/* This file is part of the dynarmic project. * Copyright (c) 2022 MerryMage * SPDX-License-Identifier: 0BSD */ #include #include #include #include #include #include #include #include #include #include #include #include #include "./A32/testenv.h" #include "./A64/testenv.h" #include "./fuzz_util.h" #include "./rand_int.h" #include "dynarmic/common/fp/fpcr.h" #include "dynarmic/common/fp/fpsr.h" #include "dynarmic/frontend/A32/ITState.h" #include "dynarmic/frontend/A32/a32_location_descriptor.h" #include "dynarmic/frontend/A32/a32_types.h" #include "dynarmic/frontend/A32/translate/a32_translate.h" #include "dynarmic/frontend/A64/a64_location_descriptor.h" #include "dynarmic/frontend/A64/a64_types.h" #include "dynarmic/frontend/A64/translate/a64_translate.h" #include "dynarmic/interface/A32/a32.h" #include "dynarmic/interface/A64/a64.h" #include "dynarmic/ir/basic_block.h" #include "dynarmic/ir/location_descriptor.h" #include "dynarmic/ir/opcodes.h" // Must be declared last for all necessary operator<< to be declared prior to this. #include #include #if defined(__APPLE__) && defined(MCL_ARCHITECTURE_ARM64) # include # include # include #endif constexpr bool mask_fpsr_cum_bits = true; namespace { using namespace Dynarmic; bool ShouldTestInst(IR::Block& block) { if (auto terminal = block.GetTerminal(); boost::get(&terminal)) { return false; } for (const auto& ir_inst : block) { switch (ir_inst.GetOpcode()) { // A32 case IR::Opcode::A32GetFpscr: case IR::Opcode::A32ExceptionRaised: case IR::Opcode::A32CallSupervisor: case IR::Opcode::A32CoprocInternalOperation: case IR::Opcode::A32CoprocSendOneWord: case IR::Opcode::A32CoprocSendTwoWords: case IR::Opcode::A32CoprocGetOneWord: case IR::Opcode::A32CoprocGetTwoWords: case IR::Opcode::A32CoprocLoadWords: case IR::Opcode::A32CoprocStoreWords: // A64 case IR::Opcode::A64ExceptionRaised: case IR::Opcode::A64CallSupervisor: case IR::Opcode::A64DataCacheOperationRaised: case IR::Opcode::A64GetCNTPCT: // Unimplemented case IR::Opcode::SignedSaturatedAdd8: case IR::Opcode::SignedSaturatedAdd16: case IR::Opcode::SignedSaturatedAdd32: case IR::Opcode::SignedSaturatedAdd64: case IR::Opcode::SignedSaturatedDoublingMultiplyReturnHigh16: case IR::Opcode::SignedSaturatedDoublingMultiplyReturnHigh32: case IR::Opcode::SignedSaturatedSub8: case IR::Opcode::SignedSaturatedSub16: case IR::Opcode::SignedSaturatedSub32: case IR::Opcode::SignedSaturatedSub64: case IR::Opcode::UnsignedSaturatedAdd8: case IR::Opcode::UnsignedSaturatedAdd16: case IR::Opcode::UnsignedSaturatedAdd32: case IR::Opcode::UnsignedSaturatedAdd64: case IR::Opcode::UnsignedSaturatedSub8: case IR::Opcode::UnsignedSaturatedSub16: case IR::Opcode::UnsignedSaturatedSub32: case IR::Opcode::UnsignedSaturatedSub64: case IR::Opcode::VectorMaxS64: case IR::Opcode::VectorMaxU64: case IR::Opcode::VectorMinS64: case IR::Opcode::VectorMinU64: case IR::Opcode::VectorMultiply64: case IR::Opcode::SM4AccessSubstitutionBox: // Half-prec conversions case IR::Opcode::FPHalfToFixedS16: case IR::Opcode::FPHalfToFixedS32: case IR::Opcode::FPHalfToFixedS64: case IR::Opcode::FPHalfToFixedU16: case IR::Opcode::FPHalfToFixedU32: case IR::Opcode::FPHalfToFixedU64: // Half-precision case IR::Opcode::FPAbs16: case IR::Opcode::FPMulAdd16: case IR::Opcode::FPNeg16: case IR::Opcode::FPRecipEstimate16: case IR::Opcode::FPRecipExponent16: case IR::Opcode::FPRecipStepFused16: case IR::Opcode::FPRoundInt16: case IR::Opcode::FPRSqrtEstimate16: case IR::Opcode::FPRSqrtStepFused16: case IR::Opcode::FPVectorAbs16: case IR::Opcode::FPVectorEqual16: case IR::Opcode::FPVectorMulAdd16: case IR::Opcode::FPVectorNeg16: case IR::Opcode::FPVectorRecipEstimate16: case IR::Opcode::FPVectorRecipStepFused16: case IR::Opcode::FPVectorRoundInt16: case IR::Opcode::FPVectorRSqrtEstimate16: case IR::Opcode::FPVectorRSqrtStepFused16: case IR::Opcode::FPVectorToSignedFixed16: case IR::Opcode::FPVectorToUnsignedFixed16: case IR::Opcode::FPVectorFromHalf32: case IR::Opcode::FPVectorToHalf32: return false; default: continue; } } return true; } bool ShouldTestA32Inst(u32 instruction, u32 pc, bool is_thumb, bool is_last_inst, A32::ITState it_state = {}) { const A32::LocationDescriptor location = A32::LocationDescriptor{pc, {}, {}}.SetTFlag(is_thumb).SetIT(it_state); IR::Block block{location}; const bool should_continue = A32::TranslateSingleInstruction(block, location, instruction); if (!should_continue && !is_last_inst) { return false; } return ShouldTestInst(block); } bool ShouldTestA64Inst(u32 instruction, u64 pc, bool is_last_inst) { const A64::LocationDescriptor location = A64::LocationDescriptor{pc, {}}; IR::Block block{location}; const bool should_continue = A64::TranslateSingleInstruction(block, location, instruction); if (!should_continue && !is_last_inst) { return false; } return ShouldTestInst(block); } u32 GenRandomArmInst(u32 pc, bool is_last_inst) { static const struct InstructionGeneratorInfo { std::vector generators; std::vector invalid; } instructions = [] { const std::vector> list{ #define INST(fn, name, bitstring) {#fn, bitstring}, #include "dynarmic/frontend/A32/decoder/arm.inc" #include "dynarmic/frontend/A32/decoder/asimd.inc" #include "dynarmic/frontend/A32/decoder/vfp.inc" #undef INST }; std::vector generators; std::vector invalid; // List of instructions not to test static constexpr std::array do_not_test{ // Translating load/stores "arm_LDRBT", "arm_LDRBT", "arm_LDRHT", "arm_LDRHT", "arm_LDRSBT", "arm_LDRSBT", "arm_LDRSHT", "arm_LDRSHT", "arm_LDRT", "arm_LDRT", "arm_STRBT", "arm_STRBT", "arm_STRHT", "arm_STRHT", "arm_STRT", "arm_STRT", // Exclusive load/stores "arm_LDREXB", "arm_LDREXD", "arm_LDREXH", "arm_LDREX", "arm_LDAEXB", "arm_LDAEXD", "arm_LDAEXH", "arm_LDAEX", "arm_STREXB", "arm_STREXD", "arm_STREXH", "arm_STREX", "arm_STLEXB", "arm_STLEXD", "arm_STLEXH", "arm_STLEX", "arm_SWP", "arm_SWPB", // Elevated load/store multiple instructions. "arm_LDM_eret", "arm_LDM_usr", "arm_STM_usr", // Coprocessor "arm_CDP", "arm_LDC", "arm_MCR", "arm_MCRR", "arm_MRC", "arm_MRRC", "arm_STC", // System "arm_CPS", "arm_RFE", "arm_SRS", // Undefined "arm_UDF", // FPSCR is inaccurate "vfp_VMRS", // Incorrect Unicorn implementations "asimd_VRECPS", // Unicorn does not fuse the multiply and subtraction, resulting in being off by 1ULP. "asimd_VRSQRTS", // Unicorn does not fuse the multiply and subtraction, resulting in being off by 1ULP. "vfp_VCVT_from_fixed", // Unicorn does not do round-to-nearest-even for this instruction correctly. }; for (const auto& [fn, bitstring] : list) { if (std::find(do_not_test.begin(), do_not_test.end(), fn) != do_not_test.end()) { invalid.emplace_back(InstructionGenerator{bitstring}); continue; } generators.emplace_back(InstructionGenerator{bitstring}); } return InstructionGeneratorInfo{generators, invalid}; }(); while (true) { const size_t index = RandInt(0, instructions.generators.size() - 1); const u32 inst = instructions.generators[index].Generate(); if ((instructions.generators[index].Mask() & 0xF0000000) == 0 && (inst & 0xF0000000) == 0xF0000000) { continue; } if (ShouldTestA32Inst(inst, pc, false, is_last_inst)) { return inst; } } } std::vector GenRandomThumbInst(u32 pc, bool is_last_inst, A32::ITState it_state = {}) { static const struct InstructionGeneratorInfo { std::vector generators; std::vector invalid; } instructions = [] { const std::vector> list{ #define INST(fn, name, bitstring) {#fn, bitstring}, #include "dynarmic/frontend/A32/decoder/thumb16.inc" #include "dynarmic/frontend/A32/decoder/thumb32.inc" #undef INST }; const std::vector> vfp_list{ #define INST(fn, name, bitstring) {#fn, bitstring}, #include "dynarmic/frontend/A32/decoder/vfp.inc" #undef INST }; const std::vector> asimd_list{ #define INST(fn, name, bitstring) {#fn, bitstring}, #include "dynarmic/frontend/A32/decoder/asimd.inc" #undef INST }; std::vector generators; std::vector invalid; // List of instructions not to test static constexpr std::array do_not_test{ "thumb16_BKPT", "thumb16_IT", // Exclusive load/stores "thumb32_LDREX", "thumb32_LDREXB", "thumb32_LDREXD", "thumb32_LDREXH", "thumb32_STREX", "thumb32_STREXB", "thumb32_STREXD", "thumb32_STREXH", // Coprocessor "thumb32_CDP", "thumb32_LDC", "thumb32_MCR", "thumb32_MCRR", "thumb32_MRC", "thumb32_MRRC", "thumb32_STC", }; for (const auto& [fn, bitstring] : list) { if (std::find(do_not_test.begin(), do_not_test.end(), fn) != do_not_test.end()) { invalid.emplace_back(InstructionGenerator{bitstring}); continue; } generators.emplace_back(InstructionGenerator{bitstring}); } for (const auto& [fn, bs] : vfp_list) { std::string bitstring = bs; if (bitstring.substr(0, 4) == "cccc" || bitstring.substr(0, 4) == "----") { bitstring.replace(0, 4, "1110"); } if (std::find(do_not_test.begin(), do_not_test.end(), fn) != do_not_test.end()) { invalid.emplace_back(InstructionGenerator{bitstring.c_str()}); continue; } generators.emplace_back(InstructionGenerator{bitstring.c_str()}); } for (const auto& [fn, bs] : asimd_list) { std::string bitstring = bs; if (bitstring.substr(0, 7) == "1111001") { const char U = bitstring[7]; bitstring.replace(0, 8, "111-1111"); bitstring[3] = U; } else if (bitstring.substr(0, 8) == "11110100") { bitstring.replace(0, 8, "11111001"); } else { ASSERT_FALSE("Unhandled ASIMD instruction: {} {}", fn, bs); } if (std::find(do_not_test.begin(), do_not_test.end(), fn) != do_not_test.end()) { invalid.emplace_back(InstructionGenerator{bitstring.c_str()}); continue; } generators.emplace_back(InstructionGenerator{bitstring.c_str()}); } return InstructionGeneratorInfo{generators, invalid}; }(); while (true) { const size_t index = RandInt(0, instructions.generators.size() - 1); const u32 inst = instructions.generators[index].Generate(); const bool is_four_bytes = (inst >> 16) != 0; if (ShouldTestA32Inst(is_four_bytes ? mcl::bit::swap_halves_32(inst) : inst, pc, true, is_last_inst, it_state)) { if (is_four_bytes) return {static_cast(inst >> 16), static_cast(inst)}; return {static_cast(inst)}; } } } u32 GenRandomA64Inst(u64 pc, bool is_last_inst) { static const struct InstructionGeneratorInfo { std::vector generators; std::vector invalid; } instructions = [] { const std::vector> list{ #define INST(fn, name, bitstring) {#fn, bitstring}, #include "dynarmic/frontend/A64/decoder/a64.inc" #undef INST }; std::vector generators; std::vector invalid; // List of instructions not to test const std::vector do_not_test{ // Dynarmic and QEMU currently differ on how the exclusive monitor's address range works. "STXR", "STLXR", "STXP", "STLXP", "LDXR", "LDAXR", "LDXP", "LDAXP", // Behaviour differs from QEMU "MSR_reg", "MSR_imm", "MRS", }; for (const auto& [fn, bitstring] : list) { if (fn == "UnallocatedEncoding") { continue; } if (std::find(do_not_test.begin(), do_not_test.end(), fn) != do_not_test.end()) { invalid.emplace_back(InstructionGenerator{bitstring}); continue; } generators.emplace_back(InstructionGenerator{bitstring}); } return InstructionGeneratorInfo{generators, invalid}; }(); while (true) { const size_t index = RandInt(0, instructions.generators.size() - 1); const u32 inst = instructions.generators[index].Generate(); if (std::any_of(instructions.invalid.begin(), instructions.invalid.end(), [inst](const auto& invalid) { return invalid.Match(inst); })) { continue; } if (ShouldTestA64Inst(inst, pc, is_last_inst)) { return inst; } } } template Dynarmic::A32::UserConfig GetA32UserConfig(TestEnv& testenv) { Dynarmic::A32::UserConfig user_config; user_config.optimizations &= ~OptimizationFlag::FastDispatch; user_config.callbacks = &testenv; return user_config; } template void RunTestInstance(Dynarmic::A32::Jit& jit, TestEnv& jit_env, const std::array& regs, const std::array& vecs, const std::vector& instructions, const u32 cpsr, const u32 fpscr, const size_t ticks_left) { const u32 initial_pc = regs[15]; const u32 num_words = initial_pc / sizeof(typename TestEnv::InstructionType); const u32 code_mem_size = num_words + static_cast(instructions.size()); jit.ClearCache(); for (size_t jit_rerun_count = 0; jit_rerun_count < num_jit_reruns; ++jit_rerun_count) { jit_env.code_mem.resize(code_mem_size); std::fill(jit_env.code_mem.begin(), jit_env.code_mem.end(), TestEnv::infinite_loop); std::copy(instructions.begin(), instructions.end(), jit_env.code_mem.begin() + num_words); jit_env.PadCodeMem(); jit_env.modified_memory.clear(); jit_env.interrupts.clear(); jit.Regs() = regs; jit.ExtRegs() = vecs; jit.SetFpscr(fpscr); jit.SetCpsr(cpsr); jit_env.ticks_left = ticks_left; jit.Run(); } fmt::print("instructions:"); for (auto instruction : instructions) { if constexpr (sizeof(decltype(instruction)) == 2) { fmt::print(" {:04x}", instruction); } else { fmt::print(" {:08x}", instruction); } } fmt::print("\n"); fmt::print("initial_regs:"); for (u32 i : regs) { fmt::print(" {:08x}", i); } fmt::print("\n"); fmt::print("initial_vecs:"); for (u32 i : vecs) { fmt::print(" {:08x}", i); } fmt::print("\n"); fmt::print("initial_cpsr: {:08x}\n", cpsr); fmt::print("initial_fpcr: {:08x}\n", fpscr); fmt::print("final_regs:"); for (u32 i : jit.Regs()) { fmt::print(" {:08x}", i); } fmt::print("\n"); fmt::print("final_vecs:"); for (u32 i : jit.ExtRegs()) { fmt::print(" {:08x}", i); } fmt::print("\n"); fmt::print("final_cpsr: {:08x}\n", jit.Cpsr()); fmt::print("final_fpsr: {:08x}\n", mask_fpsr_cum_bits ? jit.Fpscr() & 0xffffff00 : jit.Fpscr()); fmt::print("mod_mem: "); for (auto [addr, value] : jit_env.modified_memory) { fmt::print("{:08x}:{:02x} ", addr, value); } fmt::print("\n"); fmt::print("interrupts:\n"); for (const auto& i : jit_env.interrupts) { std::puts(i.c_str()); } fmt::print("===\n"); } Dynarmic::A64::UserConfig GetA64UserConfig(A64TestEnv& jit_env) { Dynarmic::A64::UserConfig jit_user_config{&jit_env}; jit_user_config.optimizations &= ~OptimizationFlag::FastDispatch; // The below corresponds to the settings for qemu's aarch64_max_initfn jit_user_config.dczid_el0 = 7; jit_user_config.ctr_el0 = 0x80038003; return jit_user_config; } template void RunTestInstance(Dynarmic::A64::Jit& jit, A64TestEnv& jit_env, const std::array& regs, const std::array, 32>& vecs, const std::vector& instructions, const u32 pstate, const u32 fpcr, const u64 initial_sp, const u64 start_address, const size_t ticks_left) { jit.ClearCache(); for (size_t jit_rerun_count = 0; jit_rerun_count < num_jit_reruns; ++jit_rerun_count) { jit_env.code_mem = instructions; jit_env.code_mem.emplace_back(0x14000000); // B . jit_env.code_mem_start_address = start_address; jit_env.modified_memory.clear(); jit_env.interrupts.clear(); jit.SetRegisters(regs); jit.SetVectors(vecs); jit.SetPC(start_address); jit.SetSP(initial_sp); jit.SetFpcr(fpcr); jit.SetFpsr(0); jit.SetPstate(pstate); jit.ClearCache(); jit_env.ticks_left = ticks_left; jit.Run(); } fmt::print("instructions:"); for (u32 instruction : instructions) { fmt::print(" {:08x}", instruction); } fmt::print("\n"); fmt::print("initial_regs:"); for (u64 i : regs) { fmt::print(" {:016x}", i); } fmt::print("\n"); fmt::print("initial_vecs:"); for (auto i : vecs) { fmt::print(" {:016x}:{:016x}", i[0], i[1]); } fmt::print("\n"); fmt::print("initial_sp: {:016x}\n", initial_sp); fmt::print("initial_pstate: {:08x}\n", pstate); fmt::print("initial_fpcr: {:08x}\n", fpcr); fmt::print("final_regs:"); for (u64 i : jit.GetRegisters()) { fmt::print(" {:016x}", i); } fmt::print("\n"); fmt::print("final_vecs:"); for (auto i : jit.GetVectors()) { fmt::print(" {:016x}:{:016x}", i[0], i[1]); } fmt::print("\n"); fmt::print("final_sp: {:016x}\n", jit.GetSP()); fmt::print("final_pc: {:016x}\n", jit.GetPC()); fmt::print("final_pstate: {:08x}\n", jit.GetPstate()); fmt::print("final_fpcr: {:08x}\n", jit.GetFpcr()); fmt::print("final_qc : {}\n", FP::FPSR{jit.GetFpsr()}.QC()); fmt::print("mod_mem:"); for (auto [addr, value] : jit_env.modified_memory) { fmt::print(" {:08x}:{:02x}", addr, value); } fmt::print("\n"); fmt::print("interrupts:\n"); for (const auto& i : jit_env.interrupts) { std::puts(i.c_str()); } fmt::print("===\n"); } } // Anonymous namespace void TestThumb(size_t num_instructions, size_t num_iterations) { ThumbTestEnv jit_env{}; Dynarmic::A32::Jit jit{GetA32UserConfig(jit_env)}; std::array regs; std::array ext_reg; std::vector instructions; for (size_t iteration = 0; iteration < num_iterations; ++iteration) { std::generate(regs.begin(), regs.end(), [] { return RandInt(0, ~u32(0)); }); std::generate(ext_reg.begin(), ext_reg.end(), [] { return RandInt(0, ~u32(0)); }); const u32 start_address = 100; const u32 cpsr = (RandInt(0, 0xF) << 28) | 0x1F0; const u32 fpcr = RandomFpcr(); instructions.clear(); for (size_t i = 0; i < num_instructions; ++i) { const auto inst = GenRandomThumbInst(static_cast(start_address + 2 * instructions.size()), i == num_instructions - 1); instructions.insert(instructions.end(), inst.begin(), inst.end()); } regs[15] = start_address; RunTestInstance(jit, jit_env, regs, ext_reg, instructions, cpsr, fpcr, num_instructions); } } void TestArm(size_t num_instructions, size_t num_iterations) { ArmTestEnv jit_env{}; Dynarmic::A32::Jit jit{GetA32UserConfig(jit_env)}; std::array regs; std::array ext_reg; std::vector instructions; for (size_t iteration = 0; iteration < num_iterations; ++iteration) { std::generate(regs.begin(), regs.end(), [] { return RandInt(0, ~u32(0)); }); std::generate(ext_reg.begin(), ext_reg.end(), [] { return RandInt(0, ~u32(0)); }); const u32 start_address = 100; const u32 cpsr = (RandInt(0, 0xF) << 28); const u32 fpcr = RandomFpcr(); instructions.clear(); for (size_t i = 0; i < num_instructions; ++i) { instructions.emplace_back(GenRandomArmInst(static_cast(start_address + 4 * instructions.size()), i == num_instructions - 1)); } regs[15] = start_address; RunTestInstance(jit, jit_env, regs, ext_reg, instructions, cpsr, fpcr, num_instructions); } } void TestA64(size_t num_instructions, size_t num_iterations) { A64TestEnv jit_env{}; Dynarmic::A64::Jit jit{GetA64UserConfig(jit_env)}; std::array regs; std::array, 32> vecs; std::vector instructions; for (size_t iteration = 0; iteration < num_iterations; ++iteration) { std::generate(regs.begin(), regs.end(), [] { return RandInt(0, ~u64(0)); }); std::generate(vecs.begin(), vecs.end(), RandomVector); const u32 start_address = 100; const u32 pstate = (RandInt(0, 0xF) << 28); const u32 fpcr = RandomFpcr(); const u64 initial_sp = RandInt(0x30'0000'0000, 0x40'0000'0000) * 4; instructions.clear(); for (size_t i = 0; i < num_instructions; ++i) { instructions.emplace_back(GenRandomA64Inst(static_cast(start_address + 4 * instructions.size()), i == num_instructions - 1)); } RunTestInstance(jit, jit_env, regs, vecs, instructions, pstate, fpcr, initial_sp, start_address, num_instructions); } } static std::optional str2sz(char const* s) { char* end = nullptr; errno = 0; const long l = std::strtol(s, &end, 10); if (errno == ERANGE || l < 0) { return std::nullopt; } if (*s == '\0' || *end != '\0') { return std::nullopt; } return static_cast(l); } int main(int argc, char* argv[]) { if (argc != 5) { fmt::print("Usage: {} \n", argv[0]); } const auto seed = str2sz(argv[2]); const auto instruction_count = str2sz(argv[3]); const auto iterator_count = str2sz(argv[4]); if (!seed || !instruction_count || !iterator_count) { fmt::print("invalid numeric arguments\n"); return 1; } detail::g_rand_int_generator.seed(static_cast(*seed)); if (strcmp(argv[1], "thumb") == 0) { TestThumb(*instruction_count, *iterator_count); } else if (strcmp(argv[1], "arm") == 0) { TestArm(*instruction_count, *iterator_count); } else if (strcmp(argv[1], "a64") == 0) { TestA64(*instruction_count, *iterator_count); } else { fmt::print("unrecognized instruction class\n"); return 1; } return 0; }