#pragma once #ifndef XBYAK_XBYAK_H_ #define XBYAK_XBYAK_H_ /*! @file xbyak.h @brief Xbyak ; JIT assembler for x86(IA32)/x64 by C++ @author herumi @url https://github.com/herumi/xbyak @note modified new BSD license http://opensource.org/licenses/BSD-3-Clause */ #if (not +0) && !defined(XBYAK_NO_OP_NAMES) // trick to detect whether 'not' is operator or not #define XBYAK_NO_OP_NAMES #endif #include // for debug print #include #include #include #include #ifndef NDEBUG #include #endif // #define XBYAK_DISABLE_AVX512 #if !defined(XBYAK_USE_MMAP_ALLOCATOR) && !defined(XBYAK_DONT_USE_MMAP_ALLOCATOR) #define XBYAK_USE_MMAP_ALLOCATOR #endif #if !defined(__GNUC__) || defined(__MINGW32__) #undef XBYAK_USE_MMAP_ALLOCATOR #endif #ifdef __GNUC__ #define XBYAK_GNUC_PREREQ(major, minor) ((__GNUC__) * 100 + (__GNUC_MINOR__) >= (major) * 100 + (minor)) #else #define XBYAK_GNUC_PREREQ(major, minor) 0 #endif // This covers -std=(gnu|c)++(0x|11|1y), -stdlib=libc++, and modern Microsoft. #if ((defined(_MSC_VER) && (_MSC_VER >= 1600)) || defined(_LIBCPP_VERSION) ||\ ((__cplusplus >= 201103) || defined(__GXX_EXPERIMENTAL_CXX0X__))) #include #define XBYAK_STD_UNORDERED_SET std::unordered_set #include #define XBYAK_STD_UNORDERED_MAP std::unordered_map #define XBYAK_STD_UNORDERED_MULTIMAP std::unordered_multimap /* Clang/llvm-gcc and ICC-EDG in 'GCC-mode' always claim to be GCC 4.2, using libstdcxx 20070719 (from GCC 4.2.1, the last GPL 2 version). */ #elif XBYAK_GNUC_PREREQ(4, 5) || (XBYAK_GNUC_PREREQ(4, 2) && __GLIBCXX__ >= 20070719) || defined(__INTEL_COMPILER) || defined(__llvm__) #include #define XBYAK_STD_UNORDERED_SET std::tr1::unordered_set #include #define XBYAK_STD_UNORDERED_MAP std::tr1::unordered_map #define XBYAK_STD_UNORDERED_MULTIMAP std::tr1::unordered_multimap #elif defined(_MSC_VER) && (_MSC_VER >= 1500) && (_MSC_VER < 1600) #include #define XBYAK_STD_UNORDERED_SET std::tr1::unordered_set #include #define XBYAK_STD_UNORDERED_MAP std::tr1::unordered_map #define XBYAK_STD_UNORDERED_MULTIMAP std::tr1::unordered_multimap #else #include #define XBYAK_STD_UNORDERED_SET std::set #include #define XBYAK_STD_UNORDERED_MAP std::map #define XBYAK_STD_UNORDERED_MULTIMAP std::multimap #endif #ifdef _WIN32 #ifndef WIN32_LEAN_AND_MEAN #define WIN32_LEAN_AND_MEAN #endif #include #include #ifdef _MSC_VER #define XBYAK_TLS __declspec(thread) #else #define XBYAK_TLS __thread #endif #elif defined(__GNUC__) #include #include #include #define XBYAK_TLS __thread #endif #if defined(__APPLE__) && !defined(XBYAK_DONT_USE_MAP_JIT) #define XBYAK_USE_MAP_JIT #include #ifndef MAP_JIT #define MAP_JIT 0x800 #endif #endif #if !defined(_MSC_VER) || (_MSC_VER >= 1600) #include #endif // MFD_CLOEXEC defined only linux 3.17 or later. // Android wraps the memfd_create syscall from API version 30. #if !defined(MFD_CLOEXEC) || (defined(__ANDROID__) && __ANDROID_API__ < 30) #undef XBYAK_USE_MEMFD #endif #if defined(_WIN64) || defined(__MINGW64__) || (defined(__CYGWIN__) && defined(__x86_64__)) #define XBYAK64_WIN #elif defined(__x86_64__) #define XBYAK64_GCC #endif #if !defined(XBYAK64) && !defined(XBYAK32) #if defined(XBYAK64_GCC) || defined(XBYAK64_WIN) #define XBYAK64 #else #define XBYAK32 #endif #endif #if (__cplusplus >= 201103) || (defined(_MSC_VER) && _MSC_VER >= 1900) #undef XBYAK_TLS #define XBYAK_TLS thread_local #define XBYAK_VARIADIC_TEMPLATE #define XBYAK_NOEXCEPT noexcept #else #define XBYAK_NOEXCEPT throw() #endif // require c++14 or later // Visual Studio 2017 version 15.0 or later // g++-6 or later #if ((__cplusplus >= 201402L) && !(!defined(__clang__) && defined(__GNUC__) && (__GNUC__ <= 5))) || (defined(_MSC_VER) && _MSC_VER >= 1910) #define XBYAK_CONSTEXPR constexpr #else #define XBYAK_CONSTEXPR #endif #ifdef _MSC_VER #pragma warning(push) #pragma warning(disable : 4514) /* remove inline function */ #pragma warning(disable : 4786) /* identifier is too long */ #pragma warning(disable : 4503) /* name is too long */ #pragma warning(disable : 4127) /* constant expresison */ #endif // disable -Warray-bounds because it may be a bug of gcc. https://gcc.gnu.org/bugzilla/show_bug.cgi?id=104603 #if defined(__GNUC__) && !defined(__clang__) #define XBYAK_DISABLE_WARNING_ARRAY_BOUNDS #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Warray-bounds" #endif namespace Xbyak { enum { DEFAULT_MAX_CODE_SIZE = 4096, VERSION = 0x7050 /* 0xABCD = A.BC(.D) */ }; #ifndef MIE_INTEGER_TYPE_DEFINED #define MIE_INTEGER_TYPE_DEFINED // for backward compatibility typedef uint64_t uint64; typedef int64_t sint64; typedef uint32_t uint32; typedef uint16_t uint16; typedef uint8_t uint8; #endif #ifndef MIE_ALIGN #ifdef _MSC_VER #define MIE_ALIGN(x) __declspec(align(x)) #else #define MIE_ALIGN(x) __attribute__((aligned(x))) #endif #endif #ifndef MIE_PACK // for shufps #define MIE_PACK(x, y, z, w) ((x) * 64 + (y) * 16 + (z) * 4 + (w)) #endif enum { ERR_NONE = 0, ERR_BAD_ADDRESSING, ERR_CODE_IS_TOO_BIG, ERR_BAD_SCALE, ERR_ESP_CANT_BE_INDEX, ERR_BAD_COMBINATION, ERR_BAD_SIZE_OF_REGISTER, ERR_IMM_IS_TOO_BIG, ERR_BAD_ALIGN, ERR_LABEL_IS_REDEFINED, ERR_LABEL_IS_TOO_FAR, ERR_LABEL_IS_NOT_FOUND, ERR_CODE_ISNOT_COPYABLE, ERR_BAD_PARAMETER, ERR_CANT_PROTECT, ERR_CANT_USE_64BIT_DISP, ERR_OFFSET_IS_TOO_BIG, ERR_MEM_SIZE_IS_NOT_SPECIFIED, ERR_BAD_MEM_SIZE, ERR_BAD_ST_COMBINATION, ERR_OVER_LOCAL_LABEL, // not used ERR_UNDER_LOCAL_LABEL, ERR_CANT_ALLOC, ERR_ONLY_T_NEAR_IS_SUPPORTED_IN_AUTO_GROW, ERR_BAD_PROTECT_MODE, ERR_BAD_PNUM, ERR_BAD_TNUM, ERR_BAD_VSIB_ADDRESSING, ERR_CANT_CONVERT, ERR_LABEL_ISNOT_SET_BY_L, ERR_LABEL_IS_ALREADY_SET_BY_L, ERR_BAD_LABEL_STR, ERR_MUNMAP, ERR_OPMASK_IS_ALREADY_SET, ERR_ROUNDING_IS_ALREADY_SET, ERR_K0_IS_INVALID, ERR_EVEX_IS_INVALID, ERR_SAE_IS_INVALID, ERR_ER_IS_INVALID, ERR_INVALID_BROADCAST, ERR_INVALID_OPMASK_WITH_MEMORY, ERR_INVALID_ZERO, ERR_INVALID_RIP_IN_AUTO_GROW, ERR_INVALID_MIB_ADDRESS, ERR_X2APIC_IS_NOT_SUPPORTED, ERR_NOT_SUPPORTED, ERR_SAME_REGS_ARE_INVALID, ERR_INVALID_NF, ERR_INVALID_ZU, ERR_CANT_USE_REX2, ERR_INVALID_DFV, ERR_INVALID_REG_IDX, ERR_INTERNAL // Put it at last. }; inline const char *ConvertErrorToString(int err) { static const char *errTbl[] = { "none", "bad addressing", "code is too big", "bad scale", "esp can't be index", "bad combination", "bad size of register", "imm is too big", "bad align", "label is redefined", "label is too far", "label is not found", "code is not copyable", "bad parameter", "can't protect", "can't use 64bit disp(use (void*))", "offset is too big", "MEM size is not specified", "bad mem size", "bad st combination", "over local label", "under local label", "can't alloc", "T_SHORT is not supported in AutoGrow", "bad protect mode", "bad pNum", "bad tNum", "bad vsib addressing", "can't convert", "label is not set by L()", "label is already set by L()", "bad label string", "err munmap", "opmask is already set", "rounding is already set", "k0 is invalid", "evex is invalid", "sae(suppress all exceptions) is invalid", "er(embedded rounding) is invalid", "invalid broadcast", "invalid opmask with memory", "invalid zero", "invalid rip in AutoGrow", "invalid mib address", "x2APIC is not supported", "not supported", "same regs are invalid", "invalid NF", "invalid ZU", "can't use rex2", "invalid dfv", "invalid reg index", "internal error" }; assert(ERR_INTERNAL + 1 == sizeof(errTbl) / sizeof(*errTbl)); return err <= ERR_INTERNAL ? errTbl[err] : "unknown err"; } #ifdef XBYAK_NO_EXCEPTION namespace local { inline int& GetErrorRef() { static XBYAK_TLS int err = 0; return err; } inline void SetError(int err) { if (local::GetErrorRef()) return; // keep the first err code local::GetErrorRef() = err; } } // local inline void ClearError() { local::GetErrorRef() = 0; } inline int GetError() { return Xbyak::local::GetErrorRef(); } #define XBYAK_THROW(err) { Xbyak::local::SetError(err); return; } #define XBYAK_THROW_RET(err, r) { Xbyak::local::SetError(err); return r; } #else class Error : public std::exception { int err_; public: explicit Error(int err) : err_(err) { if (err_ < 0 || err_ > ERR_INTERNAL) { err_ = ERR_INTERNAL; } } operator int() const { return err_; } const char *what() const XBYAK_NOEXCEPT { return ConvertErrorToString(err_); } }; // dummy functions inline void ClearError() { } inline int GetError() { return 0; } inline const char *ConvertErrorToString(const Error& err) { return err.what(); } #define XBYAK_THROW(err) { throw Error(err); } #define XBYAK_THROW_RET(err, r) { throw Error(err); } #endif inline void *AlignedMalloc(size_t size, size_t alignment) { #ifdef __MINGW32__ return __mingw_aligned_malloc(size, alignment); #elif defined(_WIN32) return _aligned_malloc(size, alignment); #else void *p; int ret = posix_memalign(&p, alignment, size); return (ret == 0) ? p : 0; #endif } inline void AlignedFree(void *p) { #ifdef __MINGW32__ __mingw_aligned_free(p); #elif defined(_MSC_VER) _aligned_free(p); #else free(p); #endif } template inline const To CastTo(From p) XBYAK_NOEXCEPT { return (const To)(size_t)(p); } namespace inner { #ifdef _WIN32 struct SystemInfo { SYSTEM_INFO info; SystemInfo() { GetSystemInfo(&info); } }; #endif //static const size_t ALIGN_PAGE_SIZE = 4096; inline size_t getPageSize() { #ifdef _WIN32 static const SystemInfo si; return si.info.dwPageSize; #else #ifdef __GNUC__ static const long pageSize = sysconf(_SC_PAGESIZE); if (pageSize > 0) { return (size_t)pageSize; } #endif return 4096; #endif } inline bool IsInDisp8(uint32_t x) { return 0xFFFFFF80 <= x || x <= 0x7F; } inline bool IsInInt32(uint64_t x) { return ~uint64_t(0x7fffffffu) <= x || x <= 0x7FFFFFFFU; } inline uint32_t VerifyInInt32(uint64_t x) { #if defined(XBYAK64) && !defined(__ILP32__) if (!IsInInt32(x)) XBYAK_THROW_RET(ERR_OFFSET_IS_TOO_BIG, 0) #endif return static_cast(x); } enum LabelMode { LasIs, // as is Labs, // absolute LaddTop // (addr + top) for mov(reg, label) with AutoGrow }; } // inner /* custom allocator */ struct Allocator { explicit Allocator(const std::string& = "") {} // same interface with MmapAllocator virtual uint8_t *alloc(size_t size) { return reinterpret_cast(AlignedMalloc(size, inner::getPageSize())); } virtual void free(uint8_t *p) { AlignedFree(p); } virtual ~Allocator() {} /* override to return false if you call protect() manually */ virtual bool useProtect() const { return true; } }; #ifdef XBYAK_USE_MMAP_ALLOCATOR #ifdef XBYAK_USE_MAP_JIT namespace util { inline int getMacOsVersionPure() { char buf[64]; size_t size = sizeof(buf); int err = sysctlbyname("kern.osrelease", buf, &size, NULL, 0); if (err != 0) return 0; char *endp; int major = strtol(buf, &endp, 10); if (*endp != '.') return 0; return major; } inline int getMacOsVersion() { static const int version = getMacOsVersionPure(); return version; } } // util #endif class MmapAllocator : public Allocator { struct Allocation { size_t size; #if defined(XBYAK_USE_MEMFD) // fd_ is only used with XBYAK_USE_MEMFD. We keep the file open // during the lifetime of each allocation in order to support // checkpoint/restore by unprivileged users. int fd; #endif }; const std::string name_; // only used with XBYAK_USE_MEMFD typedef XBYAK_STD_UNORDERED_MAP AllocationList; AllocationList allocList_; public: explicit MmapAllocator(const std::string& name = "xbyak") : name_(name) {} uint8_t *alloc(size_t size) { const size_t alignedSizeM1 = inner::getPageSize() - 1; size = (size + alignedSizeM1) & ~alignedSizeM1; #if defined(MAP_ANONYMOUS) int mode = MAP_PRIVATE | MAP_ANONYMOUS; #elif defined(MAP_ANON) int mode = MAP_PRIVATE | MAP_ANON; #else #error "not supported" #endif #if defined(XBYAK_USE_MAP_JIT) const int mojaveVersion = 18; if (util::getMacOsVersion() >= mojaveVersion) mode |= MAP_JIT; #endif int fd = -1; #if defined(XBYAK_USE_MEMFD) fd = memfd_create(name_.c_str(), MFD_CLOEXEC); if (fd != -1) { mode = MAP_SHARED; if (ftruncate(fd, size) != 0) { close(fd); XBYAK_THROW_RET(ERR_CANT_ALLOC, 0) } } #endif void *p = mmap(NULL, size, PROT_READ | PROT_WRITE, mode, fd, 0); if (p == MAP_FAILED) { if (fd != -1) close(fd); XBYAK_THROW_RET(ERR_CANT_ALLOC, 0) } assert(p); Allocation &alloc = allocList_[(uintptr_t)p]; alloc.size = size; #if defined(XBYAK_USE_MEMFD) alloc.fd = fd; #endif return (uint8_t*)p; } void free(uint8_t *p) { if (p == 0) return; AllocationList::iterator i = allocList_.find((uintptr_t)p); if (i == allocList_.end()) XBYAK_THROW(ERR_BAD_PARAMETER) if (munmap((void*)i->first, i->second.size) < 0) XBYAK_THROW(ERR_MUNMAP) #if defined(XBYAK_USE_MEMFD) if (i->second.fd != -1) close(i->second.fd); #endif allocList_.erase(i); } }; #else typedef Allocator MmapAllocator; #endif class Address; class Reg; struct ApxFlagNF {}; struct ApxFlagZU {}; // dfv (default flags value) is or operation of these flags static const int T_of = 8; static const int T_sf = 4; static const int T_zf = 2; static const int T_cf = 1; class Operand { static const uint8_t EXT8BIT = 0x20; unsigned int idx_:6; // 0..31 + EXT8BIT = 1 if spl/bpl/sil/dil unsigned int kind_:10; unsigned int bit_:14; protected: unsigned int zero_:1; unsigned int mask_:3; unsigned int rounding_:3; unsigned int NF_:1; unsigned int ZU_:1; // ND=ZU void setIdx(int idx) { idx_ = idx; } public: enum Kind { NONE = 0, MEM = 1 << 0, REG = 1 << 1, MMX = 1 << 2, FPU = 1 << 3, XMM = 1 << 4, YMM = 1 << 5, ZMM = 1 << 6, OPMASK = 1 << 7, BNDREG = 1 << 8, TMM = 1 << 9 }; enum Code { #ifdef XBYAK64 RAX = 0, RCX, RDX, RBX, RSP, RBP, RSI, RDI, R8, R9, R10, R11, R12, R13, R14, R15, R16, R17, R18, R19, R20, R21, R22, R23, R24, R25, R26, R27, R28, R29, R30, R31, R8D = 8, R9D, R10D, R11D, R12D, R13D, R14D, R15D, R16D, R17D, R18D, R19D, R20D, R21D, R22D, R23D, R24D, R25D, R26D, R27D, R28D, R29D, R30D, R31D, R8W = 8, R9W, R10W, R11W, R12W, R13W, R14W, R15W, R16W, R17W, R18W, R19W, R20W, R21W, R22W, R23W, R24W, R25W, R26W, R27W, R28W, R29W, R30W, R31W, R8B = 8, R9B, R10B, R11B, R12B, R13B, R14B, R15B, R16B, R17B, R18B, R19B, R20B, R21B, R22B, R23B, R24B, R25B, R26B, R27B, R28B, R29B, R30B, R31B, SPL = 4, BPL, SIL, DIL, #endif EAX = 0, ECX, EDX, EBX, ESP, EBP, ESI, EDI, AX = 0, CX, DX, BX, SP, BP, SI, DI, AL = 0, CL, DL, BL, AH, CH, DH, BH }; XBYAK_CONSTEXPR Operand() : idx_(0), kind_(0), bit_(0), zero_(0), mask_(0), rounding_(0), NF_(0), ZU_(0) { } XBYAK_CONSTEXPR Operand(int idx, Kind kind, int bit, bool ext8bit = 0) : idx_(static_cast(idx | (ext8bit ? EXT8BIT : 0))) , kind_(kind) , bit_(bit) , zero_(0), mask_(0), rounding_(0), NF_(0), ZU_(0) { assert((bit_ & (bit_ - 1)) == 0); // bit must be power of two } XBYAK_CONSTEXPR Kind getKind() const { return static_cast(kind_); } XBYAK_CONSTEXPR int getIdx() const { return idx_ & (EXT8BIT - 1); } XBYAK_CONSTEXPR bool hasIdxBit(int bit) const { return idx_ & (1<= 4) goto ERR; #else if (idx >= 32) goto ERR; if (4 <= idx && idx < 8) idx |= EXT8BIT; #endif break; case 16: case 32: case 64: #ifdef XBYAK32 if (idx >= 16) goto ERR; #else if (idx >= 32) goto ERR; #endif break; case 128: kind = XMM; break; case 256: kind = YMM; break; case 512: kind = ZMM; break; case 8192: kind = TMM; break; } idx_ = idx; kind_ = kind; bit_ = bit; if (bit >= 128) return; // keep mask_ and rounding_ mask_ = 0; rounding_ = 0; return; } ERR: XBYAK_THROW(ERR_CANT_CONVERT) } class Label; struct Reg8; struct Reg16; struct Reg32; #ifdef XBYAK64 struct Reg64; #endif class Reg : public Operand { public: XBYAK_CONSTEXPR Reg() { } XBYAK_CONSTEXPR Reg(int idx, Kind kind, int bit = 0, bool ext8bit = false) : Operand(idx, kind, bit, ext8bit) { } // convert to Reg8/Reg16/Reg32/Reg64/XMM/YMM/ZMM Reg changeBit(int bit) const { Reg r(*this); r.setBit(bit); return r; } Reg8 cvt8() const; Reg16 cvt16() const; Reg32 cvt32() const; #ifdef XBYAK64 Reg64 cvt64() const; #endif Reg operator|(const ApxFlagNF&) const { Reg r(*this); r.setNF(); return r; } Reg operator|(const ApxFlagZU&) const { Reg r(*this); r.setZU(); return r; } }; inline const Reg& Operand::getReg() const { assert(!isMEM()); return static_cast(*this); } struct Reg8 : public Reg { explicit XBYAK_CONSTEXPR Reg8(int idx = 0, bool ext8bit = false) : Reg(idx, Operand::REG, 8, ext8bit) { } }; struct Reg16 : public Reg { explicit XBYAK_CONSTEXPR Reg16(int idx = 0) : Reg(idx, Operand::REG, 16) { } }; struct Mmx : public Reg { explicit XBYAK_CONSTEXPR Mmx(int idx = 0, Kind kind = Operand::MMX, int bit = 64) : Reg(idx, kind, bit) { } }; struct EvexModifierRounding { enum { T_RN_SAE = 1, T_RD_SAE = 2, T_RU_SAE = 3, T_RZ_SAE = 4, T_SAE = 5 }; explicit XBYAK_CONSTEXPR EvexModifierRounding(int rounding) : rounding(rounding) {} int rounding; }; struct EvexModifierZero{ XBYAK_CONSTEXPR EvexModifierZero() {}}; struct Xmm : public Mmx { explicit XBYAK_CONSTEXPR Xmm(int idx = 0, Kind kind = Operand::XMM, int bit = 128) : Mmx(idx, kind, bit) { } XBYAK_CONSTEXPR Xmm(Kind kind, int idx) : Mmx(idx, kind, kind == XMM ? 128 : kind == YMM ? 256 : 512) { } Xmm operator|(const EvexModifierRounding& emr) const { Xmm r(*this); r.setRounding(emr.rounding); return r; } Xmm copyAndSetIdx(int idx) const { Xmm ret(*this); ret.setIdx(idx); return ret; } Xmm copyAndSetKind(Operand::Kind kind) const { Xmm ret(*this); ret.setKind(kind); return ret; } }; struct Ymm : public Xmm { explicit XBYAK_CONSTEXPR Ymm(int idx = 0, Kind kind = Operand::YMM, int bit = 256) : Xmm(idx, kind, bit) { } Ymm operator|(const EvexModifierRounding& emr) const { Ymm r(*this); r.setRounding(emr.rounding); return r; } }; struct Zmm : public Ymm { explicit XBYAK_CONSTEXPR Zmm(int idx = 0) : Ymm(idx, Operand::ZMM, 512) { } Zmm operator|(const EvexModifierRounding& emr) const { Zmm r(*this); r.setRounding(emr.rounding); return r; } }; #ifdef XBYAK64 struct Tmm : public Reg { explicit XBYAK_CONSTEXPR Tmm(int idx = 0, Kind kind = Operand::TMM, int bit = 8192) : Reg(idx, kind, bit) { } }; #endif struct Opmask : public Reg { explicit XBYAK_CONSTEXPR Opmask(int idx = 0) : Reg(idx, Operand::OPMASK, 64) {} }; struct BoundsReg : public Reg { explicit XBYAK_CONSTEXPR BoundsReg(int idx = 0) : Reg(idx, Operand::BNDREG, 128) {} }; templateT operator|(const T& x, const Opmask& k) { T r(x); r.setOpmaskIdx(k.getIdx()); return r; } templateT operator|(const T& x, const EvexModifierZero&) { T r(x); r.setZero(); return r; } templateT operator|(const T& x, const EvexModifierRounding& emr) { T r(x); r.setRounding(emr.rounding); return r; } struct Fpu : public Reg { explicit XBYAK_CONSTEXPR Fpu(int idx = 0) : Reg(idx, Operand::FPU, 32) { } }; struct Reg32e : public Reg { explicit XBYAK_CONSTEXPR Reg32e(int idx, int bit) : Reg(idx, Operand::REG, bit) {} Reg32e operator|(const ApxFlagNF&) const { Reg32e r(*this); r.setNF(); return r; } Reg32e operator|(const ApxFlagZU&) const { Reg32e r(*this); r.setZU(); return r; } }; struct Reg32 : public Reg32e { explicit XBYAK_CONSTEXPR Reg32(int idx = 0) : Reg32e(idx, 32) {} }; #ifdef XBYAK64 struct Reg64 : public Reg32e { explicit XBYAK_CONSTEXPR Reg64(int idx = 0) : Reg32e(idx, 64) {} }; struct RegRip { int64_t disp_; const Label* label_; bool isAddr_; explicit XBYAK_CONSTEXPR RegRip(int64_t disp = 0, const Label* label = 0, bool isAddr = false) : disp_(disp), label_(label), isAddr_(isAddr) {} friend const RegRip operator+(const RegRip& r, int disp) { return RegRip(r.disp_ + disp, r.label_, r.isAddr_); } friend const RegRip operator-(const RegRip& r, int disp) { return RegRip(r.disp_ - disp, r.label_, r.isAddr_); } friend const RegRip operator+(const RegRip& r, int64_t disp) { return RegRip(r.disp_ + disp, r.label_, r.isAddr_); } friend const RegRip operator-(const RegRip& r, int64_t disp) { return RegRip(r.disp_ - disp, r.label_, r.isAddr_); } friend const RegRip operator+(const RegRip& r, const Label& label) { if (r.label_ || r.isAddr_) XBYAK_THROW_RET(ERR_BAD_ADDRESSING, RegRip()); return RegRip(r.disp_, &label); } friend const RegRip operator+(const RegRip& r, const void *addr) { if (r.label_ || r.isAddr_) XBYAK_THROW_RET(ERR_BAD_ADDRESSING, RegRip()); return RegRip(r.disp_ + (int64_t)addr, 0, true); } }; #endif inline Reg8 Reg::cvt8() const { Reg r = changeBit(8); return Reg8(r.getIdx(), r.isExt8bit()); } inline Reg16 Reg::cvt16() const { return Reg16(changeBit(16).getIdx()); } inline Reg32 Reg::cvt32() const { return Reg32(changeBit(32).getIdx()); } #ifdef XBYAK64 inline Reg64 Reg::cvt64() const { return Reg64(changeBit(64).getIdx()); } #endif #ifndef XBYAK_DISABLE_SEGMENT // not derived from Reg class Segment { int idx_; public: enum { es, cs, ss, ds, fs, gs }; explicit XBYAK_CONSTEXPR Segment(int idx) : idx_(idx) { assert(0 <= idx_ && idx_ < 6); } int getIdx() const { return idx_; } const char *toString() const { static const char tbl[][3] = { "es", "cs", "ss", "ds", "fs", "gs" }; return tbl[idx_]; } }; #endif class RegExp { public: #ifdef XBYAK64 enum { i32e = 32 | 64 }; #else enum { i32e = 32 }; #endif XBYAK_CONSTEXPR RegExp(size_t disp = 0) : scale_(0), disp_(disp) { } XBYAK_CONSTEXPR RegExp(const Reg& r, int scale = 1) : scale_(scale) , disp_(0) { if (!r.isREG(i32e) && !r.is(Reg::XMM|Reg::YMM|Reg::ZMM|Reg::TMM)) XBYAK_THROW(ERR_BAD_SIZE_OF_REGISTER) if (scale == 0) return; if (scale != 1 && scale != 2 && scale != 4 && scale != 8) XBYAK_THROW(ERR_BAD_SCALE) if (r.getBit() >= 128 || scale != 1) { // xmm/ymm is always index index_ = r; } else { base_ = r; } } bool isVsib(int bit = 128 | 256 | 512) const { return index_.isBit(bit); } RegExp optimize() const { RegExp exp = *this; // [reg * 2] => [reg + reg] if (index_.isBit(i32e) && !base_.getBit() && scale_ == 2) { exp.base_ = index_; exp.scale_ = 1; } return exp; } bool operator==(const RegExp& rhs) const { return base_ == rhs.base_ && index_ == rhs.index_ && disp_ == rhs.disp_ && scale_ == rhs.scale_; } const Reg& getBase() const { return base_; } const Reg& getIndex() const { return index_; } int getScale() const { return scale_; } size_t getDisp() const { return disp_; } XBYAK_CONSTEXPR void verify() const { if (base_.getBit() >= 128) XBYAK_THROW(ERR_BAD_SIZE_OF_REGISTER) if (index_.getBit() && index_.getBit() <= 64) { if (index_.getIdx() == Operand::ESP) XBYAK_THROW(ERR_ESP_CANT_BE_INDEX) if (base_.getBit() && base_.getBit() != index_.getBit()) XBYAK_THROW(ERR_BAD_SIZE_OF_REGISTER) } } friend RegExp operator+(const RegExp& a, const RegExp& b); friend RegExp operator-(const RegExp& e, size_t disp); private: /* [base_ + index_ * scale_ + disp_] base : Reg32e, index : Reg32e(w/o esp), Xmm, Ymm */ Reg base_; Reg index_; int scale_; size_t disp_; }; inline RegExp operator+(const RegExp& a, const RegExp& b) { if (a.index_.getBit() && b.index_.getBit()) XBYAK_THROW_RET(ERR_BAD_ADDRESSING, RegExp()) RegExp ret = a; if (!ret.index_.getBit()) { ret.index_ = b.index_; ret.scale_ = b.scale_; } if (b.base_.getBit()) { if (ret.base_.getBit()) { if (ret.index_.getBit()) XBYAK_THROW_RET(ERR_BAD_ADDRESSING, RegExp()) // base + base => base + index * 1 ret.index_ = b.base_; // [reg + esp] => [esp + reg] if (ret.index_.getIdx() == Operand::ESP) std::swap(ret.base_, ret.index_); ret.scale_ = 1; } else { ret.base_ = b.base_; } } ret.disp_ += b.disp_; return ret; } inline RegExp operator*(const Reg& r, int scale) { return RegExp(r, scale); } inline RegExp operator*(int scale, const Reg& r) { return r * scale; } inline RegExp operator-(const RegExp& e, size_t disp) { RegExp ret = e; ret.disp_ -= disp; return ret; } // 2nd parameter for constructor of CodeArray(maxSize, userPtr, alloc) void *const AutoGrow = (void*)1; //-V566 void *const DontSetProtectRWE = (void*)2; //-V566 class CodeArray { enum Type { USER_BUF = 1, // use userPtr(non alignment, non protect) ALLOC_BUF, // use new(alignment, protect) AUTO_GROW // automatically move and grow memory if necessary }; CodeArray(const CodeArray& rhs); void operator=(const CodeArray&); bool isAllocType() const { return type_ == ALLOC_BUF || type_ == AUTO_GROW; } struct AddrInfo { size_t codeOffset; // position to write size_t jmpAddr; // value to write int jmpSize; // size of jmpAddr inner::LabelMode mode; AddrInfo(size_t _codeOffset, size_t _jmpAddr, int _jmpSize, inner::LabelMode _mode) : codeOffset(_codeOffset), jmpAddr(_jmpAddr), jmpSize(_jmpSize), mode(_mode) {} uint64_t getVal(const uint8_t *top) const { uint64_t disp = (mode == inner::LaddTop) ? jmpAddr + size_t(top) : (mode == inner::LasIs) ? jmpAddr : jmpAddr - size_t(top); if (jmpSize == 4) disp = inner::VerifyInInt32(disp); return disp; } }; typedef std::list AddrInfoList; AddrInfoList addrInfoList_; const Type type_; #ifdef XBYAK_USE_MMAP_ALLOCATOR MmapAllocator defaultAllocator_; #else Allocator defaultAllocator_; #endif Allocator *alloc_; protected: size_t maxSize_; uint8_t *top_; size_t size_; bool isCalledCalcJmpAddress_; bool useProtect() const { return alloc_->useProtect(); } /* allocate new memory and copy old data to the new area */ void growMemory() { const size_t newSize = (std::max)(DEFAULT_MAX_CODE_SIZE, maxSize_ * 2); uint8_t *newTop = alloc_->alloc(newSize); if (newTop == 0) XBYAK_THROW(ERR_CANT_ALLOC) for (size_t i = 0; i < size_; i++) newTop[i] = top_[i]; alloc_->free(top_); top_ = newTop; maxSize_ = newSize; } /* calc jmp address for AutoGrow mode */ void calcJmpAddress() { if (isCalledCalcJmpAddress_) return; for (AddrInfoList::const_iterator i = addrInfoList_.begin(), ie = addrInfoList_.end(); i != ie; ++i) { uint64_t disp = i->getVal(top_); rewrite(i->codeOffset, disp, i->jmpSize); } isCalledCalcJmpAddress_ = true; } public: enum ProtectMode { PROTECT_RW = 0, // read/write PROTECT_RWE = 1, // read/write/exec PROTECT_RE = 2 // read/exec }; explicit CodeArray(size_t maxSize, void *userPtr = 0, Allocator *allocator = 0) : type_(userPtr == AutoGrow ? AUTO_GROW : (userPtr == 0 || userPtr == DontSetProtectRWE) ? ALLOC_BUF : USER_BUF) , alloc_(allocator ? allocator : (Allocator*)&defaultAllocator_) , maxSize_(maxSize) , top_(type_ == USER_BUF ? reinterpret_cast(userPtr) : alloc_->alloc((std::max)(maxSize, 1))) , size_(0) , isCalledCalcJmpAddress_(false) { if (maxSize_ > 0 && top_ == 0) XBYAK_THROW(ERR_CANT_ALLOC) if ((type_ == ALLOC_BUF && userPtr != DontSetProtectRWE && useProtect()) && !setProtectMode(PROTECT_RWE, false)) { alloc_->free(top_); XBYAK_THROW(ERR_CANT_PROTECT) } } virtual ~CodeArray() { if (isAllocType()) { if (useProtect()) setProtectModeRW(false); alloc_->free(top_); } } bool setProtectMode(ProtectMode mode, bool throwException = true) { bool isOK = protect(top_, maxSize_, mode); if (isOK) return true; if (throwException) XBYAK_THROW_RET(ERR_CANT_PROTECT, false) return false; } bool setProtectModeRE(bool throwException = true) { return setProtectMode(PROTECT_RE, throwException); } bool setProtectModeRW(bool throwException = true) { return setProtectMode(PROTECT_RW, throwException); } void resetSize() { size_ = 0; addrInfoList_.clear(); isCalledCalcJmpAddress_ = false; } void db(int code) { if (size_ >= maxSize_) { if (type_ == AUTO_GROW) { growMemory(); } else { XBYAK_THROW(ERR_CODE_IS_TOO_BIG) } } top_[size_++] = static_cast(code); } void db(const uint8_t *code, size_t codeSize) { for (size_t i = 0; i < codeSize; i++) db(code[i]); } void db(uint64_t code, size_t codeSize) { if (codeSize > 8) XBYAK_THROW(ERR_BAD_PARAMETER) for (size_t i = 0; i < codeSize; i++) db(static_cast(code >> (i * 8))); } void dw(uint32_t code) { db(code, 2); } void dd(uint32_t code) { db(code, 4); } void dq(uint64_t code) { db(code, 8); } const uint8_t *getCode() const { return top_; } template const F getCode() const { return reinterpret_cast(top_); } const uint8_t *getCurr() const { return &top_[size_]; } template const F getCurr() const { return reinterpret_cast(&top_[size_]); } size_t getSize() const { return size_; } void setSize(size_t size) { if (size > maxSize_) XBYAK_THROW(ERR_OFFSET_IS_TOO_BIG) size_ = size; } void dump() const { const uint8_t *p = getCode(); size_t bufSize = getSize(); size_t remain = bufSize; for (int i = 0; i < 4; i++) { size_t disp = 16; if (remain < 16) { disp = remain; } for (size_t j = 0; j < 16; j++) { if (j < disp) { printf("%02X", p[i * 16 + j]); } } putchar('\n'); remain -= disp; if (remain == 0) { break; } } } /* @param offset [in] offset from top @param disp [in] offset from the next of jmp @param size [in] write size(1, 2, 4, 8) */ void rewrite(size_t offset, uint64_t disp, size_t size) { assert(offset < maxSize_); if (size != 1 && size != 2 && size != 4 && size != 8) XBYAK_THROW(ERR_BAD_PARAMETER) uint8_t *const data = top_ + offset; for (size_t i = 0; i < size; i++) { data[i] = static_cast(disp >> (i * 8)); } } void save(size_t offset, size_t val, int size, inner::LabelMode mode) { addrInfoList_.push_back(AddrInfo(offset, val, size, mode)); } bool isAutoGrow() const { return type_ == AUTO_GROW; } bool isCalledCalcJmpAddress() const { return isCalledCalcJmpAddress_; } /** change exec permission of memory @param addr [in] buffer address @param size [in] buffer size @param protectMode [in] mode(RW/RWE/RE) @return true(success), false(failure) */ static inline bool protect(const void *addr, size_t size, int protectMode) { #if defined(_WIN32) const DWORD c_rw = PAGE_READWRITE; const DWORD c_rwe = PAGE_EXECUTE_READWRITE; const DWORD c_re = PAGE_EXECUTE_READ; DWORD mode; #else const int c_rw = PROT_READ | PROT_WRITE; const int c_rwe = PROT_READ | PROT_WRITE | PROT_EXEC; const int c_re = PROT_READ | PROT_EXEC; int mode; #endif switch (protectMode) { case PROTECT_RW: mode = c_rw; break; case PROTECT_RWE: mode = c_rwe; break; case PROTECT_RE: mode = c_re; break; default: return false; } #if defined(_WIN32) DWORD oldProtect; return VirtualProtect(const_cast(addr), size, mode, &oldProtect) != 0; #elif defined(__GNUC__) size_t pageSize = sysconf(_SC_PAGESIZE); size_t iaddr = reinterpret_cast(addr); size_t roundAddr = iaddr & ~(pageSize - static_cast(1)); return mprotect(reinterpret_cast(roundAddr), size + (iaddr - roundAddr), mode) == 0; #else return true; #endif } /** get aligned memory pointer @param addr [in] address @param alignedSize [in] power of two @return aligned addr by alingedSize */ static inline uint8_t *getAlignedAddress(uint8_t *addr, size_t alignedSize = 16) { return reinterpret_cast((reinterpret_cast(addr) + alignedSize - 1) & ~(alignedSize - static_cast(1))); } }; class Address : public Operand { public: enum Mode { M_ModRM, M_64bitDisp, M_rip, M_ripAddr }; XBYAK_CONSTEXPR Address(uint32_t sizeBit, bool broadcast, const RegExp& e) : Operand(0, MEM, sizeBit), e_(e), label_(0), mode_(M_ModRM), immSize(0), disp8N(0), permitVsib(false), broadcast_(broadcast), optimize_(true) { e_.verify(); } #ifdef XBYAK64 explicit XBYAK_CONSTEXPR Address(size_t disp) : Operand(0, MEM, 64), e_(disp), label_(0), mode_(M_64bitDisp), immSize(0), disp8N(0), permitVsib(false), broadcast_(false), optimize_(true) { } XBYAK_CONSTEXPR Address(uint32_t sizeBit, bool broadcast, const RegRip& addr) : Operand(0, MEM, sizeBit), e_(addr.disp_), label_(addr.label_), mode_(addr.isAddr_ ? M_ripAddr : M_rip), immSize(0), disp8N(0), permitVsib(false), broadcast_(broadcast), optimize_(true) { } #endif RegExp getRegExp() const { return optimize_ ? e_.optimize() : e_; } Address cloneNoOptimize() const { Address addr = *this; addr.optimize_ = false; return addr; } Mode getMode() const { return mode_; } bool is32bit() const { return e_.getBase().getBit() == 32 || e_.getIndex().getBit() == 32; } bool isOnlyDisp() const { return !e_.getBase().getBit() && !e_.getIndex().getBit(); } // for mov eax size_t getDisp() const { return e_.getDisp(); } bool is64bitDisp() const { return mode_ == M_64bitDisp; } // for moffset bool isBroadcast() const { return broadcast_; } bool hasRex2() const { return e_.getBase().hasRex2() || e_.getIndex().hasRex2(); } const Label* getLabel() const { return label_; } bool operator==(const Address& rhs) const { return getBit() == rhs.getBit() && e_ == rhs.e_ && label_ == rhs.label_ && mode_ == rhs.mode_ && immSize == rhs.immSize && disp8N == rhs.disp8N && permitVsib == rhs.permitVsib && broadcast_ == rhs.broadcast_ && optimize_ == rhs.optimize_; } bool operator!=(const Address& rhs) const { return !operator==(rhs); } bool isVsib() const { return e_.isVsib(); } private: RegExp e_; const Label* label_; Mode mode_; public: int immSize; // the size of immediate value of nmemonics (0, 1, 2, 4) int disp8N; // 0(normal), 1(force disp32), disp8N = {2, 4, 8} bool permitVsib; private: bool broadcast_; bool optimize_; }; inline const Address& Operand::getAddress() const { assert(isMEM()); return static_cast(*this); } inline Address Operand::getAddress(int immSize) const { Address addr = getAddress(); addr.immSize = immSize; return addr; } inline bool Operand::operator==(const Operand& rhs) const { if (isMEM() && rhs.isMEM()) return this->getAddress() == rhs.getAddress(); return isEqualIfNotInherited(rhs); } inline XBYAK_CONSTEXPR bool Operand::hasRex2() const { return (isREG() && isExtIdx2()) || (isMEM() && static_cast(*this).hasRex2()); } class AddressFrame { void operator=(const AddressFrame&); AddressFrame(const AddressFrame&); public: const uint32_t bit_; const bool broadcast_; explicit XBYAK_CONSTEXPR AddressFrame(uint32_t bit, bool broadcast = false) : bit_(bit), broadcast_(broadcast) { } Address operator[](const RegExp& e) const { return Address(bit_, broadcast_, e); } Address operator[](const void *disp) const { return Address(bit_, broadcast_, RegExp(reinterpret_cast(disp))); } #ifdef XBYAK64 Address operator[](uint64_t disp) const { return Address(disp); } Address operator[](const RegRip& addr) const { return Address(bit_, broadcast_, addr); } #endif }; struct JmpLabel { size_t endOfJmp; /* offset from top to the end address of jmp */ int jmpSize; inner::LabelMode mode; size_t disp; // disp for [rip + disp] explicit JmpLabel(size_t endOfJmp = 0, int jmpSize = 0, inner::LabelMode mode = inner::LasIs, size_t disp = 0) : endOfJmp(endOfJmp), jmpSize(jmpSize), mode(mode), disp(disp) { } }; class LabelManager; class Label { mutable LabelManager *mgr; mutable int id; friend class LabelManager; public: Label() : mgr(0), id(0) {} Label(const Label& rhs); Label& operator=(const Label& rhs); ~Label(); void clear() { mgr = 0; id = 0; } int getId() const { return id; } const uint8_t *getAddress() const; // backward compatibility static inline std::string toStr(int num) { char buf[16]; #if defined(_MSC_VER) && (_MSC_VER < 1900) _snprintf_s #else snprintf #endif (buf, sizeof(buf), ".%08x", num); return buf; } }; class LabelManager { // for string label struct SlabelVal { size_t offset; SlabelVal(size_t offset) : offset(offset) {} }; typedef XBYAK_STD_UNORDERED_MAP SlabelDefList; typedef XBYAK_STD_UNORDERED_MULTIMAP SlabelUndefList; struct SlabelState { SlabelDefList defList; SlabelUndefList undefList; }; typedef std::list StateList; // for Label class struct ClabelVal { ClabelVal(size_t offset = 0) : offset(offset), refCount(1) {} size_t offset; int refCount; }; typedef XBYAK_STD_UNORDERED_MAP ClabelDefList; typedef XBYAK_STD_UNORDERED_MULTIMAP ClabelUndefList; typedef XBYAK_STD_UNORDERED_SET LabelPtrList; CodeArray *base_; // global : stateList_.front(), local : stateList_.back() StateList stateList_; mutable int labelId_; ClabelDefList clabelDefList_; ClabelUndefList clabelUndefList_; LabelPtrList labelPtrList_; int getId(const Label& label) const { if (label.id == 0) label.id = labelId_++; return label.id; } template void define_inner(DefList& defList, UndefList& undefList, const T& labelId, size_t addrOffset) { // add label typename DefList::value_type item(labelId, addrOffset); std::pair ret = defList.insert(item); if (!ret.second) XBYAK_THROW(ERR_LABEL_IS_REDEFINED) // search undefined label for (;;) { typename UndefList::iterator itr = undefList.find(labelId); if (itr == undefList.end()) break; const JmpLabel *jmp = &itr->second; const size_t offset = jmp->endOfJmp - jmp->jmpSize; size_t disp; if (jmp->mode == inner::LaddTop) { disp = addrOffset; } else if (jmp->mode == inner::Labs) { disp = size_t(base_->getCurr()); } else { disp = addrOffset - jmp->endOfJmp + jmp->disp; #ifdef XBYAK64 if (jmp->jmpSize <= 4 && !inner::IsInInt32(disp)) XBYAK_THROW(ERR_OFFSET_IS_TOO_BIG) #endif if (jmp->jmpSize == 1 && !inner::IsInDisp8((uint32_t)disp)) XBYAK_THROW(ERR_LABEL_IS_TOO_FAR) } if (base_->isAutoGrow()) { base_->save(offset, disp, jmp->jmpSize, jmp->mode); } else { base_->rewrite(offset, disp, jmp->jmpSize); } undefList.erase(itr); } } template bool getOffset_inner(const DefList& defList, size_t *offset, const T& label) const { typename DefList::const_iterator i = defList.find(label); if (i == defList.end()) return false; *offset = i->second.offset; return true; } friend class Label; void incRefCount(int id, Label *label) { clabelDefList_[id].refCount++; labelPtrList_.insert(label); } void decRefCount(int id, Label *label) { labelPtrList_.erase(label); ClabelDefList::iterator i = clabelDefList_.find(id); if (i == clabelDefList_.end()) return; if (i->second.refCount == 1) { clabelDefList_.erase(id); } else { --i->second.refCount; } } template bool hasUndefinedLabel_inner(const T& list) const { #ifndef NDEBUG for (typename T::const_iterator i = list.begin(); i != list.end(); ++i) { std::cerr << "undefined label:" << i->first << std::endl; } #endif return !list.empty(); } // detach all labels linked to LabelManager void resetLabelPtrList() { for (LabelPtrList::iterator i = labelPtrList_.begin(), ie = labelPtrList_.end(); i != ie; ++i) { (*i)->clear(); } labelPtrList_.clear(); } public: LabelManager() { reset(); } ~LabelManager() { resetLabelPtrList(); } void reset() { base_ = 0; labelId_ = 1; stateList_.clear(); stateList_.push_back(SlabelState()); stateList_.push_back(SlabelState()); clabelDefList_.clear(); clabelUndefList_.clear(); resetLabelPtrList(); } void enterLocal() { stateList_.push_back(SlabelState()); } void leaveLocal() { if (stateList_.size() <= 2) XBYAK_THROW(ERR_UNDER_LOCAL_LABEL) if (hasUndefinedLabel_inner(stateList_.back().undefList)) XBYAK_THROW(ERR_LABEL_IS_NOT_FOUND) stateList_.pop_back(); } void set(CodeArray *base) { base_ = base; } void defineSlabel(std::string label) { if (label == "@b" || label == "@f") XBYAK_THROW(ERR_BAD_LABEL_STR) if (label == "@@") { SlabelDefList& defList = stateList_.front().defList; SlabelDefList::iterator i = defList.find("@f"); if (i != defList.end()) { defList.erase(i); label = "@b"; } else { i = defList.find("@b"); if (i != defList.end()) { defList.erase(i); } label = "@f"; } } SlabelState& st = *label.c_str() == '.' ? stateList_.back() : stateList_.front(); define_inner(st.defList, st.undefList, label, base_->getSize()); } void defineClabel(Label& label) { define_inner(clabelDefList_, clabelUndefList_, getId(label), base_->getSize()); label.mgr = this; labelPtrList_.insert(&label); } void assign(Label& dst, const Label& src) { ClabelDefList::const_iterator i = clabelDefList_.find(src.id); if (i == clabelDefList_.end()) XBYAK_THROW(ERR_LABEL_ISNOT_SET_BY_L) define_inner(clabelDefList_, clabelUndefList_, dst.id, i->second.offset); dst.mgr = this; labelPtrList_.insert(&dst); } bool getOffset(size_t *offset, std::string& label) const { const SlabelDefList& defList = stateList_.front().defList; if (label == "@b") { if (defList.find("@f") != defList.end()) { label = "@f"; } else if (defList.find("@b") == defList.end()) { XBYAK_THROW_RET(ERR_LABEL_IS_NOT_FOUND, false) } } else if (label == "@f") { if (defList.find("@f") != defList.end()) { label = "@b"; } } const SlabelState& st = *label.c_str() == '.' ? stateList_.back() : stateList_.front(); return getOffset_inner(st.defList, offset, label); } bool getOffset(size_t *offset, const Label& label) const { return getOffset_inner(clabelDefList_, offset, getId(label)); } void addUndefinedLabel(const std::string& label, const JmpLabel& jmp) { SlabelState& st = *label.c_str() == '.' ? stateList_.back() : stateList_.front(); st.undefList.insert(SlabelUndefList::value_type(label, jmp)); } void addUndefinedLabel(const Label& label, const JmpLabel& jmp) { clabelUndefList_.insert(ClabelUndefList::value_type(label.id, jmp)); } bool hasUndefSlabel() const { for (StateList::const_iterator i = stateList_.begin(), ie = stateList_.end(); i != ie; ++i) { if (hasUndefinedLabel_inner(i->undefList)) return true; } return false; } bool hasUndefClabel() const { return hasUndefinedLabel_inner(clabelUndefList_); } const uint8_t *getCode() const { return base_->getCode(); } bool isReady() const { return !base_->isAutoGrow() || base_->isCalledCalcJmpAddress(); } }; inline Label::Label(const Label& rhs) { id = rhs.id; mgr = rhs.mgr; if (mgr) mgr->incRefCount(id, this); } inline Label& Label::operator=(const Label& rhs) { if (id) XBYAK_THROW_RET(ERR_LABEL_IS_ALREADY_SET_BY_L, *this) id = rhs.id; mgr = rhs.mgr; if (mgr) mgr->incRefCount(id, this); return *this; } inline Label::~Label() { if (id && mgr) mgr->decRefCount(id, this); } inline const uint8_t* Label::getAddress() const { if (mgr == 0 || !mgr->isReady()) return 0; size_t offset; if (!mgr->getOffset(&offset, *this)) return 0; return mgr->getCode() + offset; } typedef enum { DefaultEncoding, VexEncoding, EvexEncoding } PreferredEncoding; class CodeGenerator : public CodeArray { public: enum LabelType { T_SHORT, T_NEAR, T_FAR, // far jump T_AUTO // T_SHORT if possible }; private: CodeGenerator operator=(const CodeGenerator&); // don't call #ifdef XBYAK64 enum { i32e = 32 | 64, BIT = 64 }; static const uint64_t dummyAddr = uint64_t(0x1122334455667788ull); typedef Reg64 NativeReg; #else enum { i32e = 32, BIT = 32 }; static const size_t dummyAddr = 0x12345678; typedef Reg32 NativeReg; #endif // (XMM, XMM|MEM) static inline bool isXMM_XMMorMEM(const Operand& op1, const Operand& op2) { return op1.isXMM() && (op2.isXMM() || op2.isMEM()); } // (MMX, MMX|MEM) or (XMM, XMM|MEM) static inline bool isXMMorMMX_MEM(const Operand& op1, const Operand& op2) { return (op1.isMMX() && (op2.isMMX() || op2.isMEM())) || isXMM_XMMorMEM(op1, op2); } // (XMM, MMX|MEM) static inline bool isXMM_MMXorMEM(const Operand& op1, const Operand& op2) { return op1.isXMM() && (op2.isMMX() || op2.isMEM()); } // (MMX, XMM|MEM) static inline bool isMMX_XMMorMEM(const Operand& op1, const Operand& op2) { return op1.isMMX() && (op2.isXMM() || op2.isMEM()); } // (XMM, REG32|MEM) static inline bool isXMM_REG32orMEM(const Operand& op1, const Operand& op2) { return op1.isXMM() && (op2.isREG(i32e) || op2.isMEM()); } // (REG32, XMM|MEM) static inline bool isREG32_XMMorMEM(const Operand& op1, const Operand& op2) { return op1.isREG(i32e) && (op2.isXMM() || op2.isMEM()); } // (REG32, REG32|MEM) static inline bool isREG32_REG32orMEM(const Operand& op1, const Operand& op2) { return op1.isREG(i32e) && ((op2.isREG(i32e) && op1.getBit() == op2.getBit()) || op2.isMEM()); } static inline bool isValidSSE(const Operand& op1) { // SSE instructions do not support XMM16 - XMM31 return !(op1.isXMM() && op1.getIdx() >= 16); } static inline uint8_t rexRXB(int bit, int bit3, const Reg& r, const Reg& b, const Reg& x = Reg()) { int v = bit3 ? 8 : 0; if (r.hasIdxBit(bit)) v |= 4; if (x.hasIdxBit(bit)) v |= 2; if (b.hasIdxBit(bit)) v |= 1; return uint8_t(v); } void rex2(int bit3, int rex4bit, const Reg& r, const Reg& b, const Reg& x = Reg()) { db(0xD5); db((rexRXB(4, bit3, r, b, x) << 4) | rex4bit); } // return true if rex2 is selected bool rex(const Operand& op1, const Operand& op2 = Operand(), uint64_t type = 0) { if (op1.getNF() | op2.getNF()) XBYAK_THROW_RET(ERR_INVALID_NF, false) if (op1.getZU() | op2.getZU()) XBYAK_THROW_RET(ERR_INVALID_ZU, false) uint8_t rex = 0; const Operand *p1 = &op1, *p2 = &op2; if (p1->isMEM()) std::swap(p1, p2); if (p1->isMEM()) XBYAK_THROW_RET(ERR_BAD_COMBINATION, false) // except movsx(16bit, 32/64bit) bool p66 = (op1.isBit(16) && !op2.isBit(i32e)) || (op2.isBit(16) && !op1.isBit(i32e)); if ((type & T_66) || p66) db(0x66); if (type & T_F2) { db(0xF2); } if (type & T_F3) { db(0xF3); } bool is0F = type & T_0F; if (p2->isMEM()) { const Reg& r = *static_cast(p1); const Address& addr = p2->getAddress(); const RegExp e = addr.getRegExp(); const Reg& base = e.getBase(); const Reg& idx = e.getIndex(); if (BIT == 64 && addr.is32bit()) db(0x67); rex = rexRXB(3, r.isREG(64), r, base, idx); if (r.hasRex2() || addr.hasRex2()) { if (type & (T_0F38|T_0F3A)) XBYAK_THROW_RET(ERR_CANT_USE_REX2, false) rex2(is0F, rex, r, base, idx); return true; } if (rex || r.isExt8bit()) rex |= 0x40; } else { const Reg& r1 = static_cast(op1); const Reg& r2 = static_cast(op2); // ModRM(reg, base); rex = rexRXB(3, r1.isREG(64) || r2.isREG(64), r2, r1); if (r1.hasRex2() || r2.hasRex2()) { if (type & (T_0F38|T_0F3A)) XBYAK_THROW_RET(ERR_CANT_USE_REX2, 0) rex2(is0F, rex, r2, r1); return true; } if (rex || r1.isExt8bit() || r2.isExt8bit()) rex |= 0x40; } if (rex) db(rex); return false; } // @@@begin of avx_type_def.h static const uint64_t T_NONE = 0ull; // low 3 bit static const uint64_t T_N1 = 1ull; static const uint64_t T_N2 = 2ull; static const uint64_t T_N4 = 3ull; static const uint64_t T_N8 = 4ull; static const uint64_t T_N16 = 5ull; static const uint64_t T_N32 = 6ull; static const uint64_t T_NX_MASK = 7ull; static const uint64_t T_DUP = T_NX_MASK;//1 << 4, // N = (8, 32, 64) static const uint64_t T_N_VL = 1ull << 3; // N * (1, 2, 4) for VL static const uint64_t T_APX = 1ull << 4; static const uint64_t T_66 = 1ull << 5; // pp = 1 static const uint64_t T_F3 = 1ull << 6; // pp = 2 static const uint64_t T_ER_R = 1ull << 7; // reg{er} static const uint64_t T_0F = 1ull << 8; static const uint64_t T_0F38 = 1ull << 9; static const uint64_t T_0F3A = 1ull << 10; static const uint64_t T_L0 = 1ull << 11; static const uint64_t T_L1 = 1ull << 12; static const uint64_t T_W0 = 1ull << 13; static const uint64_t T_W1 = 1ull << 14; static const uint64_t T_EW0 = 1ull << 15; static const uint64_t T_EW1 = 1ull << 16; static const uint64_t T_YMM = 1ull << 17; // support YMM, ZMM static const uint64_t T_EVEX = 1ull << 18; static const uint64_t T_ER_X = 1ull << 19; // xmm{er} static const uint64_t T_ER_Y = 1ull << 20; // ymm{er} static const uint64_t T_ER_Z = 1ull << 21; // zmm{er} static const uint64_t T_SAE_X = 1ull << 22; // xmm{sae} static const uint64_t T_SAE_Y = 1ull << 23; // ymm{sae} static const uint64_t T_SAE_Z = 1ull << 24; // zmm{sae} static const uint64_t T_MUST_EVEX = 1ull << 25; // contains T_EVEX static const uint64_t T_B32 = 1ull << 26; // m32bcst static const uint64_t T_B64 = 1ull << 27; // m64bcst static const uint64_t T_B16 = T_B32 | T_B64; // m16bcst (Be careful) static const uint64_t T_M_K = 1ull << 28; // mem{k} static const uint64_t T_VSIB = 1ull << 29; static const uint64_t T_MEM_EVEX = 1ull << 30; // use evex if mem static const uint64_t T_FP16 = 1ull << 31; // avx512-fp16 static const uint64_t T_MAP5 = T_FP16 | T_0F; static const uint64_t T_MAP6 = T_FP16 | T_0F38; static const uint64_t T_NF = 1ull << 32; // T_nf static const uint64_t T_CODE1_IF1 = 1ull << 33; // code|=1 if !r.isBit(8) static const uint64_t T_ND1 = 1ull << 35; // ND=1 static const uint64_t T_ZU = 1ull << 36; // ND=ZU static const uint64_t T_F2 = 1ull << 37; // pp = 3 // T_66 = 1, T_F3 = 2, T_F2 = 3 static inline uint32_t getPP(uint64_t type) { return (type & T_66) ? 1 : (type & T_F3) ? 2 : (type & T_F2) ? 3 : 0; } // @@@end of avx_type_def.h static inline uint32_t getMap(uint64_t type) { return (type & T_0F) ? 1 : (type & T_0F38) ? 2 : (type & T_0F3A) ? 3 : 0; } void vex(const Reg& reg, const Reg& base, const Operand *v, uint64_t type, int code, bool x = false) { int w = (type & T_W1) ? 1 : 0; bool is256 = (type & T_L1) ? true : (type & T_L0) ? false : reg.isYMM(); bool r = reg.isExtIdx(); bool b = base.isExtIdx(); int idx = v ? v->getIdx() : 0; if ((idx | reg.getIdx() | base.getIdx()) >= 16) XBYAK_THROW(ERR_BAD_COMBINATION) uint32_t pp = getPP(type); uint32_t vvvv = (((~idx) & 15) << 3) | (is256 ? 4 : 0) | pp; if (!b && !x && !w && (type & T_0F)) { db(0xC5); db((r ? 0 : 0x80) | vvvv); } else { uint32_t mmmm = getMap(type); db(0xC4); db((r ? 0 : 0x80) | (x ? 0 : 0x40) | (b ? 0 : 0x20) | mmmm); db((w << 7) | vvvv); } db(code); } void verifySAE(const Reg& r, uint64_t type) const { if (((type & T_SAE_X) && r.isXMM()) || ((type & T_SAE_Y) && r.isYMM()) || ((type & T_SAE_Z) && r.isZMM())) return; XBYAK_THROW(ERR_SAE_IS_INVALID) } void verifyER(const Reg& r, uint64_t type) const { if ((type & T_ER_R) && r.isREG(32|64)) return; if (((type & T_ER_X) && r.isXMM()) || ((type & T_ER_Y) && r.isYMM()) || ((type & T_ER_Z) && r.isZMM())) return; XBYAK_THROW(ERR_ER_IS_INVALID) } // (a, b, c) contains non zero two or three values then err int verifyDuplicate(int a, int b, int c, int err) { int v = a | b | c; if ((a > 0 && a != v) + (b > 0 && b != v) + (c > 0 && c != v) > 0) XBYAK_THROW_RET(err, 0) return v; } int evex(const Reg& reg, const Reg& base, const Operand *v, uint64_t type, int code, const Reg *x = 0, bool b = false, int aaa = 0, uint32_t VL = 0, bool Hi16Vidx = false) { if (!(type & (T_EVEX | T_MUST_EVEX))) XBYAK_THROW_RET(ERR_EVEX_IS_INVALID, 0) int w = (type & T_EW1) ? 1 : 0; uint32_t mmm = getMap(type); if (type & T_FP16) mmm |= 4; uint32_t pp = getPP(type); int idx = v ? v->getIdx() : 0; uint32_t vvvv = ~idx; bool R = reg.isExtIdx(); bool X3 = (x && x->isExtIdx()) || (base.isSIMD() && base.isExtIdx2()); bool B4 = base.isREG() && base.isExtIdx2(); bool X4 = x && (x->isREG() && x->isExtIdx2()); bool B = base.isExtIdx(); bool Rp = reg.isExtIdx2(); int LL; int rounding = verifyDuplicate(reg.getRounding(), base.getRounding(), v ? v->getRounding() : 0, ERR_ROUNDING_IS_ALREADY_SET); int disp8N = 1; if (rounding) { if (rounding == EvexModifierRounding::T_SAE) { verifySAE(base, type); LL = 0; } else { verifyER(base, type); LL = rounding - 1; } b = true; } else { if (v) VL = (std::max)(VL, v->getBit()); VL = (std::max)((std::max)(reg.getBit(), base.getBit()), VL); LL = (VL == 512) ? 2 : (VL == 256) ? 1 : 0; if (b) { disp8N = ((type & T_B16) == T_B16) ? 2 : (type & T_B32) ? 4 : 8; } else if ((type & T_NX_MASK) == T_DUP) { disp8N = VL == 128 ? 8 : VL == 256 ? 32 : 64; } else { if ((type & (T_NX_MASK | T_N_VL)) == 0) { type |= T_N16 | T_N_VL; // default } int low = type & T_NX_MASK; if (low > 0) { disp8N = 1 << (low - 1); if (type & T_N_VL) disp8N *= (VL == 512 ? 4 : VL == 256 ? 2 : 1); } } } bool V4 = ((v ? v->isExtIdx2() : 0) || Hi16Vidx); bool z = reg.hasZero() || base.hasZero() || (v ? v->hasZero() : false); if (aaa == 0) aaa = verifyDuplicate(base.getOpmaskIdx(), reg.getOpmaskIdx(), (v ? v->getOpmaskIdx() : 0), ERR_OPMASK_IS_ALREADY_SET); if (aaa == 0) z = 0; // clear T_z if mask is not set db(0x62); db((R ? 0 : 0x80) | (X3 ? 0 : 0x40) | (B ? 0 : 0x20) | (Rp ? 0 : 0x10) | (B4 ? 8 : 0) | mmm); db((w == 1 ? 0x80 : 0) | ((vvvv & 15) << 3) | (X4 ? 0 : 4) | (pp & 3)); db((z ? 0x80 : 0) | ((LL & 3) << 5) | (b ? 0x10 : 0) | (V4 ? 0 : 8) | (aaa & 7)); db(code); return disp8N; } // evex of Legacy void evexLeg(const Reg& r, const Reg& b, const Reg& x, const Reg& v, uint64_t type, int sc = NONE) { int M = getMap(type); if (M == 0) M = 4; // legacy int R3 = !r.isExtIdx(); int X3 = !x.isExtIdx(); int B3 = b.isExtIdx() ? 0 : 0x20; int R4 = r.isExtIdx2() ? 0 : 0x10; int B4 = b.isExtIdx2() ? 0x08 : 0; int w = (type & T_W0) ? 0 : (r.isBit(64) || v.isBit(64) || (type & T_W1)); int V = (~v.getIdx() & 15) << 3; int X4 = x.isExtIdx2() ? 0 : 0x04; int pp = (type & (T_F2|T_F3|T_66)) ? getPP(type) : (r.isBit(16) || v.isBit(16)); int V4 = !v.isExtIdx2(); int ND = (type & T_ZU) ? (r.getZU() || b.getZU()) : (type & T_ND1) ? 1 : (type & T_APX) ? 0 : v.isREG(); int NF = r.getNF() | b.getNF() | x.getNF() | v.getNF(); int L = 0; if ((type & T_NF) == 0 && NF) XBYAK_THROW(ERR_INVALID_NF) if ((type & T_ZU) == 0 && r.getZU()) XBYAK_THROW(ERR_INVALID_ZU) db(0x62); db((R3<<7) | (X3<<6) | B3 | R4 | B4 | M); db((w<<7) | V | X4 | pp); if (sc != NONE) { db((L<<5) | (ND<<4) | sc); } else { db((L<<5) | (ND<<4) | (V4<<3) | (NF<<2)); } } void setModRM(int mod, int r1, int r2) { db(static_cast((mod << 6) | ((r1 & 7) << 3) | (r2 & 7))); } void setSIB(const RegExp& e, int reg, int disp8N = 0) { uint64_t disp64 = e.getDisp(); #if defined(XBYAK64) && !defined(__ILP32__) #ifdef XBYAK_OLD_DISP_CHECK // treat 0xffffffff as 0xffffffffffffffff uint64_t high = disp64 >> 32; if (high != 0 && high != 0xFFFFFFFF) XBYAK_THROW(ERR_OFFSET_IS_TOO_BIG) #else // displacement should be a signed 32-bit value, so also check sign bit uint64_t high = disp64 >> 31; if (high != 0 && high != 0x1FFFFFFFF) XBYAK_THROW(ERR_OFFSET_IS_TOO_BIG) #endif #endif uint32_t disp = static_cast(disp64); const Reg& base = e.getBase(); const Reg& index = e.getIndex(); const int baseIdx = base.getIdx(); const int baseBit = base.getBit(); const int indexBit = index.getBit(); enum { mod00 = 0, mod01 = 1, mod10 = 2 }; int mod = mod10; // disp32 if (!baseBit || ((baseIdx & 7) != Operand::EBP && disp == 0)) { mod = mod00; } else { if (disp8N == 0) { if (inner::IsInDisp8(disp)) { mod = mod01; } } else { // disp must be casted to signed uint32_t t = static_cast(static_cast(disp) / disp8N); if ((disp % disp8N) == 0 && inner::IsInDisp8(t)) { disp = t; mod = mod01; } } } const int newBaseIdx = baseBit ? (baseIdx & 7) : Operand::EBP; /* ModR/M = [2:3:3] = [Mod:reg/code:R/M] */ bool hasSIB = indexBit || (baseIdx & 7) == Operand::ESP; #ifdef XBYAK64 if (!baseBit && !indexBit) hasSIB = true; #endif if (hasSIB) { setModRM(mod, reg, Operand::ESP); /* SIB = [2:3:3] = [SS:index:base(=rm)] */ const int idx = indexBit ? (index.getIdx() & 7) : Operand::ESP; const int scale = e.getScale(); const int SS = (scale == 8) ? 3 : (scale == 4) ? 2 : (scale == 2) ? 1 : 0; setModRM(SS, idx, newBaseIdx); } else { setModRM(mod, reg, newBaseIdx); } if (mod == mod01) { db(disp); } else if (mod == mod10 || (mod == mod00 && !baseBit)) { dd(disp); } } LabelManager labelMgr_; bool isInDisp16(uint32_t x) const { return 0xFFFF8000 <= x || x <= 0x7FFF; } void writeCode(uint64_t type, const Reg& r, int code, bool rex2 = false) { if (!(type&T_APX || rex2)) { if (type & T_0F) { db(0x0F); } else if (type & T_0F38) { db(0x0F); db(0x38); } else if (type & T_0F3A) { db(0x0F); db(0x3A); } } db(code | ((type == 0 || (type & T_CODE1_IF1)) && !r.isBit(8))); } void opRR(const Reg& reg1, const Reg& reg2, uint64_t type, int code) { bool rex2 = rex(reg2, reg1, type); writeCode(type, reg1, code, rex2); setModRM(3, reg1.getIdx(), reg2.getIdx()); } void opMR(const Address& addr, const Reg& r, uint64_t type, int code, uint64_t type2 = 0, int code2 = NONE) { if (code2 == NONE) code2 = code; if (type2 && opROO(Reg(), addr, r, type2, code2)) return; if (addr.is64bitDisp()) XBYAK_THROW(ERR_CANT_USE_64BIT_DISP) bool rex2 = rex(addr, r, type); writeCode(type, r, code, rex2); opAddr(addr, r.getIdx()); } void opLoadSeg(const Address& addr, const Reg& reg, uint64_t type, int code) { if (reg.isBit(8)) XBYAK_THROW(ERR_BAD_SIZE_OF_REGISTER) if (addr.is64bitDisp()) XBYAK_THROW(ERR_CANT_USE_64BIT_DISP) // can't use opMR rex(addr, reg, type); if (type & T_0F) db(0x0F); db(code); opAddr(addr, reg.getIdx()); } // for only MPX(bnd*) void opMIB(const Address& addr, const Reg& reg, uint64_t type, int code) { if (addr.getMode() != Address::M_ModRM) XBYAK_THROW(ERR_INVALID_MIB_ADDRESS) opMR(addr.cloneNoOptimize(), reg, type, code); } void makeJmp(uint32_t disp, LabelType type, uint8_t shortCode, uint8_t longCode, uint8_t longPref) { const int shortJmpSize = 2; const int longHeaderSize = longPref ? 2 : 1; const int longJmpSize = longHeaderSize + 4; if (type != T_NEAR && inner::IsInDisp8(disp - shortJmpSize)) { db(shortCode); db(disp - shortJmpSize); } else { if (type == T_SHORT) XBYAK_THROW(ERR_LABEL_IS_TOO_FAR) if (longPref) db(longPref); db(longCode); dd(disp - longJmpSize); } } bool isNEAR(LabelType type) const { return type == T_NEAR || (type == T_AUTO && isDefaultJmpNEAR_); } template void opJmp(T& label, LabelType type, uint8_t shortCode, uint8_t longCode, uint8_t longPref) { if (type == T_FAR) XBYAK_THROW(ERR_NOT_SUPPORTED) if (isAutoGrow() && size_ + 16 >= maxSize_) growMemory(); /* avoid splitting code of jmp */ size_t offset = 0; if (labelMgr_.getOffset(&offset, label)) { /* label exists */ makeJmp(inner::VerifyInInt32(offset - size_), type, shortCode, longCode, longPref); } else { int jmpSize = 0; if (isNEAR(type)) { jmpSize = 4; if (longPref) db(longPref); db(longCode); dd(0); } else { jmpSize = 1; db(shortCode); db(0); } JmpLabel jmp(size_, jmpSize, inner::LasIs); labelMgr_.addUndefinedLabel(label, jmp); } } void opJmpAbs(const void *addr, LabelType type, uint8_t shortCode, uint8_t longCode, uint8_t longPref = 0) { if (type == T_FAR) XBYAK_THROW(ERR_NOT_SUPPORTED) if (isAutoGrow()) { if (!isNEAR(type)) XBYAK_THROW(ERR_ONLY_T_NEAR_IS_SUPPORTED_IN_AUTO_GROW) if (size_ + 16 >= maxSize_) growMemory(); if (longPref) db(longPref); db(longCode); dd(0); save(size_ - 4, size_t(addr) - size_, 4, inner::Labs); } else { makeJmp(inner::VerifyInInt32(reinterpret_cast(addr) - getCurr()), type, shortCode, longCode, longPref); } } void opJmpOp(const Operand& op, LabelType type, int ext) { const int bit = 16|i32e; if (type == T_FAR) { if (!op.isMEM(bit)) XBYAK_THROW(ERR_NOT_SUPPORTED) opRext(op, bit, ext + 1, 0, 0xFF, false); } else { opRext(op, bit, ext, 0, 0xFF, true); } } // reg is reg field of ModRM // immSize is the size for immediate value void opAddr(const Address &addr, int reg) { if (!addr.permitVsib && addr.isVsib()) XBYAK_THROW(ERR_BAD_VSIB_ADDRESSING) if (addr.getMode() == Address::M_ModRM) { setSIB(addr.getRegExp(), reg, addr.disp8N); } else if (addr.getMode() == Address::M_rip || addr.getMode() == Address::M_ripAddr) { setModRM(0, reg, 5); if (addr.getLabel()) { // [rip + Label] putL_inner(*addr.getLabel(), true, addr.getDisp() - addr.immSize); } else { size_t disp = addr.getDisp(); if (addr.getMode() == Address::M_ripAddr) { if (isAutoGrow()) XBYAK_THROW(ERR_INVALID_RIP_IN_AUTO_GROW) disp -= (size_t)getCurr() + 4 + addr.immSize; } dd(inner::VerifyInInt32(disp)); } } } void opSSE(const Reg& r, const Operand& op, uint64_t type, int code, bool isValid(const Operand&, const Operand&), int imm8 = NONE) { if (isValid && !isValid(r, op)) XBYAK_THROW(ERR_BAD_COMBINATION) if (!isValidSSE(r) || !isValidSSE(op)) XBYAK_THROW(ERR_NOT_SUPPORTED) opRO(r, op, type, code, true, (imm8 != NONE) ? 1 : 0); if (imm8 != NONE) db(imm8); } void opMMX_IMM(const Mmx& mmx, int imm8, int code, int ext) { if (!isValidSSE(mmx)) XBYAK_THROW(ERR_NOT_SUPPORTED) uint64_t type = T_0F; if (mmx.isXMM()) type |= T_66; opRR(Reg32(ext), mmx, type, code); db(imm8); } void opMMX(const Mmx& mmx, const Operand& op, int code, uint64_t type = T_0F, uint64_t pref = T_66, int imm8 = NONE) { if (mmx.isXMM()) type |= pref; opSSE(mmx, op, type, code, isXMMorMMX_MEM, imm8); } void opMovXMM(const Operand& op1, const Operand& op2, uint64_t type, int code) { if (!isValidSSE(op1) || !isValidSSE(op2)) XBYAK_THROW(ERR_NOT_SUPPORTED) if (op1.isXMM() && op2.isMEM()) { opMR(op2.getAddress(), op1.getReg(), type, code); } else if (op1.isMEM() && op2.isXMM()) { opMR(op1.getAddress(), op2.getReg(), type, code | 1); } else { XBYAK_THROW(ERR_BAD_COMBINATION) } } // pextr{w,b,d}, extractps void opExt(const Operand& op, const Mmx& mmx, int code, int imm, bool hasMMX2 = false) { if (!isValidSSE(op) || !isValidSSE(mmx)) XBYAK_THROW(ERR_NOT_SUPPORTED) if (hasMMX2 && op.isREG(i32e)) { /* pextrw is special */ if (mmx.isXMM()) db(0x66); opRR(op.getReg(), mmx, T_0F, 0xC5); db(imm); } else { opSSE(mmx, op, T_66 | T_0F3A, code, isXMM_REG32orMEM, imm); } } // (r, r, m) or (r, m, r) bool opROO(const Reg& d, const Operand& op1, const Operand& op2, uint64_t type, int code, int immSize = 0, int sc = NONE) { if (!(type & T_MUST_EVEX) && !d.isREG() && !(d.hasRex2NFZU() || op1.hasRex2NFZU() || op2.hasRex2NFZU())) return false; const Operand *p1 = &op1, *p2 = &op2; if (p1->isMEM()) { std::swap(p1, p2); } else { if (p2->isMEM()) code |= 2; } if (p1->isMEM()) XBYAK_THROW_RET(ERR_BAD_COMBINATION, false) if (p2->isMEM()) { const Reg& r = *static_cast(p1); Address addr = p2->getAddress(); const RegExp e = addr.getRegExp(); evexLeg(r, e.getBase(), e.getIndex(), d, type, sc); writeCode(type, d, code); addr.immSize = immSize; opAddr(addr, r.getIdx()); } else { evexLeg(static_cast(op2), static_cast(op1), Reg(), d, type, sc); writeCode(type, d, code); setModRM(3, op2.getIdx(), op1.getIdx()); } return true; } void opRext(const Operand& op, int bit, int ext, uint64_t type, int code, bool disableRex = false, int immSize = 0, const Reg *d = 0) { int opBit = op.getBit(); if (disableRex && opBit == 64) opBit = 32; const Reg r(ext, Operand::REG, opBit); if ((type & T_APX) && op.hasRex2NFZU() && opROO(d ? *d : Reg(0, Operand::REG, opBit), op, r, type, code)) return; if (op.isMEM()) { opMR(op.getAddress(immSize), r, type, code); } else if (op.isREG(bit)) { opRR(r, op.getReg().changeBit(opBit), type, code); } else { XBYAK_THROW(ERR_BAD_COMBINATION) } } void opSetCC(const Operand& op, int ext) { if (opROO(Reg(), op, Reg(), T_APX|T_ZU|T_F2, 0x40 | ext)) return; opRext(op, 8, 0, T_0F, 0x90 | ext); } void opShift(const Operand& op, int imm, int ext, const Reg *d = 0) { if (d == 0) verifyMemHasSize(op); if (d && op.getBit() != 0 && d->getBit() != op.getBit()) XBYAK_THROW(ERR_BAD_SIZE_OF_REGISTER) uint64_t type = T_APX|T_CODE1_IF1; if (ext & 8) type |= T_NF; if (d) type |= T_ND1; opRext(op, 0, ext&7, type, (0xC0 | ((imm == 1 ? 1 : 0) << 4)), false, (imm != 1) ? 1 : 0, d); if (imm != 1) db(imm); } void opShift(const Operand& op, const Reg8& _cl, int ext, const Reg *d = 0) { if (_cl.getIdx() != Operand::CL) XBYAK_THROW(ERR_BAD_COMBINATION) if (d && op.getBit() != 0 && d->getBit() != op.getBit()) XBYAK_THROW(ERR_BAD_SIZE_OF_REGISTER) uint64_t type = T_APX|T_CODE1_IF1; if (ext & 8) type |= T_NF; if (d) type |= T_ND1; opRext(op, 0, ext&7, type, 0xD2, false, 0, d); } // condR assumes that op.isREG() is true void opRO(const Reg& r, const Operand& op, uint64_t type, int code, bool condR = true, int immSize = 0) { if (op.isMEM()) { opMR(op.getAddress(immSize), r, type, code); } else if (condR) { opRR(r, op.getReg(), type, code); } else { XBYAK_THROW(ERR_BAD_COMBINATION) } } void opShxd(const Reg& d, const Operand& op, const Reg& reg, uint8_t imm, int code, int code2, const Reg8 *_cl = 0) { if (_cl && _cl->getIdx() != Operand::CL) XBYAK_THROW(ERR_BAD_COMBINATION) if (!reg.isREG(16|i32e)) XBYAK_THROW(ERR_BAD_SIZE_OF_REGISTER) int immSize = _cl ? 0 : 1; if (_cl) code |= 1; uint64_t type = T_APX | T_NF; if (d.isREG()) type |= T_ND1; if (!opROO(d, op, reg, type, _cl ? code : code2, immSize)) { opRO(reg, op, T_0F, code, true, immSize); } if (!_cl) db(imm); } // (REG, REG|MEM), (MEM, REG) void opRO_MR(const Operand& op1, const Operand& op2, int code) { if (op2.isMEM()) { if (!op1.isREG()) XBYAK_THROW(ERR_BAD_COMBINATION) opMR(op2.getAddress(), op1.getReg(), 0, code | 2); } else { opRO(static_cast(op2), op1, 0, code, op1.getKind() == op2.getKind()); } } uint32_t getImmBit(const Operand& op, uint32_t imm) { verifyMemHasSize(op); uint32_t immBit = inner::IsInDisp8(imm) ? 8 : isInDisp16(imm) ? 16 : 32; if (op.isBit(8)) immBit = 8; if (op.getBit() < immBit) XBYAK_THROW_RET(ERR_IMM_IS_TOO_BIG, 0) if (op.isBit(32|64) && immBit == 16) immBit = 32; /* don't use MEM16 if 32/64bit mode */ return immBit; } // (REG|MEM, IMM) void opOI(const Operand& op, uint32_t imm, int code, int ext) { uint32_t immBit = getImmBit(op, imm); if (op.isREG() && op.getIdx() == 0 && (op.getBit() == immBit || (op.isBit(64) && immBit == 32))) { // rax, eax, ax, al rex(op); db(code | 4 | (immBit == 8 ? 0 : 1)); } else { int tmp = immBit < (std::min)(op.getBit(), 32U) ? 2 : 0; opRext(op, 0, ext, 0, 0x80 | tmp, false, immBit / 8); } db(imm, immBit / 8); } // (r, r/m, imm) void opROI(const Reg& d, const Operand& op, uint32_t imm, uint64_t type, int ext) { uint32_t immBit = getImmBit(d, imm); int code = immBit < (std::min)(d.getBit(), 32U) ? 2 : 0; opROO(d, op, Reg(ext, Operand::REG, d.getBit()), type, 0x80 | code, immBit / 8); db(imm, immBit / 8); } void opIncDec(const Reg& d, const Operand& op, int ext) { #ifdef XBYAK64 if (d.isREG()) { int code = d.isBit(8) ? 0xFE : 0xFF; uint64_t type = T_APX|T_NF|T_ND1; if (d.isBit(16)) type |= T_66; opROO(d, op, Reg(ext, Operand::REG, d.getBit()), type, code); return; } #else (void)d; #endif verifyMemHasSize(op); #ifndef XBYAK64 if (op.isREG() && !op.isBit(8)) { rex(op); db((ext ? 0x48 : 0x40) | op.getIdx()); return; } #endif opRext(op, op.getBit(), ext, 0, 0xFE); } void opPushPop(const Operand& op, int code, int ext, int alt) { if (op.isREG() && op.hasRex2()) { const Reg& r = static_cast(op); rex2(0, rexRXB(3, 0, Reg(), r), Reg(), r); db(alt); return; } int bit = op.getBit(); if (bit == 16 || bit == BIT) { if (bit == 16) db(0x66); if (op.isREG()) { if (op.getReg().getIdx() >= 8) db(0x41); db(alt | (op.getIdx() & 7)); return; } if (op.isMEM()) { opMR(op.getAddress(), Reg(ext, Operand::REG, 32), 0, code); return; } } XBYAK_THROW(ERR_BAD_COMBINATION) } void verifyMemHasSize(const Operand& op) const { if (op.isMEM() && op.getBit() == 0) XBYAK_THROW(ERR_MEM_SIZE_IS_NOT_SPECIFIED) } /* mov(r, imm) = db(imm, mov_imm(r, imm)) */ int mov_imm(const Reg& reg, uint64_t imm) { int bit = reg.getBit(); const int idx = reg.getIdx(); int code = 0xB0 | ((bit == 8 ? 0 : 1) << 3); if (bit == 64 && (imm & ~uint64_t(0xffffffffu)) == 0) { rex(Reg32(idx)); bit = 32; } else { rex(reg); if (bit == 64 && inner::IsInInt32(imm)) { db(0xC7); code = 0xC0; bit = 32; } } db(code | (idx & 7)); return bit / 8; } template void putL_inner(T& label, bool relative = false, size_t disp = 0) { const int jmpSize = relative ? 4 : (int)sizeof(size_t); if (isAutoGrow() && size_ + 16 >= maxSize_) growMemory(); size_t offset = 0; if (labelMgr_.getOffset(&offset, label)) { if (relative) { db(inner::VerifyInInt32(offset + disp - size_ - jmpSize), jmpSize); } else if (isAutoGrow()) { db(uint64_t(0), jmpSize); save(size_ - jmpSize, offset, jmpSize, inner::LaddTop); } else { db(size_t(top_) + offset, jmpSize); } return; } db(uint64_t(0), jmpSize); JmpLabel jmp(size_, jmpSize, (relative ? inner::LasIs : isAutoGrow() ? inner::LaddTop : inner::Labs), disp); labelMgr_.addUndefinedLabel(label, jmp); } void opMovxx(const Reg& reg, const Operand& op, uint8_t code) { if (op.isBit(32)) XBYAK_THROW(ERR_BAD_COMBINATION) int w = op.isBit(16); if (!(reg.isREG() && (reg.getBit() > op.getBit()))) XBYAK_THROW(ERR_BAD_COMBINATION) opRO(reg, op, T_0F, code | w); } void opFpuMem(const Address& addr, uint8_t m16, uint8_t m32, uint8_t m64, uint8_t ext, uint8_t m64ext) { if (addr.is64bitDisp()) XBYAK_THROW(ERR_CANT_USE_64BIT_DISP) uint8_t code = addr.isBit(16) ? m16 : addr.isBit(32) ? m32 : addr.isBit(64) ? m64 : 0; if (!code) XBYAK_THROW(ERR_BAD_MEM_SIZE) if (m64ext && addr.isBit(64)) ext = m64ext; rex(addr, st0); db(code); opAddr(addr, ext); } // use code1 if reg1 == st0 // use code2 if reg1 != st0 && reg2 == st0 void opFpuFpu(const Fpu& reg1, const Fpu& reg2, uint32_t code1, uint32_t code2) { uint32_t code = reg1.getIdx() == 0 ? code1 : reg2.getIdx() == 0 ? code2 : 0; if (!code) XBYAK_THROW(ERR_BAD_ST_COMBINATION) db(uint8_t(code >> 8)); db(uint8_t(code | (reg1.getIdx() | reg2.getIdx()))); } void opFpu(const Fpu& reg, uint8_t code1, uint8_t code2) { db(code1); db(code2 | reg.getIdx()); } void opVex(const Reg& r, const Operand *p1, const Operand& op2, uint64_t type, int code, int imm8 = NONE) { if (op2.isMEM()) { Address addr = op2.getAddress(); const RegExp& regExp = addr.getRegExp(); const Reg& base = regExp.getBase(); const Reg& index = regExp.getIndex(); if (BIT == 64 && addr.is32bit()) db(0x67); int disp8N = 0; if ((type & (T_MUST_EVEX|T_MEM_EVEX)) || r.hasEvex() || (p1 && p1->hasEvex()) || addr.isBroadcast() || addr.getOpmaskIdx() || addr.hasRex2()) { int aaa = addr.getOpmaskIdx(); if (aaa && !(type & T_M_K)) XBYAK_THROW(ERR_INVALID_OPMASK_WITH_MEMORY) bool b = false; if (addr.isBroadcast()) { if (!(type & (T_B32 | T_B64))) XBYAK_THROW(ERR_INVALID_BROADCAST) b = true; } int VL = regExp.isVsib() ? index.getBit() : 0; disp8N = evex(r, base, p1, type, code, &index, b, aaa, VL, index.isSIMD() && index.isExtIdx2()); } else { vex(r, base, p1, type, code, index.isExtIdx()); } if (type & T_VSIB) addr.permitVsib = true; if (disp8N) addr.disp8N = disp8N; if (imm8 != NONE) addr.immSize = 1; opAddr(addr, r.getIdx()); } else { const Reg& base = op2.getReg(); if ((type & T_MUST_EVEX) || r.hasEvex() || (p1 && p1->hasEvex()) || base.hasEvex()) { evex(r, base, p1, type, code); } else { vex(r, base, p1, type, code); } setModRM(3, r.getIdx(), base.getIdx()); } if (imm8 != NONE) db(imm8); } // (r, r, r/m) // opRRO(a, b, c) == opROO(b, c, a) void opRRO(const Reg& d, const Reg& r1, const Operand& op2, uint64_t type, uint8_t code, int imm8 = NONE) { const unsigned int bit = d.getBit(); if (r1.getBit() != bit || (op2.isREG() && op2.getBit() != bit)) XBYAK_THROW(ERR_BAD_COMBINATION) type |= (bit == 64) ? T_W1 : T_W0; if (d.hasRex2() || r1.hasRex2() || op2.hasRex2() || d.getNF()) { opROO(r1, op2, d, type, code); if (imm8 != NONE) db(imm8); } else { opVex(d, &r1, op2, type, code, imm8); } } void opAVX_X_X_XM(const Xmm& x1, const Operand& op1, const Operand& op2, uint64_t type, int code, int imm8 = NONE) { const Xmm *x2 = static_cast(&op1); const Operand *op = &op2; if (op2.isNone()) { // (x1, op1) -> (x1, x1, op1) x2 = &x1; op = &op1; } // (x1, x2, op) if (!((x1.isXMM() && x2->isXMM()) || ((type & T_YMM) && ((x1.isYMM() && x2->isYMM()) || (x1.isZMM() && x2->isZMM()))))) XBYAK_THROW(ERR_BAD_COMBINATION) opVex(x1, x2, *op, type, code, imm8); } void opAVX_K_X_XM(const Opmask& k, const Xmm& x2, const Operand& op3, uint64_t type, int code, int imm8 = NONE) { if (!op3.isMEM() && (x2.getKind() != op3.getKind())) XBYAK_THROW(ERR_BAD_COMBINATION) opVex(k, &x2, op3, type, code, imm8); } // (x, x/m), (y, x/m256), (z, y/m) void checkCvt1(const Operand& x, const Operand& op) const { if (!op.isMEM() && !(x.is(Operand::XMM | Operand::YMM) && op.isXMM()) && !(x.isZMM() && op.isYMM())) XBYAK_THROW(ERR_BAD_COMBINATION) } // (x, x/m), (x, y/m256), (y, z/m) void checkCvt2(const Xmm& x, const Operand& op) const { if (!(x.isXMM() && op.is(Operand::XMM | Operand::YMM | Operand::MEM)) && !(x.isYMM() && op.is(Operand::ZMM | Operand::MEM))) XBYAK_THROW(ERR_BAD_COMBINATION) } void opCvt(const Xmm& x, const Operand& op, uint64_t type, int code) { Operand::Kind kind = x.isXMM() ? (op.isBit(256) ? Operand::YMM : Operand::XMM) : Operand::ZMM; opVex(x.copyAndSetKind(kind), &xm0, op, type, code); } void opCvt2(const Xmm& x, const Operand& op, uint64_t type, int code) { checkCvt2(x, op); opCvt(x, op, type, code); } void opCvt3(const Xmm& x1, const Xmm& x2, const Operand& op, uint64_t type, uint64_t type64, uint64_t type32, uint8_t code) { if (!(x1.isXMM() && x2.isXMM() && (op.isREG(i32e) || op.isMEM()))) XBYAK_THROW(ERR_BAD_SIZE_OF_REGISTER) Xmm x(op.getIdx()); const Operand *p = op.isREG() ? &x : &op; opVex(x1, &x2, *p, type | (op.isBit(64) ? type64 : type32), code); } // (x, x/y/xword/yword), (y, z/m) void checkCvt4(const Xmm& x, const Operand& op) const { if (!(x.isXMM() && op.is(Operand::XMM | Operand::YMM | Operand::MEM) && op.isBit(128|256)) && !(x.isYMM() && op.is(Operand::ZMM | Operand::MEM))) XBYAK_THROW(ERR_BAD_COMBINATION) } // (x, x/y/z/xword/yword/zword) void opCvt5(const Xmm& x, const Operand& op, uint64_t type, int code) { if (!(x.isXMM() && op.isBit(128|256|512))) XBYAK_THROW(ERR_BAD_COMBINATION) Operand::Kind kind = op.isBit(128) ? Operand::XMM : op.isBit(256) ? Operand::YMM : Operand::ZMM; opVex(x.copyAndSetKind(kind), &xm0, op, type, code); } const Xmm& cvtIdx0(const Operand& x) const { return x.isZMM() ? zm0 : x.isYMM() ? ym0 : xm0; } // support (x, x/m, imm), (y, y/m, imm) void opAVX_X_XM_IMM(const Xmm& x, const Operand& op, uint64_t type, int code, int imm8 = NONE) { opAVX_X_X_XM(x, cvtIdx0(x), op, type, code, imm8); } void opCnt(const Reg& reg, const Operand& op, uint8_t code) { if (reg.isBit(8)) XBYAK_THROW(ERR_BAD_SIZE_OF_REGISTER) bool is16bit = reg.isREG(16) && (op.isREG(16) || op.isMEM()); if (!is16bit && !(reg.isREG(i32e) && (op.isREG(reg.getBit()) || op.isMEM()))) XBYAK_THROW(ERR_BAD_COMBINATION) if (is16bit) db(0x66); opRO(reg.changeBit(i32e == 32 ? 32 : reg.getBit()), op, T_F3 | T_0F, code); } void opGather(const Xmm& x1, const Address& addr, const Xmm& x2, uint64_t type, uint8_t code, int mode) { const RegExp& regExp = addr.getRegExp(); if (!regExp.isVsib(128 | 256)) XBYAK_THROW(ERR_BAD_VSIB_ADDRESSING) const int y_vx_y = 0; const int y_vy_y = 1; // const int x_vy_x = 2; const bool isAddrYMM = regExp.getIndex().getBit() == 256; if (!x1.isXMM() || isAddrYMM || !x2.isXMM()) { bool isOK = false; if (mode == y_vx_y) { isOK = x1.isYMM() && !isAddrYMM && x2.isYMM(); } else if (mode == y_vy_y) { isOK = x1.isYMM() && isAddrYMM && x2.isYMM(); } else { // x_vy_x isOK = !x1.isYMM() && isAddrYMM && !x2.isYMM(); } if (!isOK) XBYAK_THROW(ERR_BAD_VSIB_ADDRESSING) } int i1 = x1.getIdx(); int i2 = regExp.getIndex().getIdx(); int i3 = x2.getIdx(); if (i1 == i2 || i1 == i3 || i2 == i3) XBYAK_THROW(ERR_SAME_REGS_ARE_INVALID); opAVX_X_X_XM(isAddrYMM ? Ymm(i1) : x1, isAddrYMM ? Ymm(i3) : x2, addr, type, code); } enum { xx_yy_zz = 0, xx_yx_zy = 1, xx_xy_yz = 2 }; void checkGather2(const Xmm& x1, const Reg& x2, int mode) const { if (x1.isXMM() && x2.isXMM()) return; switch (mode) { case xx_yy_zz: if ((x1.isYMM() && x2.isYMM()) || (x1.isZMM() && x2.isZMM())) return; break; case xx_yx_zy: if ((x1.isYMM() && x2.isXMM()) || (x1.isZMM() && x2.isYMM())) return; break; case xx_xy_yz: if ((x1.isXMM() && x2.isYMM()) || (x1.isYMM() && x2.isZMM())) return; break; } XBYAK_THROW(ERR_BAD_VSIB_ADDRESSING) } void opGather2(const Xmm& x, const Address& addr, uint64_t type, uint8_t code, int mode) { if (x.hasZero()) XBYAK_THROW(ERR_INVALID_ZERO) const RegExp& regExp = addr.getRegExp(); checkGather2(x, regExp.getIndex(), mode); int maskIdx = x.getOpmaskIdx(); if ((type & T_M_K) && addr.getOpmaskIdx()) maskIdx = addr.getOpmaskIdx(); if (maskIdx == 0) XBYAK_THROW(ERR_K0_IS_INVALID); if (!(type & T_M_K) && x.getIdx() == regExp.getIndex().getIdx()) XBYAK_THROW(ERR_SAME_REGS_ARE_INVALID); opVex(x, 0, addr, type, code); } /* xx_xy_yz ; mode = true xx_xy_xz ; mode = false */ void opVmov(const Operand& op, const Xmm& x, uint64_t type, uint8_t code, bool mode) { if (mode) { if (!op.isMEM() && !((op.isXMM() && x.isXMM()) || (op.isXMM() && x.isYMM()) || (op.isYMM() && x.isZMM()))) XBYAK_THROW(ERR_BAD_COMBINATION) } else { if (!op.isMEM() && !op.isXMM()) XBYAK_THROW(ERR_BAD_COMBINATION) } opVex(x, 0, op, type, code); } void opGatherFetch(const Address& addr, const Xmm& x, uint64_t type, uint8_t code, Operand::Kind kind) { if (addr.hasZero()) XBYAK_THROW(ERR_INVALID_ZERO) if (addr.getRegExp().getIndex().getKind() != kind) XBYAK_THROW(ERR_BAD_VSIB_ADDRESSING) opVex(x, 0, addr, type, code); } void opEncoding(const Xmm& x1, const Xmm& x2, const Operand& op, uint64_t type, int code, PreferredEncoding encoding) { opAVX_X_X_XM(x1, x2, op, type | orEvexIf(encoding), code); } int orEvexIf(PreferredEncoding encoding) { if (encoding == DefaultEncoding) { encoding = defaultEncoding_; } if (encoding == EvexEncoding) { #ifdef XBYAK_DISABLE_AVX512 XBYAK_THROW(ERR_EVEX_IS_INVALID) #endif return T_MUST_EVEX; } return 0; } void opInOut(const Reg& a, const Reg& d, uint8_t code) { if (a.getIdx() == Operand::AL && d.getIdx() == Operand::DX && d.getBit() == 16) { switch (a.getBit()) { case 8: db(code); return; case 16: db(0x66); db(code + 1); return; case 32: db(code + 1); return; } } XBYAK_THROW(ERR_BAD_COMBINATION) } void opInOut(const Reg& a, uint8_t code, uint8_t v) { if (a.getIdx() == Operand::AL) { switch (a.getBit()) { case 8: db(code); db(v); return; case 16: db(0x66); db(code + 1); db(v); return; case 32: db(code + 1); db(v); return; } } XBYAK_THROW(ERR_BAD_COMBINATION) } void opCcmp(const Operand& op1, const Operand& op2, int dfv, int code, int sc) // cmp = 0x38, test = 0x84 { if (dfv < 0 || 15 < dfv) XBYAK_THROW(ERR_INVALID_DFV) opROO(Reg(15 - dfv, Operand::REG, (op1.getBit() | op2.getBit())), op1, op2, T_APX|T_CODE1_IF1, code, 0, sc); } void opCcmpi(const Operand& op, int imm, int dfv, int sc) { if (dfv < 0 || 15 < dfv) XBYAK_THROW(ERR_INVALID_DFV) uint32_t immBit = getImmBit(op, imm); uint32_t opBit = op.getBit(); int tmp = immBit < (std::min)(opBit, 32U) ? 2 : 0; opROO(Reg(15 - dfv, Operand::REG, opBit), op, Reg(15, Operand::REG, opBit), T_APX|T_CODE1_IF1, 0x80 | tmp, immBit / 8, sc); db(imm, immBit / 8); } void opTesti(const Operand& op, int imm, int dfv, int sc) { if (dfv < 0 || 15 < dfv) XBYAK_THROW(ERR_INVALID_DFV) uint32_t opBit = op.getBit(); if (opBit == 0) XBYAK_THROW(ERR_MEM_SIZE_IS_NOT_SPECIFIED); int immBit = (std::min)(opBit, 32U); opROO(Reg(15 - dfv, Operand::REG, opBit), op, Reg(0, Operand::REG, opBit), T_APX|T_CODE1_IF1, 0xF6, immBit / 8, sc); db(imm, immBit / 8); } void opCfcmov(const Reg& d, const Operand& op1, const Operand& op2, int code) { const int dBit = d.getBit(); const int op2Bit = op2.getBit(); if (dBit > 0 && op2Bit > 0 && dBit != op2Bit) XBYAK_THROW(ERR_BAD_SIZE_OF_REGISTER) if (op1.isBit(8) || op2Bit == 8) XBYAK_THROW(ERR_BAD_SIZE_OF_REGISTER) if (op2.isMEM()) { if (op1.isMEM()) XBYAK_THROW(ERR_BAD_COMBINATION) uint64_t type = dBit > 0 ? (T_MUST_EVEX|T_NF) : T_MUST_EVEX; opROO(d, op2, op1, type, code); } else { opROO(d, op1, static_cast(op2)|T_nf, T_MUST_EVEX|T_NF, code); } } #ifdef XBYAK64 void opAMX(const Tmm& t1, const Address& addr, uint64_t type, int code) { // require both base and index Address addr2 = addr.cloneNoOptimize(); const RegExp exp = addr2.getRegExp(); if (exp.getBase().getBit() == 0 || exp.getIndex().getBit() == 0) XBYAK_THROW(ERR_NOT_SUPPORTED) if (opROO(Reg(), addr2, t1, T_APX|type, code)) return; opVex(t1, &tmm0, addr2, type, code); } #endif // (reg32e/mem, k) if rev else (k, k/mem/reg32e) // size = 8, 16, 32, 64 void opKmov(const Opmask& k, const Operand& op, bool rev, int size) { int code = 0; bool isReg = op.isREG(size < 64 ? 32 : 64); if (rev) { code = isReg ? 0x93 : op.isMEM() ? 0x91 : 0; } else { code = op.isOPMASK() || op.isMEM() ? 0x90 : isReg ? 0x92 : 0; } if (code == 0) XBYAK_THROW(ERR_BAD_COMBINATION) uint64_t type = T_0F; switch (size) { case 8: type |= T_W0|T_66; break; case 16: type |= T_W0; break; case 32: type |= isReg ? T_W0|T_F2 : T_W1|T_66; break; case 64: type |= isReg ? T_W1|T_F2 : T_W1; break; } const Operand *p1 = &k, *p2 = &op; if (code == 0x93) { std::swap(p1, p2); } if (opROO(Reg(), *p2, *p1, T_APX|type, code)) return; opVex(static_cast(*p1), 0, *p2, T_L0|type, code); } void opEncodeKey(const Reg32& r1, const Reg32& r2, uint8_t code1, uint8_t code2) { if (r1.getIdx() < 8 && r2.getIdx() < 8) { db(0xF3); db(0x0F); db(0x38); db(code1); setModRM(3, r1.getIdx(), r2.getIdx()); return; } opROO(Reg(), r2, r1, T_MUST_EVEX|T_F3, code2); } void opSSE_APX(const Xmm& x, const Operand& op, uint64_t type1, uint8_t code1, uint64_t type2, uint8_t code2, int imm = NONE) { if (x.getIdx() <= 15 && op.hasRex2() && opROO(Reg(), op, x, type2, code2, imm != NONE ? 1 : 0)) { if (imm != NONE) db(imm); return; } opSSE(x, op, type1, code1, isXMM_XMMorMEM, imm); } public: unsigned int getVersion() const { return VERSION; } using CodeArray::db; const Mmx mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7; const Xmm xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7; const Ymm ymm0, ymm1, ymm2, ymm3, ymm4, ymm5, ymm6, ymm7; const Zmm zmm0, zmm1, zmm2, zmm3, zmm4, zmm5, zmm6, zmm7; const Xmm &xm0, &xm1, &xm2, &xm3, &xm4, &xm5, &xm6, &xm7; const Ymm &ym0, &ym1, &ym2, &ym3, &ym4, &ym5, &ym6, &ym7; const Zmm &zm0, &zm1, &zm2, &zm3, &zm4, &zm5, &zm6, &zm7; const Reg32 eax, ecx, edx, ebx, esp, ebp, esi, edi; const Reg16 ax, cx, dx, bx, sp, bp, si, di; const Reg8 al, cl, dl, bl, ah, ch, dh, bh; const AddressFrame ptr, byte, word, dword, qword, xword, yword, zword; // xword is same as oword of NASM const AddressFrame ptr_b, xword_b, yword_b, zword_b; // broadcast such as {1to2}, {1to4}, {1to8}, {1to16}, {b} const Fpu st0, st1, st2, st3, st4, st5, st6, st7; const Opmask k0, k1, k2, k3, k4, k5, k6, k7; const BoundsReg bnd0, bnd1, bnd2, bnd3; const EvexModifierRounding T_sae, T_rn_sae, T_rd_sae, T_ru_sae, T_rz_sae; // {sae}, {rn-sae}, {rd-sae}, {ru-sae}, {rz-sae} const EvexModifierZero T_z; // {z} const ApxFlagNF T_nf; const ApxFlagZU T_zu; #ifdef XBYAK64 const Reg64 rax, rcx, rdx, rbx, rsp, rbp, rsi, rdi, r8, r9, r10, r11, r12, r13, r14, r15; const Reg64 r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31; const Reg32 r8d, r9d, r10d, r11d, r12d, r13d, r14d, r15d; const Reg32 r16d, r17d, r18d, r19d, r20d, r21d, r22d, r23d, r24d, r25d, r26d, r27d, r28d, r29d, r30d, r31d; const Reg16 r8w, r9w, r10w, r11w, r12w, r13w, r14w, r15w; const Reg16 r16w, r17w, r18w, r19w, r20w, r21w, r22w, r23w, r24w, r25w, r26w, r27w, r28w, r29w, r30w, r31w; const Reg8 r8b, r9b, r10b, r11b, r12b, r13b, r14b, r15b; const Reg8 r16b, r17b, r18b, r19b, r20b, r21b, r22b, r23b, r24b, r25b, r26b, r27b, r28b, r29b, r30b, r31b; const Reg8 spl, bpl, sil, dil; const Xmm xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15; const Xmm xmm16, xmm17, xmm18, xmm19, xmm20, xmm21, xmm22, xmm23; const Xmm xmm24, xmm25, xmm26, xmm27, xmm28, xmm29, xmm30, xmm31; const Ymm ymm8, ymm9, ymm10, ymm11, ymm12, ymm13, ymm14, ymm15; const Ymm ymm16, ymm17, ymm18, ymm19, ymm20, ymm21, ymm22, ymm23; const Ymm ymm24, ymm25, ymm26, ymm27, ymm28, ymm29, ymm30, ymm31; const Zmm zmm8, zmm9, zmm10, zmm11, zmm12, zmm13, zmm14, zmm15; const Zmm zmm16, zmm17, zmm18, zmm19, zmm20, zmm21, zmm22, zmm23; const Zmm zmm24, zmm25, zmm26, zmm27, zmm28, zmm29, zmm30, zmm31; const Tmm tmm0, tmm1, tmm2, tmm3, tmm4, tmm5, tmm6, tmm7; const Xmm &xm8, &xm9, &xm10, &xm11, &xm12, &xm13, &xm14, &xm15; // for my convenience const Xmm &xm16, &xm17, &xm18, &xm19, &xm20, &xm21, &xm22, &xm23; const Xmm &xm24, &xm25, &xm26, &xm27, &xm28, &xm29, &xm30, &xm31; const Ymm &ym8, &ym9, &ym10, &ym11, &ym12, &ym13, &ym14, &ym15; const Ymm &ym16, &ym17, &ym18, &ym19, &ym20, &ym21, &ym22, &ym23; const Ymm &ym24, &ym25, &ym26, &ym27, &ym28, &ym29, &ym30, &ym31; const Zmm &zm8, &zm9, &zm10, &zm11, &zm12, &zm13, &zm14, &zm15; const Zmm &zm16, &zm17, &zm18, &zm19, &zm20, &zm21, &zm22, &zm23; const Zmm &zm24, &zm25, &zm26, &zm27, &zm28, &zm29, &zm30, &zm31; const RegRip rip; #endif #ifndef XBYAK_DISABLE_SEGMENT const Segment es, cs, ss, ds, fs, gs; #endif private: bool isDefaultJmpNEAR_; PreferredEncoding defaultEncoding_; public: void L(const std::string& label) { labelMgr_.defineSlabel(label); } void L(Label& label) { labelMgr_.defineClabel(label); } Label L() { Label label; L(label); return label; } void inLocalLabel() { labelMgr_.enterLocal(); } void outLocalLabel() { labelMgr_.leaveLocal(); } /* assign src to dst require dst : does not used by L() src : used by L() */ void assignL(Label& dst, const Label& src) { labelMgr_.assign(dst, src); } /* put address of label to buffer @note the put size is 4(32-bit), 8(64-bit) */ void putL(std::string label) { putL_inner(label); } void putL(const Label& label) { putL_inner(label); } // set default type of `jmp` of undefined label to T_NEAR void setDefaultJmpNEAR(bool isNear) { isDefaultJmpNEAR_ = isNear; } void jmp(const Operand& op, LabelType type = T_AUTO) { opJmpOp(op, type, 4); } void jmp(std::string label, LabelType type = T_AUTO) { opJmp(label, type, 0xEB, 0xE9, 0); } void jmp(const char *label, LabelType type = T_AUTO) { jmp(std::string(label), type); } void jmp(const Label& label, LabelType type = T_AUTO) { opJmp(label, type, 0xEB, 0xE9, 0); } void jmp(const void *addr, LabelType type = T_AUTO) { opJmpAbs(addr, type, 0xEB, 0xE9); } void call(const Operand& op, LabelType type = T_AUTO) { opJmpOp(op, type, 2); } // call(string label), not const std::string& void call(std::string label) { opJmp(label, T_NEAR, 0, 0xE8, 0); } void call(const char *label) { call(std::string(label)); } void call(const Label& label) { opJmp(label, T_NEAR, 0, 0xE8, 0); } // call(function pointer) #ifdef XBYAK_VARIADIC_TEMPLATE template void call(Ret(*func)(Params...)) { call(reinterpret_cast(func)); } #endif void call(const void *addr) { opJmpAbs(addr, T_NEAR, 0, 0xE8); } void test(const Operand& op, const Reg& reg) { opRO(reg, op, 0, 0x84, op.getKind() == reg.getKind()); } void test(const Operand& op, uint32_t imm) { verifyMemHasSize(op); int immSize = (std::min)(op.getBit() / 8, 4U); if (op.isREG() && op.getIdx() == 0) { // al, ax, eax rex(op); db(0xA8 | (op.isBit(8) ? 0 : 1)); } else { opRext(op, 0, 0, 0, 0xF6, false, immSize); } db(imm, immSize); } void imul(const Reg& reg, const Operand& op, int imm) { int s = inner::IsInDisp8(imm) ? 1 : 0; int immSize = s ? 1 : reg.isREG(16) ? 2 : 4; uint8_t code = uint8_t(0x69 | (s << 1)); if (!opROO(Reg(), op, reg, T_APX|T_NF|T_ZU, code, immSize)) { opRO(reg, op, 0, code, reg.getKind() == op.getKind(), immSize); } db(imm, immSize); } void push(const Operand& op) { opPushPop(op, 0xFF, 6, 0x50); } void pop(const Operand& op) { opPushPop(op, 0x8F, 0, 0x58); } void push(const AddressFrame& af, uint32_t imm) { if (af.bit_ == 8) { db(0x6A); db(imm); } else if (af.bit_ == 16) { db(0x66); db(0x68); dw(imm); } else { db(0x68); dd(imm); } } /* use "push(word, 4)" if you want "push word 4" */ void push(uint32_t imm) { if (inner::IsInDisp8(imm)) { push(byte, imm); } else { push(dword, imm); } } void mov(const Operand& op1, const Operand& op2) { const Reg *reg = 0; const Address *addr = 0; uint8_t code = 0; if (op1.isREG() && op1.getIdx() == 0 && op2.isMEM()) { // mov eax|ax|al, [disp] reg = &op1.getReg(); addr= &op2.getAddress(); code = 0xA0; } else if (op1.isMEM() && op2.isREG() && op2.getIdx() == 0) { // mov [disp], eax|ax|al reg = &op2.getReg(); addr= &op1.getAddress(); code = 0xA2; } #ifdef XBYAK64 if (addr && addr->is64bitDisp()) { if (code) { rex(*reg); db(op1.isREG(8) ? 0xA0 : op1.isREG() ? 0xA1 : op2.isREG(8) ? 0xA2 : 0xA3); db(addr->getDisp(), 8); } else { XBYAK_THROW(ERR_BAD_COMBINATION) } } else #else if (code && addr->isOnlyDisp()) { rex(*reg, *addr); db(code | (reg->isBit(8) ? 0 : 1)); dd(static_cast(addr->getDisp())); } else #endif { opRO_MR(op1, op2, 0x88); } } void mov(const Operand& op, uint64_t imm) { if (op.isREG()) { const int size = mov_imm(op.getReg(), imm); db(imm, size); } else if (op.isMEM()) { verifyMemHasSize(op); int immSize = op.getBit() / 8; if (immSize <= 4) { int64_t s = int64_t(imm) >> (immSize * 8); if (s != 0 && s != -1) XBYAK_THROW(ERR_IMM_IS_TOO_BIG) } else { if (!inner::IsInInt32(imm)) XBYAK_THROW(ERR_IMM_IS_TOO_BIG) immSize = 4; } opMR(op.getAddress(immSize), Reg(0, Operand::REG, op.getBit()), 0, 0xC6); db(static_cast(imm), immSize); } else { XBYAK_THROW(ERR_BAD_COMBINATION) } } // The template is used to avoid ambiguity when the 2nd argument is 0. // When the 2nd argument is 0 the call goes to // `void mov(const Operand& op, uint64_t imm)`. template void mov(const T1&, const T2 *) { T1::unexpected; } void mov(const NativeReg& reg, const Label& label) { mov_imm(reg, dummyAddr); putL(label); } void xchg(const Operand& op1, const Operand& op2) { const Operand *p1 = &op1, *p2 = &op2; if (p1->isMEM() || (p2->isREG(16 | i32e) && p2->getIdx() == 0)) { p1 = &op2; p2 = &op1; } if (p1->isMEM()) XBYAK_THROW(ERR_BAD_COMBINATION) if (p2->isREG() && (p1->isREG(16 | i32e) && p1->getIdx() == 0) #ifdef XBYAK64 && (p2->getIdx() != 0 || !p1->isREG(32)) #endif ) { rex(*p2, *p1); db(0x90 | (p2->getIdx() & 7)); return; } opRO(static_cast(*p1), *p2, 0, 0x86 | (p1->isBit(8) ? 0 : 1), (p1->isREG() && (p1->getBit() == p2->getBit()))); } #ifndef XBYAK_DISABLE_SEGMENT void push(const Segment& seg) { switch (seg.getIdx()) { case Segment::es: db(0x06); break; case Segment::cs: db(0x0E); break; case Segment::ss: db(0x16); break; case Segment::ds: db(0x1E); break; case Segment::fs: db(0x0F); db(0xA0); break; case Segment::gs: db(0x0F); db(0xA8); break; default: assert(0); } } void pop(const Segment& seg) { switch (seg.getIdx()) { case Segment::es: db(0x07); break; case Segment::cs: XBYAK_THROW(ERR_BAD_COMBINATION) case Segment::ss: db(0x17); break; case Segment::ds: db(0x1F); break; case Segment::fs: db(0x0F); db(0xA1); break; case Segment::gs: db(0x0F); db(0xA9); break; default: assert(0); } } void putSeg(const Segment& seg) { switch (seg.getIdx()) { case Segment::es: db(0x2E); break; case Segment::cs: db(0x36); break; case Segment::ss: db(0x3E); break; case Segment::ds: db(0x26); break; case Segment::fs: db(0x64); break; case Segment::gs: db(0x65); break; default: assert(0); } } void mov(const Operand& op, const Segment& seg) { opRO(Reg8(seg.getIdx()), op, 0, 0x8C, op.isREG(16|i32e)); } void mov(const Segment& seg, const Operand& op) { opRO(Reg8(seg.getIdx()), op.isREG(16|i32e) ? static_cast(op.getReg().cvt32()) : op, 0, 0x8E, op.isREG(16|i32e)); } #endif enum { NONE = 256 }; // constructor CodeGenerator(size_t maxSize = DEFAULT_MAX_CODE_SIZE, void *userPtr = 0, Allocator *allocator = 0) : CodeArray(maxSize, userPtr, allocator) , mm0(0), mm1(1), mm2(2), mm3(3), mm4(4), mm5(5), mm6(6), mm7(7) , xmm0(0), xmm1(1), xmm2(2), xmm3(3), xmm4(4), xmm5(5), xmm6(6), xmm7(7) , ymm0(0), ymm1(1), ymm2(2), ymm3(3), ymm4(4), ymm5(5), ymm6(6), ymm7(7) , zmm0(0), zmm1(1), zmm2(2), zmm3(3), zmm4(4), zmm5(5), zmm6(6), zmm7(7) // for my convenience , xm0(xmm0), xm1(xmm1), xm2(xmm2), xm3(xmm3), xm4(xmm4), xm5(xmm5), xm6(xmm6), xm7(xmm7) , ym0(ymm0), ym1(ymm1), ym2(ymm2), ym3(ymm3), ym4(ymm4), ym5(ymm5), ym6(ymm6), ym7(ymm7) , zm0(zmm0), zm1(zmm1), zm2(zmm2), zm3(zmm3), zm4(zmm4), zm5(zmm5), zm6(zmm6), zm7(zmm7) , eax(Operand::EAX), ecx(Operand::ECX), edx(Operand::EDX), ebx(Operand::EBX), esp(Operand::ESP), ebp(Operand::EBP), esi(Operand::ESI), edi(Operand::EDI) , ax(Operand::AX), cx(Operand::CX), dx(Operand::DX), bx(Operand::BX), sp(Operand::SP), bp(Operand::BP), si(Operand::SI), di(Operand::DI) , al(Operand::AL), cl(Operand::CL), dl(Operand::DL), bl(Operand::BL), ah(Operand::AH), ch(Operand::CH), dh(Operand::DH), bh(Operand::BH) , ptr(0), byte(8), word(16), dword(32), qword(64), xword(128), yword(256), zword(512) , ptr_b(0, true), xword_b(128, true), yword_b(256, true), zword_b(512, true) , st0(0), st1(1), st2(2), st3(3), st4(4), st5(5), st6(6), st7(7) , k0(0), k1(1), k2(2), k3(3), k4(4), k5(5), k6(6), k7(7) , bnd0(0), bnd1(1), bnd2(2), bnd3(3) , T_sae(EvexModifierRounding::T_SAE), T_rn_sae(EvexModifierRounding::T_RN_SAE), T_rd_sae(EvexModifierRounding::T_RD_SAE), T_ru_sae(EvexModifierRounding::T_RU_SAE), T_rz_sae(EvexModifierRounding::T_RZ_SAE) , T_z() , T_nf() , T_zu() #ifdef XBYAK64 , rax(Operand::RAX), rcx(Operand::RCX), rdx(Operand::RDX), rbx(Operand::RBX), rsp(Operand::RSP), rbp(Operand::RBP), rsi(Operand::RSI), rdi(Operand::RDI), r8(Operand::R8), r9(Operand::R9), r10(Operand::R10), r11(Operand::R11), r12(Operand::R12), r13(Operand::R13), r14(Operand::R14), r15(Operand::R15) , r16(Operand::R16), r17(Operand::R17), r18(Operand::R18), r19(Operand::R19), r20(Operand::R20), r21(Operand::R21), r22(Operand::R22), r23(Operand::R23), r24(Operand::R24), r25(Operand::R25), r26(Operand::R26), r27(Operand::R27), r28(Operand::R28), r29(Operand::R29), r30(Operand::R30), r31(Operand::R31) , r8d(8), r9d(9), r10d(10), r11d(11), r12d(12), r13d(13), r14d(14), r15d(15) , r16d(Operand::R16D), r17d(Operand::R17D), r18d(Operand::R18D), r19d(Operand::R19D), r20d(Operand::R20D), r21d(Operand::R21D), r22d(Operand::R22D), r23d(Operand::R23D), r24d(Operand::R24D), r25d(Operand::R25D), r26d(Operand::R26D), r27d(Operand::R27D), r28d(Operand::R28D), r29d(Operand::R29D), r30d(Operand::R30D), r31d(Operand::R31D) , r8w(8), r9w(9), r10w(10), r11w(11), r12w(12), r13w(13), r14w(14), r15w(15) , r16w(Operand::R16W), r17w(Operand::R17W), r18w(Operand::R18W), r19w(Operand::R19W), r20w(Operand::R20W), r21w(Operand::R21W), r22w(Operand::R22W), r23w(Operand::R23W), r24w(Operand::R24W), r25w(Operand::R25W), r26w(Operand::R26W), r27w(Operand::R27W), r28w(Operand::R28W), r29w(Operand::R29W), r30w(Operand::R30W), r31w(Operand::R31W) , r8b(8), r9b(9), r10b(10), r11b(11), r12b(12), r13b(13), r14b(14), r15b(15) , r16b(Operand::R16B), r17b(Operand::R17B), r18b(Operand::R18B), r19b(Operand::R19B), r20b(Operand::R20B), r21b(Operand::R21B), r22b(Operand::R22B), r23b(Operand::R23B), r24b(Operand::R24B), r25b(Operand::R25B), r26b(Operand::R26B), r27b(Operand::R27B), r28b(Operand::R28B), r29b(Operand::R29B), r30b(Operand::R30B), r31b(Operand::R31B) , spl(Operand::SPL, true), bpl(Operand::BPL, true), sil(Operand::SIL, true), dil(Operand::DIL, true) , xmm8(8), xmm9(9), xmm10(10), xmm11(11), xmm12(12), xmm13(13), xmm14(14), xmm15(15) , xmm16(16), xmm17(17), xmm18(18), xmm19(19), xmm20(20), xmm21(21), xmm22(22), xmm23(23) , xmm24(24), xmm25(25), xmm26(26), xmm27(27), xmm28(28), xmm29(29), xmm30(30), xmm31(31) , ymm8(8), ymm9(9), ymm10(10), ymm11(11), ymm12(12), ymm13(13), ymm14(14), ymm15(15) , ymm16(16), ymm17(17), ymm18(18), ymm19(19), ymm20(20), ymm21(21), ymm22(22), ymm23(23) , ymm24(24), ymm25(25), ymm26(26), ymm27(27), ymm28(28), ymm29(29), ymm30(30), ymm31(31) , zmm8(8), zmm9(9), zmm10(10), zmm11(11), zmm12(12), zmm13(13), zmm14(14), zmm15(15) , zmm16(16), zmm17(17), zmm18(18), zmm19(19), zmm20(20), zmm21(21), zmm22(22), zmm23(23) , zmm24(24), zmm25(25), zmm26(26), zmm27(27), zmm28(28), zmm29(29), zmm30(30), zmm31(31) , tmm0(0), tmm1(1), tmm2(2), tmm3(3), tmm4(4), tmm5(5), tmm6(6), tmm7(7) // for my convenience , xm8(xmm8), xm9(xmm9), xm10(xmm10), xm11(xmm11), xm12(xmm12), xm13(xmm13), xm14(xmm14), xm15(xmm15) , xm16(xmm16), xm17(xmm17), xm18(xmm18), xm19(xmm19), xm20(xmm20), xm21(xmm21), xm22(xmm22), xm23(xmm23) , xm24(xmm24), xm25(xmm25), xm26(xmm26), xm27(xmm27), xm28(xmm28), xm29(xmm29), xm30(xmm30), xm31(xmm31) , ym8(ymm8), ym9(ymm9), ym10(ymm10), ym11(ymm11), ym12(ymm12), ym13(ymm13), ym14(ymm14), ym15(ymm15) , ym16(ymm16), ym17(ymm17), ym18(ymm18), ym19(ymm19), ym20(ymm20), ym21(ymm21), ym22(ymm22), ym23(ymm23) , ym24(ymm24), ym25(ymm25), ym26(ymm26), ym27(ymm27), ym28(ymm28), ym29(ymm29), ym30(ymm30), ym31(ymm31) , zm8(zmm8), zm9(zmm9), zm10(zmm10), zm11(zmm11), zm12(zmm12), zm13(zmm13), zm14(zmm14), zm15(zmm15) , zm16(zmm16), zm17(zmm17), zm18(zmm18), zm19(zmm19), zm20(zmm20), zm21(zmm21), zm22(zmm22), zm23(zmm23) , zm24(zmm24), zm25(zmm25), zm26(zmm26), zm27(zmm27), zm28(zmm28), zm29(zmm29), zm30(zmm30), zm31(zmm31) , rip() #endif #ifndef XBYAK_DISABLE_SEGMENT , es(Segment::es), cs(Segment::cs), ss(Segment::ss), ds(Segment::ds), fs(Segment::fs), gs(Segment::gs) #endif , isDefaultJmpNEAR_(false) , defaultEncoding_(EvexEncoding) { labelMgr_.set(this); } void reset() { ClearError(); resetSize(); labelMgr_.reset(); labelMgr_.set(this); } bool hasUndefinedLabel() const { return labelMgr_.hasUndefSlabel() || labelMgr_.hasUndefClabel(); } /* MUST call ready() to complete generating code if you use AutoGrow mode. It is not necessary for the other mode if hasUndefinedLabel() is true. */ void ready(ProtectMode mode = PROTECT_RWE) { if (hasUndefinedLabel()) XBYAK_THROW(ERR_LABEL_IS_NOT_FOUND) if (isAutoGrow()) { calcJmpAddress(); if (useProtect()) setProtectMode(mode); } } // set read/exec void readyRE() { return ready(PROTECT_RE); } #ifdef XBYAK_TEST void dump(bool doClear = true) { CodeArray::dump(); if (doClear) size_ = 0; } #endif #ifdef XBYAK_UNDEF_JNL #undef jnl #endif // set default encoding to select Vex or Evex void setDefaultEncoding(PreferredEncoding encoding) { defaultEncoding_ = encoding; } void sha1msg12(const Xmm& x, const Operand& op) { opROO(Reg(), op, x, T_MUST_EVEX, 0xD9); } void bswap(const Reg32e& r) { int idx = r.getIdx(); uint8_t rex = (r.isREG(64) ? 8 : 0) | ((idx & 8) ? 1 : 0); if (idx >= 16) { db(0xD5); db((1<<7) | (idx & 16) | rex); } else { if (rex) db(0x40 | rex); db(0x0F); } db(0xC8 + (idx & 7)); } /* use single byte nop if useMultiByteNop = false */ void nop(size_t size = 1, bool useMultiByteNop = true) { if (!useMultiByteNop) { for (size_t i = 0; i < size; i++) { db(0x90); } return; } /* Intel Architectures Software Developer's Manual Volume 2 recommended multi-byte sequence of NOP instruction AMD and Intel seem to agree on the same sequences for up to 9 bytes: https://support.amd.com/TechDocs/55723_SOG_Fam_17h_Processors_3.00.pdf */ static const uint8_t nopTbl[9][9] = { {0x90}, {0x66, 0x90}, {0x0F, 0x1F, 0x00}, {0x0F, 0x1F, 0x40, 0x00}, {0x0F, 0x1F, 0x44, 0x00, 0x00}, {0x66, 0x0F, 0x1F, 0x44, 0x00, 0x00}, {0x0F, 0x1F, 0x80, 0x00, 0x00, 0x00, 0x00}, {0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}, {0x66, 0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}, }; const size_t n = sizeof(nopTbl) / sizeof(nopTbl[0]); while (size > 0) { size_t len = (std::min)(n, size); const uint8_t *seq = nopTbl[len - 1]; db(seq, len); size -= len; } } #ifndef XBYAK_DONT_READ_LIST #include "xbyak_mnemonic.h" /* use single byte nop if useMultiByteNop = false */ void align(size_t x = 16, bool useMultiByteNop = true) { if (x == 1) return; if (x < 1 || (x & (x - 1))) XBYAK_THROW(ERR_BAD_ALIGN) if (isAutoGrow()) XBYAK_THROW(ERR_BAD_ALIGN) size_t remain = size_t(getCurr()) % x; if (remain) { nop(x - remain, useMultiByteNop); } } #endif }; template <> inline void CodeGenerator::mov(const NativeReg& reg, const char *label) // can't use std::string { assert(label); mov_imm(reg, dummyAddr); putL(label); } namespace util { static const XBYAK_CONSTEXPR Mmx mm0(0), mm1(1), mm2(2), mm3(3), mm4(4), mm5(5), mm6(6), mm7(7); static const XBYAK_CONSTEXPR Xmm xmm0(0), xmm1(1), xmm2(2), xmm3(3), xmm4(4), xmm5(5), xmm6(6), xmm7(7); static const XBYAK_CONSTEXPR Ymm ymm0(0), ymm1(1), ymm2(2), ymm3(3), ymm4(4), ymm5(5), ymm6(6), ymm7(7); static const XBYAK_CONSTEXPR Zmm zmm0(0), zmm1(1), zmm2(2), zmm3(3), zmm4(4), zmm5(5), zmm6(6), zmm7(7); static const XBYAK_CONSTEXPR Reg32 eax(Operand::EAX), ecx(Operand::ECX), edx(Operand::EDX), ebx(Operand::EBX), esp(Operand::ESP), ebp(Operand::EBP), esi(Operand::ESI), edi(Operand::EDI); static const XBYAK_CONSTEXPR Reg16 ax(Operand::AX), cx(Operand::CX), dx(Operand::DX), bx(Operand::BX), sp(Operand::SP), bp(Operand::BP), si(Operand::SI), di(Operand::DI); static const XBYAK_CONSTEXPR Reg8 al(Operand::AL), cl(Operand::CL), dl(Operand::DL), bl(Operand::BL), ah(Operand::AH), ch(Operand::CH), dh(Operand::DH), bh(Operand::BH); static const XBYAK_CONSTEXPR AddressFrame ptr(0), byte(8), word(16), dword(32), qword(64), xword(128), yword(256), zword(512); static const XBYAK_CONSTEXPR AddressFrame ptr_b(0, true), xword_b(128, true), yword_b(256, true), zword_b(512, true); static const XBYAK_CONSTEXPR Fpu st0(0), st1(1), st2(2), st3(3), st4(4), st5(5), st6(6), st7(7); static const XBYAK_CONSTEXPR Opmask k0(0), k1(1), k2(2), k3(3), k4(4), k5(5), k6(6), k7(7); static const XBYAK_CONSTEXPR BoundsReg bnd0(0), bnd1(1), bnd2(2), bnd3(3); static const XBYAK_CONSTEXPR EvexModifierRounding T_sae(EvexModifierRounding::T_SAE), T_rn_sae(EvexModifierRounding::T_RN_SAE), T_rd_sae(EvexModifierRounding::T_RD_SAE), T_ru_sae(EvexModifierRounding::T_RU_SAE), T_rz_sae(EvexModifierRounding::T_RZ_SAE); static const XBYAK_CONSTEXPR EvexModifierZero T_z; #ifdef XBYAK64 static const XBYAK_CONSTEXPR Reg64 rax(Operand::RAX), rcx(Operand::RCX), rdx(Operand::RDX), rbx(Operand::RBX), rsp(Operand::RSP), rbp(Operand::RBP), rsi(Operand::RSI), rdi(Operand::RDI), r8(Operand::R8), r9(Operand::R9), r10(Operand::R10), r11(Operand::R11), r12(Operand::R12), r13(Operand::R13), r14(Operand::R14), r15(Operand::R15); static const XBYAK_CONSTEXPR Reg64 r16(16), r17(17), r18(18), r19(19), r20(20), r21(21), r22(22), r23(23), r24(24), r25(25), r26(26), r27(27), r28(28), r29(29), r30(30), r31(31); static const XBYAK_CONSTEXPR Reg32 r8d(8), r9d(9), r10d(10), r11d(11), r12d(12), r13d(13), r14d(14), r15d(15); static const XBYAK_CONSTEXPR Reg32 r16d(16), r17d(17), r18d(18), r19d(19), r20d(20), r21d(21), r22d(22), r23d(23), r24d(24), r25d(25), r26d(26), r27d(27), r28d(28), r29d(29), r30d(30), r31d(31); static const XBYAK_CONSTEXPR Reg16 r8w(8), r9w(9), r10w(10), r11w(11), r12w(12), r13w(13), r14w(14), r15w(15); static const XBYAK_CONSTEXPR Reg16 r16w(16), r17w(17), r18w(18), r19w(19), r20w(20), r21w(21), r22w(22), r23w(23), r24w(24), r25w(25), r26w(26), r27w(27), r28w(28), r29w(29), r30w(30), r31w(31); static const XBYAK_CONSTEXPR Reg8 r8b(8), r9b(9), r10b(10), r11b(11), r12b(12), r13b(13), r14b(14), r15b(15), spl(Operand::SPL, true), bpl(Operand::BPL, true), sil(Operand::SIL, true), dil(Operand::DIL, true); static const XBYAK_CONSTEXPR Reg8 r16b(16), r17b(17), r18b(18), r19b(19), r20b(20), r21b(21), r22b(22), r23b(23), r24b(24), r25b(25), r26b(26), r27b(27), r28b(28), r29b(29), r30b(30), r31b(31); static const XBYAK_CONSTEXPR Xmm xmm8(8), xmm9(9), xmm10(10), xmm11(11), xmm12(12), xmm13(13), xmm14(14), xmm15(15); static const XBYAK_CONSTEXPR Xmm xmm16(16), xmm17(17), xmm18(18), xmm19(19), xmm20(20), xmm21(21), xmm22(22), xmm23(23); static const XBYAK_CONSTEXPR Xmm xmm24(24), xmm25(25), xmm26(26), xmm27(27), xmm28(28), xmm29(29), xmm30(30), xmm31(31); static const XBYAK_CONSTEXPR Ymm ymm8(8), ymm9(9), ymm10(10), ymm11(11), ymm12(12), ymm13(13), ymm14(14), ymm15(15); static const XBYAK_CONSTEXPR Ymm ymm16(16), ymm17(17), ymm18(18), ymm19(19), ymm20(20), ymm21(21), ymm22(22), ymm23(23); static const XBYAK_CONSTEXPR Ymm ymm24(24), ymm25(25), ymm26(26), ymm27(27), ymm28(28), ymm29(29), ymm30(30), ymm31(31); static const XBYAK_CONSTEXPR Zmm zmm8(8), zmm9(9), zmm10(10), zmm11(11), zmm12(12), zmm13(13), zmm14(14), zmm15(15); static const XBYAK_CONSTEXPR Zmm zmm16(16), zmm17(17), zmm18(18), zmm19(19), zmm20(20), zmm21(21), zmm22(22), zmm23(23); static const XBYAK_CONSTEXPR Zmm zmm24(24), zmm25(25), zmm26(26), zmm27(27), zmm28(28), zmm29(29), zmm30(30), zmm31(31); static const XBYAK_CONSTEXPR Zmm tmm0(0), tmm1(1), tmm2(2), tmm3(3), tmm4(4), tmm5(5), tmm6(6), tmm7(7); static const XBYAK_CONSTEXPR RegRip rip; static const XBYAK_CONSTEXPR ApxFlagNF T_nf; static const XBYAK_CONSTEXPR ApxFlagZU T_zu; #endif #ifndef XBYAK_DISABLE_SEGMENT static const XBYAK_CONSTEXPR Segment es(Segment::es), cs(Segment::cs), ss(Segment::ss), ds(Segment::ds), fs(Segment::fs), gs(Segment::gs); #endif } // util #ifdef _MSC_VER #pragma warning(pop) #endif #if defined(__GNUC__) && !defined(__clang__) #pragma GCC diagnostic pop #endif } // end of namespace #endif // XBYAK_XBYAK_H_