/* This file is part of the dynarmic project. * Copyright (c) 2016 MerryMage * This software may be used and distributed according to the terms of the GNU * General Public License version 2 or any later version. */ #include #include #include #include #include #include #include "backend/x64/a32_emit_x64.h" #include "backend/x64/a32_jitstate.h" #include "backend/x64/abi.h" #include "backend/x64/block_of_code.h" #include "backend/x64/devirtualize.h" #include "backend/x64/emit_x64.h" #include "backend/x64/perf_map.h" #include "common/address_range.h" #include "common/assert.h" #include "common/bit_util.h" #include "common/common_types.h" #include "common/scope_exit.h" #include "common/variant_util.h" #include "frontend/A32/location_descriptor.h" #include "frontend/A32/types.h" #include "frontend/ir/basic_block.h" #include "frontend/ir/microinstruction.h" #include "frontend/ir/opcodes.h" // TODO: Have ARM flags in host flags and not have them use up GPR registers unless necessary. // TODO: Actually implement that proper instruction selector you've always wanted to sweetheart. namespace Dynarmic::BackendX64 { using namespace Xbyak::util; static Xbyak::Address MJitStateReg(A32::Reg reg) { return dword[r15 + offsetof(A32JitState, Reg) + sizeof(u32) * static_cast(reg)]; } static Xbyak::Address MJitStateExtReg(A32::ExtReg reg) { if (A32::IsSingleExtReg(reg)) { size_t index = static_cast(reg) - static_cast(A32::ExtReg::S0); return dword[r15 + offsetof(A32JitState, ExtReg) + sizeof(u32) * index]; } if (A32::IsDoubleExtReg(reg)) { size_t index = static_cast(reg) - static_cast(A32::ExtReg::D0); return qword[r15 + offsetof(A32JitState, ExtReg) + sizeof(u64) * index]; } ASSERT_MSG(false, "Should never happen."); } A32EmitContext::A32EmitContext(RegAlloc& reg_alloc, IR::Block& block) : EmitContext(reg_alloc, block) {} A32::LocationDescriptor A32EmitContext::Location() const { return A32::LocationDescriptor{block.Location()}; } FP::RoundingMode A32EmitContext::FPSCR_RMode() const { return Location().FPSCR().RMode(); } u32 A32EmitContext::FPCR() const { return Location().FPSCR().Value(); } bool A32EmitContext::FPSCR_FTZ() const { return Location().FPSCR().FTZ(); } bool A32EmitContext::FPSCR_DN() const { return Location().FPSCR().DN(); } A32EmitX64::A32EmitX64(BlockOfCode& code, A32::UserConfig config, A32::Jit* jit_interface) : EmitX64(code), config(std::move(config)), jit_interface(jit_interface) { GenMemoryAccessors(); code.PreludeComplete(); } A32EmitX64::~A32EmitX64() = default; A32EmitX64::BlockDescriptor A32EmitX64::Emit(IR::Block& block) { code.EnableWriting(); SCOPE_EXIT { code.DisableWriting(); }; code.align(); const u8* const entrypoint = code.getCurr(); // Start emitting. EmitCondPrelude(block); RegAlloc reg_alloc{code, A32JitState::SpillCount, SpillToOpArg}; A32EmitContext ctx{reg_alloc, block}; for (auto iter = block.begin(); iter != block.end(); ++iter) { IR::Inst* inst = &*iter; // Call the relevant Emit* member function. switch (inst->GetOpcode()) { #define OPCODE(name, type, ...) \ case IR::Opcode::name: \ A32EmitX64::Emit##name(ctx, inst); \ break; #define A32OPC(name, type, ...) \ case IR::Opcode::A32##name: \ A32EmitX64::EmitA32##name(ctx, inst); \ break; #define A64OPC(...) #include "frontend/ir/opcodes.inc" #undef OPCODE #undef A32OPC #undef A64OPC default: ASSERT_MSG(false, "Invalid opcode: {}", inst->GetOpcode()); break; } reg_alloc.EndOfAllocScope(); } reg_alloc.AssertNoMoreUses(); EmitAddCycles(block.CycleCount()); EmitX64::EmitTerminal(block.GetTerminal(), block.Location()); code.int3(); const size_t size = static_cast(code.getCurr() - entrypoint); const A32::LocationDescriptor descriptor{block.Location()}; const A32::LocationDescriptor end_location{block.EndLocation()}; const auto range = boost::icl::discrete_interval::closed(descriptor.PC(), end_location.PC() - 1); block_ranges.AddRange(range, descriptor); return RegisterBlock(descriptor, entrypoint, size); } void A32EmitX64::ClearCache() { EmitX64::ClearCache(); block_ranges.ClearCache(); } void A32EmitX64::InvalidateCacheRanges(const boost::icl::interval_set& ranges) { InvalidateBasicBlocks(block_ranges.InvalidateRanges(ranges)); } void A32EmitX64::GenMemoryAccessors() { code.align(); read_memory_8 = code.getCurr(); ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, ABI_RETURN); Devirtualize<&A32::UserCallbacks::MemoryRead8>(config.callbacks).EmitCall(code); ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, ABI_RETURN); code.ret(); PerfMapRegister(read_memory_8, code.getCurr(), "a32_read_memory_8"); code.align(); read_memory_16 = code.getCurr(); ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, ABI_RETURN); Devirtualize<&A32::UserCallbacks::MemoryRead16>(config.callbacks).EmitCall(code); ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, ABI_RETURN); code.ret(); PerfMapRegister(read_memory_16, code.getCurr(), "a32_read_memory_16"); code.align(); read_memory_32 = code.getCurr(); ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, ABI_RETURN); Devirtualize<&A32::UserCallbacks::MemoryRead32>(config.callbacks).EmitCall(code); ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, ABI_RETURN); code.ret(); PerfMapRegister(read_memory_32, code.getCurr(), "a32_read_memory_32"); code.align(); read_memory_64 = code.getCurr(); ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, ABI_RETURN); Devirtualize<&A32::UserCallbacks::MemoryRead64>(config.callbacks).EmitCall(code); ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, ABI_RETURN); code.ret(); PerfMapRegister(read_memory_64, code.getCurr(), "a32_read_memory_64"); code.align(); write_memory_8 = code.getCurr(); ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, ABI_RETURN); Devirtualize<&A32::UserCallbacks::MemoryWrite8>(config.callbacks).EmitCall(code); ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, ABI_RETURN); code.ret(); PerfMapRegister(write_memory_8, code.getCurr(), "a32_write_memory_8"); code.align(); write_memory_16 = code.getCurr(); ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, ABI_RETURN); Devirtualize<&A32::UserCallbacks::MemoryWrite16>(config.callbacks).EmitCall(code); ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, ABI_RETURN); code.ret(); PerfMapRegister(write_memory_16, code.getCurr(), "a32_write_memory_16"); code.align(); write_memory_32 = code.getCurr(); ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, ABI_RETURN); Devirtualize<&A32::UserCallbacks::MemoryWrite32>(config.callbacks).EmitCall(code); ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, ABI_RETURN); code.ret(); PerfMapRegister(write_memory_32, code.getCurr(), "a32_write_memory_32"); code.align(); write_memory_64 = code.getCurr(); ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, ABI_RETURN); Devirtualize<&A32::UserCallbacks::MemoryWrite64>(config.callbacks).EmitCall(code); ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, ABI_RETURN); code.ret(); PerfMapRegister(write_memory_64, code.getCurr(), "a32_write_memory_64"); } void A32EmitX64::EmitA32GetRegister(A32EmitContext& ctx, IR::Inst* inst) { A32::Reg reg = inst->GetArg(0).GetA32RegRef(); Xbyak::Reg32 result = ctx.reg_alloc.ScratchGpr().cvt32(); code.mov(result, MJitStateReg(reg)); ctx.reg_alloc.DefineValue(inst, result); } void A32EmitX64::EmitA32GetExtendedRegister32(A32EmitContext& ctx, IR::Inst* inst) { A32::ExtReg reg = inst->GetArg(0).GetA32ExtRegRef(); ASSERT(A32::IsSingleExtReg(reg)); Xbyak::Xmm result = ctx.reg_alloc.ScratchXmm(); code.movss(result, MJitStateExtReg(reg)); ctx.reg_alloc.DefineValue(inst, result); } void A32EmitX64::EmitA32GetExtendedRegister64(A32EmitContext& ctx, IR::Inst* inst) { A32::ExtReg reg = inst->GetArg(0).GetA32ExtRegRef(); ASSERT(A32::IsDoubleExtReg(reg)); Xbyak::Xmm result = ctx.reg_alloc.ScratchXmm(); code.movsd(result, MJitStateExtReg(reg)); ctx.reg_alloc.DefineValue(inst, result); } void A32EmitX64::EmitA32SetRegister(A32EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); A32::Reg reg = inst->GetArg(0).GetA32RegRef(); if (args[1].IsImmediate()) { code.mov(MJitStateReg(reg), args[1].GetImmediateU32()); } else if (args[1].IsInXmm()) { Xbyak::Xmm to_store = ctx.reg_alloc.UseXmm(args[1]); code.movd(MJitStateReg(reg), to_store); } else { Xbyak::Reg32 to_store = ctx.reg_alloc.UseGpr(args[1]).cvt32(); code.mov(MJitStateReg(reg), to_store); } } void A32EmitX64::EmitA32SetExtendedRegister32(A32EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); A32::ExtReg reg = inst->GetArg(0).GetA32ExtRegRef(); ASSERT(A32::IsSingleExtReg(reg)); if (args[1].IsInXmm()) { Xbyak::Xmm to_store = ctx.reg_alloc.UseXmm(args[1]); code.movss(MJitStateExtReg(reg), to_store); } else { Xbyak::Reg32 to_store = ctx.reg_alloc.UseGpr(args[1]).cvt32(); code.mov(MJitStateExtReg(reg), to_store); } } void A32EmitX64::EmitA32SetExtendedRegister64(A32EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); A32::ExtReg reg = inst->GetArg(0).GetA32ExtRegRef(); ASSERT(A32::IsDoubleExtReg(reg)); if (args[1].IsInXmm()) { Xbyak::Xmm to_store = ctx.reg_alloc.UseXmm(args[1]); code.movsd(MJitStateExtReg(reg), to_store); } else { Xbyak::Reg64 to_store = ctx.reg_alloc.UseGpr(args[1]); code.mov(MJitStateExtReg(reg), to_store); } } static u32 GetCpsrImpl(A32JitState* jit_state) { return jit_state->Cpsr(); } void A32EmitX64::EmitA32GetCpsr(A32EmitContext& ctx, IR::Inst* inst) { if (code.DoesCpuSupport(Xbyak::util::Cpu::tBMI2)) { Xbyak::Reg32 result = ctx.reg_alloc.ScratchGpr().cvt32(); Xbyak::Reg32 tmp = ctx.reg_alloc.ScratchGpr().cvt32(); // Here we observe that CPSR_et and CPSR_ge are right next to each other in memory, // so we load them both at the same time with one 64-bit read. This allows us to // extract all of their bits together at once with one pext. static_assert(offsetof(A32JitState, CPSR_et) + 4 == offsetof(A32JitState, CPSR_ge)); code.mov(result.cvt64(), qword[r15 + offsetof(A32JitState, CPSR_et)]); code.mov(tmp.cvt64(), 0x80808080'00000003ull); code.pext(result.cvt64(), result.cvt64(), tmp.cvt64()); code.mov(tmp, 0x000f0220); code.pdep(result, result, tmp); code.mov(tmp, dword[r15 + offsetof(A32JitState, CPSR_q)]); code.shl(tmp, 27); code.or_(result, tmp); code.or_(result, dword[r15 + offsetof(A32JitState, CPSR_nzcv)]); code.or_(result, dword[r15 + offsetof(A32JitState, CPSR_jaifm)]); ctx.reg_alloc.DefineValue(inst, result); } else { ctx.reg_alloc.HostCall(inst); code.mov(code.ABI_PARAM1, code.r15); code.CallFunction(&GetCpsrImpl); } } static void SetCpsrImpl(u32 value, A32JitState* jit_state) { jit_state->SetCpsr(value); } void A32EmitX64::EmitA32SetCpsr(A32EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); if (code.DoesCpuSupport(Xbyak::util::Cpu::tBMI2)) { Xbyak::Reg32 cpsr = ctx.reg_alloc.UseScratchGpr(args[0]).cvt32(); Xbyak::Reg32 tmp = ctx.reg_alloc.ScratchGpr().cvt32(); Xbyak::Reg32 tmp2 = ctx.reg_alloc.ScratchGpr().cvt32(); // CPSR_q code.bt(cpsr, 27); code.setc(code.byte[r15 + offsetof(A32JitState, CPSR_q)]); // CPSR_nzcv code.mov(tmp, cpsr); code.and_(tmp, 0xF0000000); code.mov(dword[r15 + offsetof(A32JitState, CPSR_nzcv)], tmp); // CPSR_jaifm code.mov(tmp, cpsr); code.and_(tmp, 0x07F0FDDF); code.mov(dword[r15 + offsetof(A32JitState, CPSR_jaifm)], tmp); // CPSR_et and CPSR_ge static_assert(offsetof(A32JitState, CPSR_et) + 4 == offsetof(A32JitState, CPSR_ge)); code.mov(tmp, 0x000f0220); code.pext(cpsr, cpsr, tmp); code.mov(tmp.cvt64(), 0x01010101'00000003ull); code.pdep(cpsr.cvt64(), cpsr.cvt64(), tmp.cvt64()); // We perform SWAR partitioned subtraction here, to negate the GE bytes. code.mov(tmp.cvt64(), 0x80808080'00000003ull); code.mov(tmp2.cvt64(), tmp.cvt64()); code.sub(tmp.cvt64(), cpsr.cvt64()); code.xor_(tmp.cvt64(), tmp2.cvt64()); code.mov(qword[r15 + offsetof(A32JitState, CPSR_et)], tmp.cvt64()); } else { ctx.reg_alloc.HostCall(nullptr, args[0]); code.mov(code.ABI_PARAM2, code.r15); code.CallFunction(&SetCpsrImpl); } } void A32EmitX64::EmitA32SetCpsrNZCV(A32EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); if (args[0].IsImmediate()) { u32 imm = args[0].GetImmediateU32(); code.mov(dword[r15 + offsetof(A32JitState, CPSR_nzcv)], u32(imm & 0xF0000000)); } else { Xbyak::Reg32 a = ctx.reg_alloc.UseScratchGpr(args[0]).cvt32(); code.and_(a, 0xF0000000); code.mov(dword[r15 + offsetof(A32JitState, CPSR_nzcv)], a); } } void A32EmitX64::EmitA32SetCpsrNZCVQ(A32EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); if (args[0].IsImmediate()) { u32 imm = args[0].GetImmediateU32(); code.mov(dword[r15 + offsetof(A32JitState, CPSR_nzcv)], u32(imm & 0xF0000000)); code.mov(code.byte[r15 + offsetof(A32JitState, CPSR_q)], u8((imm & 0x08000000) != 0 ? 1 : 0)); } else { Xbyak::Reg32 a = ctx.reg_alloc.UseScratchGpr(args[0]).cvt32(); code.bt(a, 27); code.setc(code.byte[r15 + offsetof(A32JitState, CPSR_q)]); code.and_(a, 0xF0000000); code.mov(dword[r15 + offsetof(A32JitState, CPSR_nzcv)], a); } } void A32EmitX64::EmitA32GetNFlag(A32EmitContext& ctx, IR::Inst* inst) { Xbyak::Reg32 result = ctx.reg_alloc.ScratchGpr().cvt32(); code.mov(result, dword[r15 + offsetof(A32JitState, CPSR_nzcv)]); code.shr(result, 31); ctx.reg_alloc.DefineValue(inst, result); } void A32EmitX64::EmitA32SetNFlag(A32EmitContext& ctx, IR::Inst* inst) { constexpr size_t flag_bit = 31; constexpr u32 flag_mask = 1u << flag_bit; auto args = ctx.reg_alloc.GetArgumentInfo(inst); if (args[0].IsImmediate()) { if (args[0].GetImmediateU1()) { code.or_(dword[r15 + offsetof(A32JitState, CPSR_nzcv)], flag_mask); } else { code.and_(dword[r15 + offsetof(A32JitState, CPSR_nzcv)], ~flag_mask); } } else { Xbyak::Reg32 to_store = ctx.reg_alloc.UseScratchGpr(args[0]).cvt32(); code.shl(to_store, flag_bit); code.and_(dword[r15 + offsetof(A32JitState, CPSR_nzcv)], ~flag_mask); code.or_(dword[r15 + offsetof(A32JitState, CPSR_nzcv)], to_store); } } void A32EmitX64::EmitA32GetZFlag(A32EmitContext& ctx, IR::Inst* inst) { Xbyak::Reg32 result = ctx.reg_alloc.ScratchGpr().cvt32(); code.mov(result, dword[r15 + offsetof(A32JitState, CPSR_nzcv)]); code.shr(result, 30); code.and_(result, 1); ctx.reg_alloc.DefineValue(inst, result); } void A32EmitX64::EmitA32SetZFlag(A32EmitContext& ctx, IR::Inst* inst) { constexpr size_t flag_bit = 30; constexpr u32 flag_mask = 1u << flag_bit; auto args = ctx.reg_alloc.GetArgumentInfo(inst); if (args[0].IsImmediate()) { if (args[0].GetImmediateU1()) { code.or_(dword[r15 + offsetof(A32JitState, CPSR_nzcv)], flag_mask); } else { code.and_(dword[r15 + offsetof(A32JitState, CPSR_nzcv)], ~flag_mask); } } else { Xbyak::Reg32 to_store = ctx.reg_alloc.UseScratchGpr(args[0]).cvt32(); code.shl(to_store, flag_bit); code.and_(dword[r15 + offsetof(A32JitState, CPSR_nzcv)], ~flag_mask); code.or_(dword[r15 + offsetof(A32JitState, CPSR_nzcv)], to_store); } } void A32EmitX64::EmitA32GetCFlag(A32EmitContext& ctx, IR::Inst* inst) { Xbyak::Reg32 result = ctx.reg_alloc.ScratchGpr().cvt32(); code.mov(result, dword[r15 + offsetof(A32JitState, CPSR_nzcv)]); code.shr(result, 29); code.and_(result, 1); ctx.reg_alloc.DefineValue(inst, result); } void A32EmitX64::EmitA32SetCFlag(A32EmitContext& ctx, IR::Inst* inst) { constexpr size_t flag_bit = 29; constexpr u32 flag_mask = 1u << flag_bit; auto args = ctx.reg_alloc.GetArgumentInfo(inst); if (args[0].IsImmediate()) { if (args[0].GetImmediateU1()) { code.or_(dword[r15 + offsetof(A32JitState, CPSR_nzcv)], flag_mask); } else { code.and_(dword[r15 + offsetof(A32JitState, CPSR_nzcv)], ~flag_mask); } } else { Xbyak::Reg32 to_store = ctx.reg_alloc.UseScratchGpr(args[0]).cvt32(); code.shl(to_store, flag_bit); code.and_(dword[r15 + offsetof(A32JitState, CPSR_nzcv)], ~flag_mask); code.or_(dword[r15 + offsetof(A32JitState, CPSR_nzcv)], to_store); } } void A32EmitX64::EmitA32GetVFlag(A32EmitContext& ctx, IR::Inst* inst) { Xbyak::Reg32 result = ctx.reg_alloc.ScratchGpr().cvt32(); code.mov(result, dword[r15 + offsetof(A32JitState, CPSR_nzcv)]); code.shr(result, 28); code.and_(result, 1); ctx.reg_alloc.DefineValue(inst, result); } void A32EmitX64::EmitA32SetVFlag(A32EmitContext& ctx, IR::Inst* inst) { constexpr size_t flag_bit = 28; constexpr u32 flag_mask = 1u << flag_bit; auto args = ctx.reg_alloc.GetArgumentInfo(inst); if (args[0].IsImmediate()) { if (args[0].GetImmediateU1()) { code.or_(dword[r15 + offsetof(A32JitState, CPSR_nzcv)], flag_mask); } else { code.and_(dword[r15 + offsetof(A32JitState, CPSR_nzcv)], ~flag_mask); } } else { Xbyak::Reg32 to_store = ctx.reg_alloc.UseScratchGpr(args[0]).cvt32(); code.shl(to_store, flag_bit); code.and_(dword[r15 + offsetof(A32JitState, CPSR_nzcv)], ~flag_mask); code.or_(dword[r15 + offsetof(A32JitState, CPSR_nzcv)], to_store); } } void A32EmitX64::EmitA32OrQFlag(A32EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); if (args[0].IsImmediate()) { if (args[0].GetImmediateU1()) code.mov(dword[r15 + offsetof(A32JitState, CPSR_q)], 1); } else { Xbyak::Reg8 to_store = ctx.reg_alloc.UseGpr(args[0]).cvt8(); code.or_(code.byte[r15 + offsetof(A32JitState, CPSR_q)], to_store); } } void A32EmitX64::EmitA32GetGEFlags(A32EmitContext& ctx, IR::Inst* inst) { Xbyak::Xmm result = ctx.reg_alloc.ScratchXmm(); code.movd(result, dword[r15 + offsetof(A32JitState, CPSR_ge)]); ctx.reg_alloc.DefineValue(inst, result); } void A32EmitX64::EmitA32SetGEFlags(A32EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); ASSERT(!args[0].IsImmediate()); if (args[0].IsInXmm()) { Xbyak::Xmm to_store = ctx.reg_alloc.UseXmm(args[0]); code.movd(dword[r15 + offsetof(A32JitState, CPSR_ge)], to_store); } else { Xbyak::Reg32 to_store = ctx.reg_alloc.UseGpr(args[0]).cvt32(); code.mov(dword[r15 + offsetof(A32JitState, CPSR_ge)], to_store); } } void A32EmitX64::EmitA32SetGEFlagsCompressed(A32EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); if (args[0].IsImmediate()) { u32 imm = args[0].GetImmediateU32(); u32 ge = 0; ge |= Common::Bit<19>(imm) ? 0xFF000000 : 0; ge |= Common::Bit<18>(imm) ? 0x00FF0000 : 0; ge |= Common::Bit<17>(imm) ? 0x0000FF00 : 0; ge |= Common::Bit<16>(imm) ? 0x000000FF : 0; code.mov(dword[r15 + offsetof(A32JitState, CPSR_ge)], ge); } else if (code.DoesCpuSupport(Xbyak::util::Cpu::tBMI2)) { Xbyak::Reg32 a = ctx.reg_alloc.UseScratchGpr(args[0]).cvt32(); Xbyak::Reg32 b = ctx.reg_alloc.ScratchGpr().cvt32(); code.mov(b, 0x01010101); code.shr(a, 16); code.pdep(a, a, b); code.imul(a, a, 0xFF); code.mov(dword[r15 + offsetof(A32JitState, CPSR_ge)], a); } else { Xbyak::Reg32 a = ctx.reg_alloc.UseScratchGpr(args[0]).cvt32(); code.shr(a, 16); code.and_(a, 0xF); code.imul(a, a, 0x00204081); code.and_(a, 0x01010101); code.imul(a, a, 0xFF); code.mov(dword[r15 + offsetof(A32JitState, CPSR_ge)], a); } } void A32EmitX64::EmitA32BXWritePC(A32EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); auto& arg = args[0]; // Pseudocode: // if (new_pc & 1) { // new_pc &= 0xFFFFFFFE; // cpsr.T = true; // } else { // new_pc &= 0xFFFFFFFC; // cpsr.T = false; // } // We rely on the fact we disallow EFlag from changing within a block. if (arg.IsImmediate()) { u32 new_pc = arg.GetImmediateU32(); u32 mask = Common::Bit<0>(new_pc) ? 0xFFFFFFFE : 0xFFFFFFFC; u32 et = 0; et |= ctx.Location().EFlag() ? 2 : 0; et |= Common::Bit<0>(new_pc) ? 1 : 0; code.mov(MJitStateReg(A32::Reg::PC), new_pc & mask); code.mov(dword[r15 + offsetof(A32JitState, CPSR_et)], et); } else { if (ctx.Location().EFlag()) { Xbyak::Reg32 new_pc = ctx.reg_alloc.UseScratchGpr(arg).cvt32(); Xbyak::Reg32 mask = ctx.reg_alloc.ScratchGpr().cvt32(); Xbyak::Reg32 et = ctx.reg_alloc.ScratchGpr().cvt32(); code.mov(mask, new_pc); code.and_(mask, 1); code.lea(et, ptr[mask.cvt64() + 2]); code.mov(dword[r15 + offsetof(A32JitState, CPSR_et)], et); code.lea(mask, ptr[mask.cvt64() + mask.cvt64() * 1 - 4]); // mask = pc & 1 ? 0xFFFFFFFE : 0xFFFFFFFC code.and_(new_pc, mask); code.mov(MJitStateReg(A32::Reg::PC), new_pc); } else { Xbyak::Reg32 new_pc = ctx.reg_alloc.UseScratchGpr(arg).cvt32(); Xbyak::Reg32 mask = ctx.reg_alloc.ScratchGpr().cvt32(); code.mov(mask, new_pc); code.and_(mask, 1); code.mov(dword[r15 + offsetof(A32JitState, CPSR_et)], mask); code.lea(mask, ptr[mask.cvt64() + mask.cvt64() * 1 - 4]); // mask = pc & 1 ? 0xFFFFFFFE : 0xFFFFFFFC code.and_(new_pc, mask); code.mov(MJitStateReg(A32::Reg::PC), new_pc); } } } void A32EmitX64::EmitA32CallSupervisor(A32EmitContext& ctx, IR::Inst* inst) { ctx.reg_alloc.HostCall(nullptr); code.SwitchMxcsrOnExit(); code.mov(code.ABI_PARAM2, qword[r15 + offsetof(A32JitState, cycles_to_run)]); code.sub(code.ABI_PARAM2, qword[r15 + offsetof(A32JitState, cycles_remaining)]); Devirtualize<&A32::UserCallbacks::AddTicks>(config.callbacks).EmitCall(code); ctx.reg_alloc.EndOfAllocScope(); auto args = ctx.reg_alloc.GetArgumentInfo(inst); ctx.reg_alloc.HostCall(nullptr, {}, args[0]); Devirtualize<&A32::UserCallbacks::CallSVC>(config.callbacks).EmitCall(code); Devirtualize<&A32::UserCallbacks::GetTicksRemaining>(config.callbacks).EmitCall(code); code.mov(qword[r15 + offsetof(A32JitState, cycles_to_run)], code.ABI_RETURN); code.mov(qword[r15 + offsetof(A32JitState, cycles_remaining)], code.ABI_RETURN); code.SwitchMxcsrOnEntry(); } void A32EmitX64::EmitA32ExceptionRaised(A32EmitContext& ctx, IR::Inst* inst) { ctx.reg_alloc.HostCall(nullptr); auto args = ctx.reg_alloc.GetArgumentInfo(inst); ASSERT(args[0].IsImmediate() && args[1].IsImmediate()); u32 pc = args[0].GetImmediateU32(); u64 exception = args[1].GetImmediateU64(); Devirtualize<&A32::UserCallbacks::ExceptionRaised>(config.callbacks).EmitCall(code, [&](RegList param) { code.mov(param[0], pc); code.mov(param[1], exception); }); } static u32 GetFpscrImpl(A32JitState* jit_state) { return jit_state->Fpscr(); } void A32EmitX64::EmitA32GetFpscr(A32EmitContext& ctx, IR::Inst* inst) { ctx.reg_alloc.HostCall(inst); code.mov(code.ABI_PARAM1, code.r15); code.stmxcsr(code.dword[code.r15 + offsetof(A32JitState, guest_MXCSR)]); code.CallFunction(&GetFpscrImpl); } static void SetFpscrImpl(u32 value, A32JitState* jit_state) { jit_state->SetFpscr(value); } void A32EmitX64::EmitA32SetFpscr(A32EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); ctx.reg_alloc.HostCall(nullptr, args[0]); code.mov(code.ABI_PARAM2, code.r15); code.CallFunction(&SetFpscrImpl); code.ldmxcsr(code.dword[code.r15 + offsetof(A32JitState, guest_MXCSR)]); } void A32EmitX64::EmitA32GetFpscrNZCV(A32EmitContext& ctx, IR::Inst* inst) { Xbyak::Reg32 result = ctx.reg_alloc.ScratchGpr().cvt32(); code.mov(result, dword[r15 + offsetof(A32JitState, FPSCR_nzcv)]); ctx.reg_alloc.DefineValue(inst, result); } void A32EmitX64::EmitA32SetFpscrNZCV(A32EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); Xbyak::Reg32 value = ctx.reg_alloc.UseScratchGpr(args[0]).cvt32(); code.and_(value, 0b11000001'00000001); code.imul(value, value, 0b00010000'00100001); code.shl(value, 16); code.and_(value, 0xF0000000); code.mov(dword[r15 + offsetof(A32JitState, FPSCR_nzcv)], value); } void A32EmitX64::EmitA32ClearExclusive(A32EmitContext&, IR::Inst*) { code.mov(code.byte[r15 + offsetof(A32JitState, exclusive_state)], u8(0)); } void A32EmitX64::EmitA32SetExclusive(A32EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); ASSERT(args[1].IsImmediate()); Xbyak::Reg32 address = ctx.reg_alloc.UseGpr(args[0]).cvt32(); code.mov(code.byte[r15 + offsetof(A32JitState, exclusive_state)], u8(1)); code.mov(dword[r15 + offsetof(A32JitState, exclusive_address)], address); } template static void ReadMemory(BlockOfCode& code, RegAlloc& reg_alloc, IR::Inst* inst, const A32::UserConfig& config, const CodePtr wrapped_fn) { constexpr size_t bit_size = Common::BitSize(); auto args = reg_alloc.GetArgumentInfo(inst); if (!config.page_table) { reg_alloc.HostCall(inst, {}, args[0]); Devirtualize(config.callbacks).EmitCall(code); return; } reg_alloc.UseScratch(args[0], ABI_PARAM2); Xbyak::Reg64 result = reg_alloc.ScratchGpr({ABI_RETURN}); Xbyak::Reg32 vaddr = code.ABI_PARAM2.cvt32(); Xbyak::Reg64 page_index = reg_alloc.ScratchGpr(); Xbyak::Reg64 page_offset = reg_alloc.ScratchGpr(); Xbyak::Label abort, end; code.mov(result, reinterpret_cast(config.page_table)); code.mov(page_index.cvt32(), vaddr); code.shr(page_index.cvt32(), 12); code.mov(result, qword[result + page_index * 8]); code.test(result, result); code.jz(abort); code.mov(page_offset.cvt32(), vaddr); code.and_(page_offset.cvt32(), 4095); switch (bit_size) { case 8: code.movzx(result, code.byte[result + page_offset]); break; case 16: code.movzx(result, word[result + page_offset]); break; case 32: code.mov(result.cvt32(), dword[result + page_offset]); break; case 64: code.mov(result.cvt64(), qword[result + page_offset]); break; default: ASSERT_MSG(false, "Invalid bit_size"); break; } code.jmp(end); code.L(abort); code.call(wrapped_fn); code.L(end); reg_alloc.DefineValue(inst, result); } template static void WriteMemory(BlockOfCode& code, RegAlloc& reg_alloc, IR::Inst* inst, const A32::UserConfig& config, const CodePtr wrapped_fn) { constexpr size_t bit_size = Common::BitSize(); auto args = reg_alloc.GetArgumentInfo(inst); if (!config.page_table) { reg_alloc.HostCall(nullptr, {}, args[0], args[1]); Devirtualize(config.callbacks).EmitCall(code); return; } reg_alloc.ScratchGpr({ABI_RETURN}); reg_alloc.UseScratch(args[0], ABI_PARAM2); reg_alloc.UseScratch(args[1], ABI_PARAM3); Xbyak::Reg32 vaddr = code.ABI_PARAM2.cvt32(); Xbyak::Reg64 value = code.ABI_PARAM3; Xbyak::Reg64 page_index = reg_alloc.ScratchGpr(); Xbyak::Reg64 page_offset = reg_alloc.ScratchGpr(); Xbyak::Label abort, end; code.mov(rax, reinterpret_cast(config.page_table)); code.mov(page_index.cvt32(), vaddr); code.shr(page_index.cvt32(), 12); code.mov(rax, qword[rax + page_index * 8]); code.test(rax, rax); code.jz(abort); code.mov(page_offset.cvt32(), vaddr); code.and_(page_offset.cvt32(), 4095); switch (bit_size) { case 8: code.mov(code.byte[rax + page_offset], value.cvt8()); break; case 16: code.mov(word[rax + page_offset], value.cvt16()); break; case 32: code.mov(dword[rax + page_offset], value.cvt32()); break; case 64: code.mov(qword[rax + page_offset], value.cvt64()); break; default: ASSERT_MSG(false, "Invalid bit_size"); break; } code.jmp(end); code.L(abort); code.call(wrapped_fn); code.L(end); } void A32EmitX64::EmitA32ReadMemory8(A32EmitContext& ctx, IR::Inst* inst) { ReadMemory(code, ctx.reg_alloc, inst, config, read_memory_8); } void A32EmitX64::EmitA32ReadMemory16(A32EmitContext& ctx, IR::Inst* inst) { ReadMemory(code, ctx.reg_alloc, inst, config, read_memory_16); } void A32EmitX64::EmitA32ReadMemory32(A32EmitContext& ctx, IR::Inst* inst) { ReadMemory(code, ctx.reg_alloc, inst, config, read_memory_32); } void A32EmitX64::EmitA32ReadMemory64(A32EmitContext& ctx, IR::Inst* inst) { ReadMemory(code, ctx.reg_alloc, inst, config, read_memory_64); } void A32EmitX64::EmitA32WriteMemory8(A32EmitContext& ctx, IR::Inst* inst) { WriteMemory(code, ctx.reg_alloc, inst, config, write_memory_8); } void A32EmitX64::EmitA32WriteMemory16(A32EmitContext& ctx, IR::Inst* inst) { WriteMemory(code, ctx.reg_alloc, inst, config, write_memory_16); } void A32EmitX64::EmitA32WriteMemory32(A32EmitContext& ctx, IR::Inst* inst) { WriteMemory(code, ctx.reg_alloc, inst, config, write_memory_32); } void A32EmitX64::EmitA32WriteMemory64(A32EmitContext& ctx, IR::Inst* inst) { WriteMemory(code, ctx.reg_alloc, inst, config, write_memory_64); } template static void ExclusiveWrite(BlockOfCode& code, RegAlloc& reg_alloc, IR::Inst* inst, const A32::UserConfig& config, bool prepend_high_word) { auto args = reg_alloc.GetArgumentInfo(inst); if (prepend_high_word) { reg_alloc.HostCall(nullptr, {}, args[0], args[1], args[2]); } else { reg_alloc.HostCall(nullptr, {}, args[0], args[1]); } Xbyak::Reg32 passed = reg_alloc.ScratchGpr().cvt32(); Xbyak::Reg32 tmp = code.ABI_RETURN.cvt32(); // Use one of the unusued HostCall registers. Xbyak::Label end; code.mov(passed, u32(1)); code.cmp(code.byte[r15 + offsetof(A32JitState, exclusive_state)], u8(0)); code.je(end); code.mov(tmp, code.ABI_PARAM2); code.xor_(tmp, dword[r15 + offsetof(A32JitState, exclusive_address)]); code.test(tmp, A32JitState::RESERVATION_GRANULE_MASK); code.jne(end); code.mov(code.byte[r15 + offsetof(A32JitState, exclusive_state)], u8(0)); if (prepend_high_word) { code.mov(code.ABI_PARAM3.cvt32(), code.ABI_PARAM3.cvt32()); // zero extend to 64-bits code.shl(code.ABI_PARAM4, 32); code.or_(code.ABI_PARAM3, code.ABI_PARAM4); } Devirtualize(config.callbacks).EmitCall(code); code.xor_(passed, passed); code.L(end); reg_alloc.DefineValue(inst, passed); } void A32EmitX64::EmitA32ExclusiveWriteMemory8(A32EmitContext& ctx, IR::Inst* inst) { ExclusiveWrite(code, ctx.reg_alloc, inst, config, false); } void A32EmitX64::EmitA32ExclusiveWriteMemory16(A32EmitContext& ctx, IR::Inst* inst) { ExclusiveWrite(code, ctx.reg_alloc, inst, config, false); } void A32EmitX64::EmitA32ExclusiveWriteMemory32(A32EmitContext& ctx, IR::Inst* inst) { ExclusiveWrite(code, ctx.reg_alloc, inst, config, false); } void A32EmitX64::EmitA32ExclusiveWriteMemory64(A32EmitContext& ctx, IR::Inst* inst) { ExclusiveWrite(code, ctx.reg_alloc, inst, config, true); } static void EmitCoprocessorException() { ASSERT_MSG(false, "Should raise coproc exception here"); } static void CallCoprocCallback(BlockOfCode& code, RegAlloc& reg_alloc, A32::Jit* jit_interface, A32::Coprocessor::Callback callback, IR::Inst* inst = nullptr, boost::optional arg0 = {}, boost::optional arg1 = {}) { reg_alloc.HostCall(inst, {}, {}, arg0, arg1); code.mov(code.ABI_PARAM1, reinterpret_cast(jit_interface)); if (callback.user_arg) { code.mov(code.ABI_PARAM2, reinterpret_cast(*callback.user_arg)); } code.CallFunction(callback.function); } void A32EmitX64::EmitA32CoprocInternalOperation(A32EmitContext& ctx, IR::Inst* inst) { auto coproc_info = inst->GetArg(0).GetCoprocInfo(); size_t coproc_num = coproc_info[0]; bool two = coproc_info[1] != 0; unsigned opc1 = static_cast(coproc_info[2]); A32::CoprocReg CRd = static_cast(coproc_info[3]); A32::CoprocReg CRn = static_cast(coproc_info[4]); A32::CoprocReg CRm = static_cast(coproc_info[5]); unsigned opc2 = static_cast(coproc_info[6]); std::shared_ptr coproc = config.coprocessors[coproc_num]; if (!coproc) { EmitCoprocessorException(); return; } auto action = coproc->CompileInternalOperation(two, opc1, CRd, CRn, CRm, opc2); if (!action) { EmitCoprocessorException(); return; } CallCoprocCallback(code, ctx.reg_alloc, jit_interface, *action); } void A32EmitX64::EmitA32CoprocSendOneWord(A32EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); auto coproc_info = inst->GetArg(0).GetCoprocInfo(); size_t coproc_num = coproc_info[0]; bool two = coproc_info[1] != 0; unsigned opc1 = static_cast(coproc_info[2]); A32::CoprocReg CRn = static_cast(coproc_info[3]); A32::CoprocReg CRm = static_cast(coproc_info[4]); unsigned opc2 = static_cast(coproc_info[5]); std::shared_ptr coproc = config.coprocessors[coproc_num]; if (!coproc) { EmitCoprocessorException(); return; } auto action = coproc->CompileSendOneWord(two, opc1, CRn, CRm, opc2); switch (action.which()) { case 0: EmitCoprocessorException(); return; case 1: CallCoprocCallback(code, ctx.reg_alloc, jit_interface, boost::get(action), nullptr, args[1]); return; case 2: { u32* destination_ptr = boost::get(action); Xbyak::Reg32 reg_word = ctx.reg_alloc.UseGpr(args[1]).cvt32(); Xbyak::Reg64 reg_destination_addr = ctx.reg_alloc.ScratchGpr(); code.mov(reg_destination_addr, reinterpret_cast(destination_ptr)); code.mov(code.dword[reg_destination_addr], reg_word); return; } default: ASSERT_MSG(false, "Unreachable"); } } void A32EmitX64::EmitA32CoprocSendTwoWords(A32EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); auto coproc_info = inst->GetArg(0).GetCoprocInfo(); size_t coproc_num = coproc_info[0]; bool two = coproc_info[1] != 0; unsigned opc = static_cast(coproc_info[2]); A32::CoprocReg CRm = static_cast(coproc_info[3]); std::shared_ptr coproc = config.coprocessors[coproc_num]; if (!coproc) { EmitCoprocessorException(); return; } auto action = coproc->CompileSendTwoWords(two, opc, CRm); switch (action.which()) { case 0: EmitCoprocessorException(); return; case 1: CallCoprocCallback(code, ctx.reg_alloc, jit_interface, boost::get(action), nullptr, args[1], args[2]); return; case 2: { auto destination_ptrs = boost::get>(action); Xbyak::Reg32 reg_word1 = ctx.reg_alloc.UseGpr(args[1]).cvt32(); Xbyak::Reg32 reg_word2 = ctx.reg_alloc.UseGpr(args[2]).cvt32(); Xbyak::Reg64 reg_destination_addr = ctx.reg_alloc.ScratchGpr(); code.mov(reg_destination_addr, reinterpret_cast(destination_ptrs[0])); code.mov(code.dword[reg_destination_addr], reg_word1); code.mov(reg_destination_addr, reinterpret_cast(destination_ptrs[1])); code.mov(code.dword[reg_destination_addr], reg_word2); return; } default: ASSERT_MSG(false, "Unreachable"); } } void A32EmitX64::EmitA32CoprocGetOneWord(A32EmitContext& ctx, IR::Inst* inst) { auto coproc_info = inst->GetArg(0).GetCoprocInfo(); size_t coproc_num = coproc_info[0]; bool two = coproc_info[1] != 0; unsigned opc1 = static_cast(coproc_info[2]); A32::CoprocReg CRn = static_cast(coproc_info[3]); A32::CoprocReg CRm = static_cast(coproc_info[4]); unsigned opc2 = static_cast(coproc_info[5]); std::shared_ptr coproc = config.coprocessors[coproc_num]; if (!coproc) { EmitCoprocessorException(); return; } auto action = coproc->CompileGetOneWord(two, opc1, CRn, CRm, opc2); switch (action.which()) { case 0: EmitCoprocessorException(); return; case 1: CallCoprocCallback(code, ctx.reg_alloc, jit_interface, boost::get(action), inst); return; case 2: { u32* source_ptr = boost::get(action); Xbyak::Reg32 reg_word = ctx.reg_alloc.ScratchGpr().cvt32(); Xbyak::Reg64 reg_source_addr = ctx.reg_alloc.ScratchGpr(); code.mov(reg_source_addr, reinterpret_cast(source_ptr)); code.mov(reg_word, code.dword[reg_source_addr]); ctx.reg_alloc.DefineValue(inst, reg_word); return; } default: ASSERT_MSG(false, "Unreachable"); } } void A32EmitX64::EmitA32CoprocGetTwoWords(A32EmitContext& ctx, IR::Inst* inst) { auto coproc_info = inst->GetArg(0).GetCoprocInfo(); size_t coproc_num = coproc_info[0]; bool two = coproc_info[1] != 0; unsigned opc = coproc_info[2]; A32::CoprocReg CRm = static_cast(coproc_info[3]); std::shared_ptr coproc = config.coprocessors[coproc_num]; if (!coproc) { EmitCoprocessorException(); return; } auto action = coproc->CompileGetTwoWords(two, opc, CRm); switch (action.which()) { case 0: EmitCoprocessorException(); return; case 1: CallCoprocCallback(code, ctx.reg_alloc, jit_interface, boost::get(action), inst); return; case 2: { auto source_ptrs = boost::get>(action); Xbyak::Reg64 reg_result = ctx.reg_alloc.ScratchGpr(); Xbyak::Reg64 reg_destination_addr = ctx.reg_alloc.ScratchGpr(); Xbyak::Reg64 reg_tmp = ctx.reg_alloc.ScratchGpr(); code.mov(reg_destination_addr, reinterpret_cast(source_ptrs[1])); code.mov(reg_result.cvt32(), code.dword[reg_destination_addr]); code.shl(reg_result, 32); code.mov(reg_destination_addr, reinterpret_cast(source_ptrs[0])); code.mov(reg_tmp.cvt32(), code.dword[reg_destination_addr]); code.or_(reg_result, reg_tmp); ctx.reg_alloc.DefineValue(inst, reg_result); return; } default: ASSERT_MSG(false, "Unreachable"); } } void A32EmitX64::EmitA32CoprocLoadWords(A32EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); auto coproc_info = inst->GetArg(0).GetCoprocInfo(); size_t coproc_num = coproc_info[0]; bool two = coproc_info[1] != 0; bool long_transfer = coproc_info[2] != 0; A32::CoprocReg CRd = static_cast(coproc_info[3]); bool has_option = coproc_info[4] != 0; boost::optional option{has_option, coproc_info[5]}; std::shared_ptr coproc = config.coprocessors[coproc_num]; if (!coproc) { EmitCoprocessorException(); return; } auto action = coproc->CompileLoadWords(two, long_transfer, CRd, option); if (!action) { EmitCoprocessorException(); return; } CallCoprocCallback(code, ctx.reg_alloc, jit_interface, *action, nullptr, args[1]); } void A32EmitX64::EmitA32CoprocStoreWords(A32EmitContext& ctx, IR::Inst* inst) { auto args = ctx.reg_alloc.GetArgumentInfo(inst); auto coproc_info = inst->GetArg(0).GetCoprocInfo(); size_t coproc_num = coproc_info[0]; bool two = coproc_info[1] != 0; bool long_transfer = coproc_info[2] != 0; A32::CoprocReg CRd = static_cast(coproc_info[3]); bool has_option = coproc_info[4] != 0; boost::optional option{has_option, coproc_info[5]}; std::shared_ptr coproc = config.coprocessors[coproc_num]; if (!coproc) { EmitCoprocessorException(); return; } auto action = coproc->CompileStoreWords(two, long_transfer, CRd, option); if (!action) { EmitCoprocessorException(); return; } CallCoprocCallback(code, ctx.reg_alloc, jit_interface, *action, nullptr, args[1]); } std::string A32EmitX64::LocationDescriptorToFriendlyName(const IR::LocationDescriptor& ir_descriptor) const { const A32::LocationDescriptor descriptor{ir_descriptor}; return fmt::format("a32_{}{:08X}_{}_fpcr{:08X}", descriptor.TFlag() ? "t" : "a", descriptor.PC(), descriptor.EFlag() ? "be" : "le", descriptor.FPSCR().Value()); } void A32EmitX64::EmitTerminalImpl(IR::Term::Interpret terminal, IR::LocationDescriptor initial_location) { ASSERT_MSG(A32::LocationDescriptor{terminal.next}.TFlag() == A32::LocationDescriptor{initial_location}.TFlag(), "Unimplemented"); ASSERT_MSG(A32::LocationDescriptor{terminal.next}.EFlag() == A32::LocationDescriptor{initial_location}.EFlag(), "Unimplemented"); ASSERT_MSG(terminal.num_instructions == 1, "Unimplemented"); code.mov(code.ABI_PARAM2.cvt32(), A32::LocationDescriptor{terminal.next}.PC()); code.mov(code.ABI_PARAM3.cvt32(), 1); code.mov(MJitStateReg(A32::Reg::PC), code.ABI_PARAM2.cvt32()); code.SwitchMxcsrOnExit(); Devirtualize<&A32::UserCallbacks::InterpreterFallback>(config.callbacks).EmitCall(code); code.ReturnFromRunCode(true); // TODO: Check cycles } void A32EmitX64::EmitTerminalImpl(IR::Term::ReturnToDispatch, IR::LocationDescriptor) { code.ReturnFromRunCode(); } static u32 CalculateCpsr_et(const IR::LocationDescriptor& arg) { const A32::LocationDescriptor desc{arg}; u32 et = 0; et |= desc.EFlag() ? 2 : 0; et |= desc.TFlag() ? 1 : 0; return et; } void A32EmitX64::EmitTerminalImpl(IR::Term::LinkBlock terminal, IR::LocationDescriptor initial_location) { if (CalculateCpsr_et(terminal.next) != CalculateCpsr_et(initial_location)) { code.mov(dword[r15 + offsetof(A32JitState, CPSR_et)], CalculateCpsr_et(terminal.next)); } code.cmp(qword[r15 + offsetof(A32JitState, cycles_remaining)], 0); patch_information[terminal.next].jg.emplace_back(code.getCurr()); if (auto next_bb = GetBasicBlock(terminal.next)) { EmitPatchJg(terminal.next, next_bb->entrypoint); } else { EmitPatchJg(terminal.next); } Xbyak::Label dest; code.jmp(dest, Xbyak::CodeGenerator::T_NEAR); code.SwitchToFarCode(); code.align(16); code.L(dest); code.mov(MJitStateReg(A32::Reg::PC), A32::LocationDescriptor{terminal.next}.PC()); PushRSBHelper(rax, rbx, terminal.next); code.ForceReturnFromRunCode(); code.SwitchToNearCode(); } void A32EmitX64::EmitTerminalImpl(IR::Term::LinkBlockFast terminal, IR::LocationDescriptor initial_location) { if (CalculateCpsr_et(terminal.next) != CalculateCpsr_et(initial_location)) { code.mov(dword[r15 + offsetof(A32JitState, CPSR_et)], CalculateCpsr_et(terminal.next)); } patch_information[terminal.next].jmp.emplace_back(code.getCurr()); if (auto next_bb = GetBasicBlock(terminal.next)) { EmitPatchJmp(terminal.next, next_bb->entrypoint); } else { EmitPatchJmp(terminal.next); } } void A32EmitX64::EmitTerminalImpl(IR::Term::PopRSBHint, IR::LocationDescriptor) { // This calculation has to match up with IREmitter::PushRSB // TODO: Optimization is available here based on known state of FPSCR_mode and CPSR_et. code.mov(ecx, MJitStateReg(A32::Reg::PC)); code.shl(rcx, 32); code.mov(ebx, dword[r15 + offsetof(A32JitState, FPSCR_mode)]); code.or_(ebx, dword[r15 + offsetof(A32JitState, CPSR_et)]); code.or_(rbx, rcx); void A32EmitX64::EmitTerminalImpl(IR::Term::FastDispatchHint, IR::LocationDescriptor initial_location) { EmitTerminalImpl(IR::Term::ReturnToDispatch{}, initial_location); } void A32EmitX64::EmitTerminalImpl(IR::Term::If terminal, IR::LocationDescriptor initial_location) { Xbyak::Label pass = EmitCond(terminal.if_); EmitTerminal(terminal.else_, initial_location); code.L(pass); EmitTerminal(terminal.then_, initial_location); } void A32EmitX64::EmitTerminalImpl(IR::Term::CheckBit, IR::LocationDescriptor) { ASSERT_MSG(false, "Term::CheckBit should never be emitted by the A32 frontend"); } void A32EmitX64::EmitTerminalImpl(IR::Term::CheckHalt terminal, IR::LocationDescriptor initial_location) { code.cmp(code.byte[r15 + offsetof(A32JitState, halt_requested)], u8(0)); code.jne(code.GetForceReturnFromRunCodeAddress()); EmitTerminal(terminal.else_, initial_location); } void A32EmitX64::EmitPatchJg(const IR::LocationDescriptor& target_desc, CodePtr target_code_ptr) { const CodePtr patch_location = code.getCurr(); if (target_code_ptr) { code.jg(target_code_ptr); } else { code.mov(MJitStateReg(A32::Reg::PC), A32::LocationDescriptor{target_desc}.PC()); code.jg(code.GetReturnFromRunCodeAddress()); } code.EnsurePatchLocationSize(patch_location, 14); } void A32EmitX64::EmitPatchJmp(const IR::LocationDescriptor& target_desc, CodePtr target_code_ptr) { const CodePtr patch_location = code.getCurr(); if (target_code_ptr) { code.jmp(target_code_ptr); } else { code.mov(MJitStateReg(A32::Reg::PC), A32::LocationDescriptor{target_desc}.PC()); code.jmp(code.GetReturnFromRunCodeAddress()); } code.EnsurePatchLocationSize(patch_location, 13); } void A32EmitX64::EmitPatchMovRcx(CodePtr target_code_ptr) { if (!target_code_ptr) { target_code_ptr = code.GetReturnFromRunCodeAddress(); } const CodePtr patch_location = code.getCurr(); code.mov(code.rcx, reinterpret_cast(target_code_ptr)); code.EnsurePatchLocationSize(patch_location, 10); } } // namespace Dynarmic::BackendX64