({8, vaddr, value}); } static void MemoryWrite16(u32 vaddr, u16 value){ write_records.push_back({16, vaddr, value}); } static void MemoryWrite32(u32 vaddr, u32 value){ write_records.push_back({32, vaddr, value}); } static void MemoryWrite64(u32 vaddr, u64 value){ write_records.push_back({64, vaddr, value}); } static void InterpreterFallback(u32 pc, Dynarmic::Jit* jit) { ARMul_State interp_state{USER32MODE}; interp_state.user_callbacks = GetUserCallbacks(); interp_state.NumInstrsToExecute = 1; interp_state.Reg = jit->Regs(); interp_state.Cpsr = jit->Cpsr(); interp_state.Reg[15] = pc; InterpreterClearCache(); InterpreterMainLoop(&interp_state); bool T = Dynarmic::Common::Bit<5>(interp_state.Cpsr); interp_state.Reg[15] &= T ? 0xFFFFFFFE : 0xFFFFFFFC; jit->Regs() = interp_state.Reg; jit->Cpsr() = interp_state.Cpsr; } static void Fail() { FAIL(); } static Dynarmic::UserCallbacks GetUserCallbacks() { Dynarmic::UserCallbacks user_callbacks{}; user_callbacks.InterpreterFallback = &InterpreterFallback; user_callbacks.CallSVC = (bool (*)(u32)) &Fail; user_callbacks.IsReadOnlyMemory = &IsReadOnlyMemory; user_callbacks.MemoryRead8 = &MemoryRead8; user_callbacks.MemoryRead16 = &MemoryRead16; user_callbacks.MemoryRead32 = &MemoryRead32; user_callbacks.MemoryRead64 = &MemoryRead64; user_callbacks.MemoryWrite8 = &MemoryWrite8; user_callbacks.MemoryWrite16 = &MemoryWrite16; user_callbacks.MemoryWrite32 = &MemoryWrite32; user_callbacks.MemoryWrite64 = &MemoryWrite64; return user_callbacks; } struct InstructionGenerator final { public: InstructionGenerator(const char* format, std::function is_valid = [](u16){ return true; }) : is_valid(is_valid) { REQUIRE(strlen(format) == 16); for (int i = 0; i < 16; i++) { const u16 bit = 1 << (15 - i); switch (format[i]) { case '0': mask |= bit; break; case '1': bits |= bit; mask |= bit; break; default: // Do nothing break; } } } u16 Generate() const { u16 inst; do { u16 random = RandInt(0, 0xFFFF); inst = bits | (random & ~mask); } while (!is_valid(inst)); return inst; } private: u16 bits = 0; u16 mask = 0; std::function is_valid; }; static bool DoesBehaviorMatch(const ARMul_State& interp, const Dynarmic::Jit& jit, const std::vector& interp_write_records, const std::vector& jit_write_records) { const auto interp_regs = interp.Reg; const auto jit_regs = jit.Regs(); return std::equal(interp_regs.begin(), interp_regs.end(), jit_regs.begin(), jit_regs.end()) && interp.Cpsr == jit.Cpsr() && interp_write_records == jit_write_records; } void FuzzJitThumb(const size_t instruction_count, const size_t instructions_to_execute_count, const size_t run_count, const std::function instruction_generator) { // Prepare memory code_mem.fill(0xE7FE); // b +#0 // Prepare test subjects ARMul_State interp{USER32MODE}; interp.user_callbacks = GetUserCallbacks(); Dynarmic::Jit jit{GetUserCallbacks()}; for (size_t run_number = 0; run_number < run_count; run_number++) { interp.instruction_cache.clear(); InterpreterClearCache(); jit.ClearCache(false); // Setup initial state std::array initial_regs; std::generate_n(initial_regs.begin(), 15, []{ return RandInt(0, 0xFFFFFFFF); }); initial_regs[15] = 0; interp.Cpsr = 0x000001F0; interp.Reg = initial_regs; jit.Cpsr() = 0x000001F0; jit.Regs() = initial_regs; std::generate_n(code_mem.begin(), instruction_count, instruction_generator); // Run interpreter write_records.clear(); interp.NumInstrsToExecute = instructions_to_execute_count; InterpreterMainLoop(&interp); auto interp_write_records = write_records; { bool T = Dynarmic::Common::Bit<5>(interp.Cpsr); interp.Reg[15] &= T ? 0xFFFFFFFE : 0xFFFFFFFC; } // Run jit write_records.clear(); jit.Run(instructions_to_execute_count); auto jit_write_records = write_records; // Compare if (!DoesBehaviorMatch(interp, jit, interp_write_records, jit_write_records)) { printf("Failed at execution number %zu\n", run_number); printf("\nInstruction Listing: \n"); for (size_t i = 0; i < instruction_count; i++) { printf("%s\n", Dynarmic::Arm::DisassembleThumb16(code_mem[i]).c_str()); } printf("\nInitial Register Listing: \n"); for (int i = 0; i <= 15; i++) { printf("%4i: %08x\n", i, initial_regs[i]); } printf("\nFinal Register Listing: \n"); for (int i = 0; i <= 15; i++) { printf("%4i: %08x %08x %s\n", i, interp.Reg[i], jit.Regs()[i], interp.Reg[i] != jit.Regs()[i] ? "*" : ""); } printf("CPSR: %08x %08x %s\n", interp.Cpsr, jit.Cpsr(), interp.Cpsr != jit.Cpsr() ? "*" : ""); #ifdef _MSC_VER DebugBreak(); #endif FAIL(); } if (run_number % 10 == 0) printf("%zu\r", run_number); } } TEST_CASE("Fuzz Thumb instructions set 1", "[JitX64][Thumb]") { const std::array instructions = {{ InstructionGenerator("00000xxxxxxxxxxx"), // LSL , , # InstructionGenerator("00001xxxxxxxxxxx"), // LSR , , # InstructionGenerator("00010xxxxxxxxxxx"), // ASR , , # InstructionGenerator("000110oxxxxxxxxx"), // ADD/SUB_reg InstructionGenerator("000111oxxxxxxxxx"), // ADD/SUB_imm InstructionGenerator("001ooxxxxxxxxxxx"), // ADD/SUB/CMP/MOV_imm InstructionGenerator("010000ooooxxxxxx"), // Data Processing InstructionGenerator("010001000hxxxxxx"), // ADD (high registers) InstructionGenerator("0100010101xxxxxx", // CMP (high registers) [](u16 inst){ return Dynarmic::Common::Bits<3, 5>(inst) != 0b111; }), // R15 is UNPREDICTABLE InstructionGenerator("0100010110xxxxxx", // CMP (high registers) [](u16 inst){ return Dynarmic::Common::Bits<0, 2>(inst) != 0b111; }), // R15 is UNPREDICTABLE InstructionGenerator("010001100hxxxxxx"), // MOV (high registers) InstructionGenerator("10110000oxxxxxxx"), // Adjust stack pointer InstructionGenerator("10110010ooxxxxxx"), // SXT/UXT InstructionGenerator("1011101000xxxxxx"), // REV InstructionGenerator("1011101001xxxxxx"), // REV16 InstructionGenerator("1011101011xxxxxx"), // REVSH InstructionGenerator("01001xxxxxxxxxxx"), // LDR Rd, [PC, #] InstructionGenerator("0101oooxxxxxxxxx"), // LDR/STR Rd, [Rn, Rm] InstructionGenerator("011xxxxxxxxxxxxx"), // LDR(B)/STR(B) Rd, [Rn, #] InstructionGenerator("1000xxxxxxxxxxxx"), // LDRH/STRH Rd, [Rn, #offset] InstructionGenerator("1001xxxxxxxxxxxx"), // LDR/STR Rd, [SP, #] InstructionGenerator("1011x100xxxxxxxx"), // PUSH/POP (R = 0) InstructionGenerator("1100xxxxxxxxxxxx"), // STMIA/LDMIA //InstructionGenerator("101101100101x000"), // SETEND }}; auto instruction_select = [&]() -> u16 { size_t inst_index = RandInt(0, instructions.size() - 1); return instructions[inst_index].Generate(); }; SECTION("single instructions") { FuzzJitThumb(1, 2, 10000, instruction_select); } SECTION("short blocks") { FuzzJitThumb(5, 6, 3000, instruction_select); } SECTION("long blocks") { FuzzJitThumb(1024, 1025, 25, instruction_select); } } TEST_CASE("Fuzz Thumb instructions set 2 (affects PC)", "[JitX64][Thumb]") { const std::array instructions = {{ InstructionGenerator("01000111xmmmm000", // BLX/BX [](u16 inst){ u32 Rm = Dynarmic::Common::Bits<3, 6>(inst); return Rm != 15; }), InstructionGenerator("1010oxxxxxxxxxxx"), // add to pc/sp InstructionGenerator("11100xxxxxxxxxxx"), // B InstructionGenerator("01000100h0xxxxxx"), // ADD (high registers) InstructionGenerator("01000110h0xxxxxx"), // MOV (high registers) InstructionGenerator("1101ccccxxxxxxxx", // B [](u16 inst){ u32 c = Dynarmic::Common::Bits<9, 12>(inst); return c < 0b1110; // Don't want SWI or undefined instructions. }), InstructionGenerator("10110110011x0xxx"), // CPS }}; auto instruction_select = [&]() -> u16 { size_t inst_index = RandInt(0, instructions.size() - 1); return instructions[inst_index].Generate(); }; FuzzJitThumb(1, 1, 10000, instruction_select); }