/* This file is part of the dynarmic project. * Copyright (c) 2016 MerryMage * SPDX-License-Identifier: 0BSD */ #include #include #include #include #include #include #include #include #include "common/common_types.h" #include "common/fp/fpcr.h" #include "common/fp/fpsr.h" #include "common/scope_exit.h" #include "frontend/A32/disassembler/disassembler.h" #include "frontend/A32/location_descriptor.h" #include "frontend/A32/translate/translate.h" #include "frontend/A32/types.h" #include "frontend/ir/basic_block.h" #include "frontend/ir/location_descriptor.h" #include "frontend/ir/opcodes.h" #include "fuzz_util.h" #include "rand_int.h" #include "testenv.h" #include "unicorn_emu/a32_unicorn.h" // Must be declared last for all necessary operator<< to be declared prior to this. #include #include namespace { using namespace Dynarmic; bool ShouldTestInst(u32 instruction, u32 pc, bool is_last_inst) { const A32::LocationDescriptor location{pc, {}, {}}; IR::Block block{location}; const bool should_continue = A32::TranslateSingleInstruction(block, location, instruction); if (!should_continue && !is_last_inst) { return false; } if (auto terminal = block.GetTerminal(); boost::get(&terminal)) { return false; } for (const auto& ir_inst : block) { switch (ir_inst.GetOpcode()) { case IR::Opcode::A32ExceptionRaised: case IR::Opcode::A32CallSupervisor: case IR::Opcode::A32CoprocInternalOperation: case IR::Opcode::A32CoprocSendOneWord: case IR::Opcode::A32CoprocSendTwoWords: case IR::Opcode::A32CoprocGetOneWord: case IR::Opcode::A32CoprocGetTwoWords: case IR::Opcode::A32CoprocLoadWords: case IR::Opcode::A32CoprocStoreWords: return false; // Currently unimplemented in Unicorn case IR::Opcode::FPVectorRecipEstimate16: case IR::Opcode::FPVectorRSqrtEstimate16: case IR::Opcode::VectorPolynomialMultiplyLong64: return false; default: continue; } } return true; } u32 GenRandomInst(u32 pc, bool is_last_inst) { static const struct InstructionGeneratorInfo { std::vector generators; std::vector invalid; } instructions = []{ const std::vector> list { #define INST(fn, name, bitstring) {#fn, bitstring}, #include "frontend/A32/decoder/arm.inc" #include "frontend/A32/decoder/asimd.inc" #include "frontend/A32/decoder/vfp.inc" #undef INST }; std::vector generators; std::vector invalid; // List of instructions not to test static constexpr std::array do_not_test { // Translating load/stores "arm_LDRBT", "arm_LDRBT", "arm_LDRHT", "arm_LDRHT", "arm_LDRSBT", "arm_LDRSBT", "arm_LDRSHT", "arm_LDRSHT", "arm_LDRT", "arm_LDRT", "arm_STRBT", "arm_STRBT", "arm_STRHT", "arm_STRHT", "arm_STRT", "arm_STRT", // Exclusive load/stores "arm_LDREXB", "arm_LDREXD", "arm_LDREXH", "arm_LDREX", "arm_LDAEXB", "arm_LDAEXD", "arm_LDAEXH", "arm_LDAEX", "arm_STREXB", "arm_STREXD", "arm_STREXH", "arm_STREX", "arm_STLEXB", "arm_STLEXD", "arm_STLEXH", "arm_STLEX", "arm_SWP", "arm_SWPB", // Elevated load/store multiple instructions. "arm_LDM_eret", "arm_LDM_usr", "arm_STM_usr", // Hint instructions "arm_NOP", "arm_PLD_imm", "arm_PLD_reg", "arm_SEV", "arm_WFE", "arm_WFI", "arm_YIELD", // E, T, J "arm_BLX_reg", "arm_BLX_imm", "arm_BXJ", "arm_SETEND", // Coprocessor "arm_CDP", "arm_LDC", "arm_MCR", "arm_MCRR", "arm_MRC", "arm_MRRC", "arm_STC", // System "arm_CPS", "arm_RFE", "arm_SRS", // Undefined "arm_UDF", // FPSCR is inaccurate "vfp_VMRS", // Unimplemented in Unicorn "asimd_VPADD_float", // Incorrect Unicorn implementations "asimd_VRECPS", // Unicorn does not fuse the multiply and subtraction, resulting in being off by 1ULP. "asimd_VRSQRTS", // Unicorn does not fuse the multiply and subtraction, resulting in being off by 1ULP. }; for (const auto& [fn, bitstring] : list) { if (std::find(do_not_test.begin(), do_not_test.end(), fn) != do_not_test.end()) { invalid.emplace_back(InstructionGenerator{bitstring}); continue; } generators.emplace_back(InstructionGenerator{bitstring}); } return InstructionGeneratorInfo{generators, invalid}; }(); while (true) { const size_t index = RandInt(0, instructions.generators.size() - 1); const u32 inst = instructions.generators[index].Generate(); if ((instructions.generators[index].Mask() & 0xF0000000) == 0 && (inst & 0xF0000000) == 0xF0000000) { continue; } if (ShouldTestInst(inst, pc, is_last_inst)) { return inst; } } } Dynarmic::A32::UserConfig GetUserConfig(ArmTestEnv& testenv) { Dynarmic::A32::UserConfig user_config; user_config.enable_fast_dispatch = false; user_config.callbacks = &testenv; user_config.always_little_endian = true; return user_config; } static void RunTestInstance(Dynarmic::A32::Jit& jit, A32Unicorn& uni, ArmTestEnv& jit_env, ArmTestEnv& uni_env, const A32Unicorn::RegisterArray& regs, const A32Unicorn::ExtRegArray& vecs, const std::vector& instructions, const u32 cpsr, const u32 fpscr) { const u32 initial_pc = regs[15]; const u32 num_words = initial_pc / sizeof(u32); const u32 code_mem_size = num_words + static_cast(instructions.size()); jit_env.code_mem.resize(code_mem_size + 1); uni_env.code_mem.resize(code_mem_size + 1); std::copy(instructions.begin(), instructions.end(), jit_env.code_mem.begin() + num_words); std::copy(instructions.begin(), instructions.end(), uni_env.code_mem.begin() + num_words); jit_env.code_mem.back() = 0xEAFFFFFE; // B . uni_env.code_mem.back() = 0xEAFFFFFE; // B . jit_env.modified_memory.clear(); uni_env.modified_memory.clear(); jit_env.interrupts.clear(); uni_env.interrupts.clear(); jit.Regs() = regs; jit.ExtRegs() = vecs; jit.SetFpscr(fpscr); jit.SetCpsr(cpsr); jit.ClearCache(); uni.SetRegisters(regs); uni.SetExtRegs(vecs); uni.SetFpscr(fpscr); uni.EnableFloatingPointAccess(); uni.SetCpsr(cpsr); uni.ClearPageCache(); jit_env.ticks_left = instructions.size(); jit.Run(); uni_env.ticks_left = instructions.size(); uni.Run(); SCOPE_FAIL { fmt::print("Instruction Listing:\n"); for (u32 instruction : instructions) { fmt::print("{:08x} {}\n", instruction, A32::DisassembleArm(instruction)); } fmt::print("\n"); fmt::print("Initial register listing:\n"); for (size_t i = 0; i < regs.size(); ++i) { fmt::print("{:3s}: {:08x}\n", static_cast(i), regs[i]); } for (size_t i = 0; i < vecs.size(); ++i) { fmt::print("{:3s}: {:08x}\n", static_cast(i), vecs[i]); } fmt::print("cpsr {:08x}\n", cpsr); fmt::print("fpcr {:08x}\n", fpscr); fmt::print("fpcr.AHP {}\n", FP::FPCR{fpscr}.AHP()); fmt::print("fpcr.DN {}\n", FP::FPCR{fpscr}.DN()); fmt::print("fpcr.FZ {}\n", FP::FPCR{fpscr}.FZ()); fmt::print("fpcr.RMode {}\n", static_cast(FP::FPCR{fpscr}.RMode())); fmt::print("fpcr.FZ16 {}\n", FP::FPCR{fpscr}.FZ16()); fmt::print("\n"); fmt::print("Final register listing:\n"); fmt::print(" unicorn dynarmic\n"); const auto uni_regs = uni.GetRegisters(); for (size_t i = 0; i < regs.size(); ++i) { fmt::print("{:3s}: {:08x} {:08x} {}\n", static_cast(i), uni_regs[i], jit.Regs()[i], uni_regs[i] != jit.Regs()[i] ? "*" : ""); } const auto uni_ext_regs = uni.GetExtRegs(); for (size_t i = 0; i < vecs.size(); ++i) { fmt::print("s{:2d}: {:08x} {:08x} {}\n", static_cast(i), uni_ext_regs[i], jit.ExtRegs()[i], uni_ext_regs[i] != jit.ExtRegs()[i] ? "*" : ""); } fmt::print("cpsr {:08x} {:08x} {}\n", uni.GetCpsr(), jit.Cpsr(), uni.GetCpsr() != jit.Cpsr() ? "*" : ""); fmt::print("fpsr {:08x} {:08x} {}\n", uni.GetFpscr(), jit.Fpscr(), (uni.GetFpscr() & 0xF0000000) != (jit.Fpscr() & 0xF0000000) ? "*" : ""); fmt::print("\n"); fmt::print("Modified memory:\n"); fmt::print(" uni dyn\n"); auto uni_iter = uni_env.modified_memory.begin(); auto jit_iter = jit_env.modified_memory.begin(); while (uni_iter != uni_env.modified_memory.end() || jit_iter != jit_env.modified_memory.end()) { if (uni_iter == uni_env.modified_memory.end() || (jit_iter != jit_env.modified_memory.end() && uni_iter->first > jit_iter->first)) { fmt::print("{:08x}: {:02x} *\n", jit_iter->first, jit_iter->second); jit_iter++; } else if (jit_iter == jit_env.modified_memory.end() || jit_iter->first > uni_iter->first) { fmt::print("{:08x}: {:02x} *\n", uni_iter->first, uni_iter->second); uni_iter++; } else if (uni_iter->first == jit_iter->first) { fmt::print("{:08x}: {:02x} {:02x} {}\n", uni_iter->first, uni_iter->second, jit_iter->second, uni_iter->second != jit_iter->second ? "*" : ""); uni_iter++; jit_iter++; } } fmt::print("\n"); fmt::print("x86_64:\n"); fmt::print("{}\n", jit.Disassemble()); fmt::print("Interrupts:\n"); for (const auto& i : uni_env.interrupts) { std::puts(i.c_str()); } }; REQUIRE(uni_env.code_mem_modified_by_guest == jit_env.code_mem_modified_by_guest); if (uni_env.code_mem_modified_by_guest) { return; } // Qemu doesn't do Thumb transitions?? { const u32 uni_pc = uni.GetPC(); const bool is_thumb = (jit.Cpsr() & (1 << 5)) != 0; const u32 new_uni_pc = uni_pc & (is_thumb ? 0xFFFFFFFE : 0xFFFFFFFC); uni.SetPC(new_uni_pc); } REQUIRE(uni.GetRegisters() == jit.Regs()); REQUIRE(uni.GetExtRegs() == jit.ExtRegs()); REQUIRE((uni.GetCpsr() & 0xFFFFFDDF) == (jit.Cpsr() & 0xFFFFFDDF)); REQUIRE((uni.GetFpscr() & 0xF0000000) == (jit.Fpscr() & 0xF0000000)); REQUIRE(uni_env.modified_memory == jit_env.modified_memory); REQUIRE(uni_env.interrupts.empty()); } } // Anonymous namespace TEST_CASE("A32: Single random instruction", "[arm]") { ArmTestEnv jit_env{}; ArmTestEnv uni_env{}; Dynarmic::A32::Jit jit{GetUserConfig(jit_env)}; A32Unicorn uni{uni_env}; A32Unicorn::RegisterArray regs; A32Unicorn::ExtRegArray ext_reg; std::vector instructions(1); for (size_t iteration = 0; iteration < 100000; ++iteration) { std::generate(regs.begin(), regs.end(), [] { return RandInt(0, ~u32(0)); }); std::generate(ext_reg.begin(), ext_reg.end(), [] { return RandInt(0, ~u32(0)); }); instructions[0] = GenRandomInst(0, true); const u32 start_address = 100; const u32 cpsr = (RandInt(0, 0xF) << 28) | 0x10; const u32 fpcr = RandomFpcr(); INFO("Instruction: 0x" << std::hex << instructions[0]); regs[15] = start_address; RunTestInstance(jit, uni, jit_env, uni_env, regs, ext_reg, instructions, cpsr, fpcr); } } TEST_CASE("A32: Small random block", "[arm]") { ArmTestEnv jit_env{}; ArmTestEnv uni_env{}; Dynarmic::A32::Jit jit{GetUserConfig(jit_env)}; A32Unicorn uni{uni_env}; A32Unicorn::RegisterArray regs; A32Unicorn::ExtRegArray ext_reg; std::vector instructions(5); for (size_t iteration = 0; iteration < 100000; ++iteration) { std::generate(regs.begin(), regs.end(), [] { return RandInt(0, ~u32(0)); }); std::generate(ext_reg.begin(), ext_reg.end(), [] { return RandInt(0, ~u32(0)); }); instructions[0] = GenRandomInst(0, false); instructions[1] = GenRandomInst(4, false); instructions[2] = GenRandomInst(8, false); instructions[3] = GenRandomInst(12, false); instructions[4] = GenRandomInst(16, true); const u32 start_address = 100; const u32 cpsr = (RandInt(0, 0xF) << 28) | 0x10; const u32 fpcr = RandomFpcr(); INFO("Instruction 1: 0x" << std::hex << instructions[0]); INFO("Instruction 2: 0x" << std::hex << instructions[1]); INFO("Instruction 3: 0x" << std::hex << instructions[2]); INFO("Instruction 4: 0x" << std::hex << instructions[3]); INFO("Instruction 5: 0x" << std::hex << instructions[4]); regs[15] = start_address; RunTestInstance(jit, uni, jit_env, uni_env, regs, ext_reg, instructions, cpsr, fpcr); } } TEST_CASE("A32: Large random block", "[arm]") { ArmTestEnv jit_env{}; ArmTestEnv uni_env{}; Dynarmic::A32::Jit jit{GetUserConfig(jit_env)}; A32Unicorn uni{uni_env}; A32Unicorn::RegisterArray regs; A32Unicorn::ExtRegArray ext_reg; constexpr size_t instruction_count = 100; std::vector instructions(instruction_count); for (size_t iteration = 0; iteration < 10000; ++iteration) { std::generate(regs.begin(), regs.end(), [] { return RandInt(0, ~u32(0)); }); std::generate(ext_reg.begin(), ext_reg.end(), [] { return RandInt(0, ~u32(0)); }); for (size_t j = 0; j < instruction_count; ++j) { instructions[j] = GenRandomInst(j * 4, j == instruction_count - 1); } const u64 start_address = 100; const u32 cpsr = (RandInt(0, 0xF) << 28) | 0x10; const u32 fpcr = RandomFpcr(); regs[15] = start_address; RunTestInstance(jit, uni, jit_env, uni_env, regs, ext_reg, instructions, cpsr, fpcr); } }