dynarmic/externals/fmt/test/gtest/gmock/gmock.h
2021-06-23 05:04:53 -04:00

11645 lines
444 KiB
C++

// Copyright 2007, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Google Mock - a framework for writing C++ mock classes.
//
// This is the main header file a user should include.
// GOOGLETEST_CM0002 DO NOT DELETE
#ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_H_
#define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_H_
// This file implements the following syntax:
//
// ON_CALL(mock_object, Method(...))
// .With(...) ?
// .WillByDefault(...);
//
// where With() is optional and WillByDefault() must appear exactly
// once.
//
// EXPECT_CALL(mock_object, Method(...))
// .With(...) ?
// .Times(...) ?
// .InSequence(...) *
// .WillOnce(...) *
// .WillRepeatedly(...) ?
// .RetiresOnSaturation() ? ;
//
// where all clauses are optional and WillOnce() can be repeated.
// Copyright 2007, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Google Mock - a framework for writing C++ mock classes.
//
// The ACTION* family of macros can be used in a namespace scope to
// define custom actions easily. The syntax:
//
// ACTION(name) { statements; }
//
// will define an action with the given name that executes the
// statements. The value returned by the statements will be used as
// the return value of the action. Inside the statements, you can
// refer to the K-th (0-based) argument of the mock function by
// 'argK', and refer to its type by 'argK_type'. For example:
//
// ACTION(IncrementArg1) {
// arg1_type temp = arg1;
// return ++(*temp);
// }
//
// allows you to write
//
// ...WillOnce(IncrementArg1());
//
// You can also refer to the entire argument tuple and its type by
// 'args' and 'args_type', and refer to the mock function type and its
// return type by 'function_type' and 'return_type'.
//
// Note that you don't need to specify the types of the mock function
// arguments. However rest assured that your code is still type-safe:
// you'll get a compiler error if *arg1 doesn't support the ++
// operator, or if the type of ++(*arg1) isn't compatible with the
// mock function's return type, for example.
//
// Sometimes you'll want to parameterize the action. For that you can use
// another macro:
//
// ACTION_P(name, param_name) { statements; }
//
// For example:
//
// ACTION_P(Add, n) { return arg0 + n; }
//
// will allow you to write:
//
// ...WillOnce(Add(5));
//
// Note that you don't need to provide the type of the parameter
// either. If you need to reference the type of a parameter named
// 'foo', you can write 'foo_type'. For example, in the body of
// ACTION_P(Add, n) above, you can write 'n_type' to refer to the type
// of 'n'.
//
// We also provide ACTION_P2, ACTION_P3, ..., up to ACTION_P10 to support
// multi-parameter actions.
//
// For the purpose of typing, you can view
//
// ACTION_Pk(Foo, p1, ..., pk) { ... }
//
// as shorthand for
//
// template <typename p1_type, ..., typename pk_type>
// FooActionPk<p1_type, ..., pk_type> Foo(p1_type p1, ..., pk_type pk) { ... }
//
// In particular, you can provide the template type arguments
// explicitly when invoking Foo(), as in Foo<long, bool>(5, false);
// although usually you can rely on the compiler to infer the types
// for you automatically. You can assign the result of expression
// Foo(p1, ..., pk) to a variable of type FooActionPk<p1_type, ...,
// pk_type>. This can be useful when composing actions.
//
// You can also overload actions with different numbers of parameters:
//
// ACTION_P(Plus, a) { ... }
// ACTION_P2(Plus, a, b) { ... }
//
// While it's tempting to always use the ACTION* macros when defining
// a new action, you should also consider implementing ActionInterface
// or using MakePolymorphicAction() instead, especially if you need to
// use the action a lot. While these approaches require more work,
// they give you more control on the types of the mock function
// arguments and the action parameters, which in general leads to
// better compiler error messages that pay off in the long run. They
// also allow overloading actions based on parameter types (as opposed
// to just based on the number of parameters).
//
// CAVEAT:
//
// ACTION*() can only be used in a namespace scope as templates cannot be
// declared inside of a local class.
// Users can, however, define any local functors (e.g. a lambda) that
// can be used as actions.
//
// MORE INFORMATION:
//
// To learn more about using these macros, please search for 'ACTION' on
// https://github.com/google/googletest/blob/master/docs/gmock_cook_book.md
// GOOGLETEST_CM0002 DO NOT DELETE
#ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
#define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
#ifndef _WIN32_WCE
# include <errno.h>
#endif
#include <algorithm>
#include <functional>
#include <memory>
#include <string>
#include <tuple>
#include <type_traits>
#include <utility>
// Copyright 2007, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Google Mock - a framework for writing C++ mock classes.
//
// This file defines some utilities useful for implementing Google
// Mock. They are subject to change without notice, so please DO NOT
// USE THEM IN USER CODE.
// GOOGLETEST_CM0002 DO NOT DELETE
#ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_
#define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_
#include <stdio.h>
#include <ostream> // NOLINT
#include <string>
#include <type_traits>
// Copyright 2008, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Low-level types and utilities for porting Google Mock to various
// platforms. All macros ending with _ and symbols defined in an
// internal namespace are subject to change without notice. Code
// outside Google Mock MUST NOT USE THEM DIRECTLY. Macros that don't
// end with _ are part of Google Mock's public API and can be used by
// code outside Google Mock.
// GOOGLETEST_CM0002 DO NOT DELETE
#ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PORT_H_
#define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PORT_H_
#include <assert.h>
#include <stdlib.h>
#include <cstdint>
#include <iostream>
// Most of the utilities needed for porting Google Mock are also
// required for Google Test and are defined in gtest-port.h.
//
// Note to maintainers: to reduce code duplication, prefer adding
// portability utilities to Google Test's gtest-port.h instead of
// here, as Google Mock depends on Google Test. Only add a utility
// here if it's truly specific to Google Mock.
#include "gtest/gtest.h"
// Copyright 2015, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Injection point for custom user configurations. See README for details
//
// ** Custom implementation starts here **
// GOOGLETEST_CM0002 DO NOT DELETE
#ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_PORT_H_
#define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_PORT_H_
#endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_PORT_H_
// For MS Visual C++, check the compiler version. At least VS 2015 is
// required to compile Google Mock.
#if defined(_MSC_VER) && _MSC_VER < 1900
# error "At least Visual C++ 2015 (14.0) is required to compile Google Mock."
#endif
// Macro for referencing flags. This is public as we want the user to
// use this syntax to reference Google Mock flags.
#define GMOCK_FLAG(name) FLAGS_gmock_##name
#if !defined(GMOCK_DECLARE_bool_)
// Macros for declaring flags.
# define GMOCK_DECLARE_bool_(name) extern GTEST_API_ bool GMOCK_FLAG(name)
# define GMOCK_DECLARE_int32_(name) extern GTEST_API_ int32_t GMOCK_FLAG(name)
# define GMOCK_DECLARE_string_(name) \
extern GTEST_API_ ::std::string GMOCK_FLAG(name)
// Macros for defining flags.
# define GMOCK_DEFINE_bool_(name, default_val, doc) \
GTEST_API_ bool GMOCK_FLAG(name) = (default_val)
# define GMOCK_DEFINE_int32_(name, default_val, doc) \
GTEST_API_ int32_t GMOCK_FLAG(name) = (default_val)
# define GMOCK_DEFINE_string_(name, default_val, doc) \
GTEST_API_ ::std::string GMOCK_FLAG(name) = (default_val)
#endif // !defined(GMOCK_DECLARE_bool_)
#endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PORT_H_
namespace testing {
template <typename>
class Matcher;
namespace internal {
// Silence MSVC C4100 (unreferenced formal parameter) and
// C4805('==': unsafe mix of type 'const int' and type 'const bool')
#ifdef _MSC_VER
# pragma warning(push)
# pragma warning(disable:4100)
# pragma warning(disable:4805)
#endif
// Joins a vector of strings as if they are fields of a tuple; returns
// the joined string.
GTEST_API_ std::string JoinAsTuple(const Strings& fields);
// Converts an identifier name to a space-separated list of lower-case
// words. Each maximum substring of the form [A-Za-z][a-z]*|\d+ is
// treated as one word. For example, both "FooBar123" and
// "foo_bar_123" are converted to "foo bar 123".
GTEST_API_ std::string ConvertIdentifierNameToWords(const char* id_name);
// GetRawPointer(p) returns the raw pointer underlying p when p is a
// smart pointer, or returns p itself when p is already a raw pointer.
// The following default implementation is for the smart pointer case.
template <typename Pointer>
inline const typename Pointer::element_type* GetRawPointer(const Pointer& p) {
return p.get();
}
// This overloaded version is for the raw pointer case.
template <typename Element>
inline Element* GetRawPointer(Element* p) { return p; }
// MSVC treats wchar_t as a native type usually, but treats it as the
// same as unsigned short when the compiler option /Zc:wchar_t- is
// specified. It defines _NATIVE_WCHAR_T_DEFINED symbol when wchar_t
// is a native type.
#if defined(_MSC_VER) && !defined(_NATIVE_WCHAR_T_DEFINED)
// wchar_t is a typedef.
#else
# define GMOCK_WCHAR_T_IS_NATIVE_ 1
#endif
// In what follows, we use the term "kind" to indicate whether a type
// is bool, an integer type (excluding bool), a floating-point type,
// or none of them. This categorization is useful for determining
// when a matcher argument type can be safely converted to another
// type in the implementation of SafeMatcherCast.
enum TypeKind {
kBool, kInteger, kFloatingPoint, kOther
};
// KindOf<T>::value is the kind of type T.
template <typename T> struct KindOf {
enum { value = kOther }; // The default kind.
};
// This macro declares that the kind of 'type' is 'kind'.
#define GMOCK_DECLARE_KIND_(type, kind) \
template <> struct KindOf<type> { enum { value = kind }; }
GMOCK_DECLARE_KIND_(bool, kBool);
// All standard integer types.
GMOCK_DECLARE_KIND_(char, kInteger);
GMOCK_DECLARE_KIND_(signed char, kInteger);
GMOCK_DECLARE_KIND_(unsigned char, kInteger);
GMOCK_DECLARE_KIND_(short, kInteger); // NOLINT
GMOCK_DECLARE_KIND_(unsigned short, kInteger); // NOLINT
GMOCK_DECLARE_KIND_(int, kInteger);
GMOCK_DECLARE_KIND_(unsigned int, kInteger);
GMOCK_DECLARE_KIND_(long, kInteger); // NOLINT
GMOCK_DECLARE_KIND_(unsigned long, kInteger); // NOLINT
GMOCK_DECLARE_KIND_(long long, kInteger); // NOLINT
GMOCK_DECLARE_KIND_(unsigned long long, kInteger); // NOLINT
#if GMOCK_WCHAR_T_IS_NATIVE_
GMOCK_DECLARE_KIND_(wchar_t, kInteger);
#endif
// All standard floating-point types.
GMOCK_DECLARE_KIND_(float, kFloatingPoint);
GMOCK_DECLARE_KIND_(double, kFloatingPoint);
GMOCK_DECLARE_KIND_(long double, kFloatingPoint);
#undef GMOCK_DECLARE_KIND_
// Evaluates to the kind of 'type'.
#define GMOCK_KIND_OF_(type) \
static_cast< ::testing::internal::TypeKind>( \
::testing::internal::KindOf<type>::value)
// LosslessArithmeticConvertibleImpl<kFromKind, From, kToKind, To>::value
// is true if and only if arithmetic type From can be losslessly converted to
// arithmetic type To.
//
// It's the user's responsibility to ensure that both From and To are
// raw (i.e. has no CV modifier, is not a pointer, and is not a
// reference) built-in arithmetic types, kFromKind is the kind of
// From, and kToKind is the kind of To; the value is
// implementation-defined when the above pre-condition is violated.
template <TypeKind kFromKind, typename From, TypeKind kToKind, typename To>
using LosslessArithmeticConvertibleImpl = std::integral_constant<
bool,
// clang-format off
// Converting from bool is always lossless
(kFromKind == kBool) ? true
// Converting between any other type kinds will be lossy if the type
// kinds are not the same.
: (kFromKind != kToKind) ? false
: (kFromKind == kInteger &&
// Converting between integers of different widths is allowed so long
// as the conversion does not go from signed to unsigned.
(((sizeof(From) < sizeof(To)) &&
!(std::is_signed<From>::value && !std::is_signed<To>::value)) ||
// Converting between integers of the same width only requires the
// two types to have the same signedness.
((sizeof(From) == sizeof(To)) &&
(std::is_signed<From>::value == std::is_signed<To>::value)))
) ? true
// Floating point conversions are lossless if and only if `To` is at least
// as wide as `From`.
: (kFromKind == kFloatingPoint && (sizeof(From) <= sizeof(To))) ? true
: false
// clang-format on
>;
// LosslessArithmeticConvertible<From, To>::value is true if and only if
// arithmetic type From can be losslessly converted to arithmetic type To.
//
// It's the user's responsibility to ensure that both From and To are
// raw (i.e. has no CV modifier, is not a pointer, and is not a
// reference) built-in arithmetic types; the value is
// implementation-defined when the above pre-condition is violated.
template <typename From, typename To>
using LosslessArithmeticConvertible =
LosslessArithmeticConvertibleImpl<GMOCK_KIND_OF_(From), From,
GMOCK_KIND_OF_(To), To>;
// This interface knows how to report a Google Mock failure (either
// non-fatal or fatal).
class FailureReporterInterface {
public:
// The type of a failure (either non-fatal or fatal).
enum FailureType {
kNonfatal, kFatal
};
virtual ~FailureReporterInterface() {}
// Reports a failure that occurred at the given source file location.
virtual void ReportFailure(FailureType type, const char* file, int line,
const std::string& message) = 0;
};
// Returns the failure reporter used by Google Mock.
GTEST_API_ FailureReporterInterface* GetFailureReporter();
// Asserts that condition is true; aborts the process with the given
// message if condition is false. We cannot use LOG(FATAL) or CHECK()
// as Google Mock might be used to mock the log sink itself. We
// inline this function to prevent it from showing up in the stack
// trace.
inline void Assert(bool condition, const char* file, int line,
const std::string& msg) {
if (!condition) {
GetFailureReporter()->ReportFailure(FailureReporterInterface::kFatal,
file, line, msg);
}
}
inline void Assert(bool condition, const char* file, int line) {
Assert(condition, file, line, "Assertion failed.");
}
// Verifies that condition is true; generates a non-fatal failure if
// condition is false.
inline void Expect(bool condition, const char* file, int line,
const std::string& msg) {
if (!condition) {
GetFailureReporter()->ReportFailure(FailureReporterInterface::kNonfatal,
file, line, msg);
}
}
inline void Expect(bool condition, const char* file, int line) {
Expect(condition, file, line, "Expectation failed.");
}
// Severity level of a log.
enum LogSeverity {
kInfo = 0,
kWarning = 1
};
// Valid values for the --gmock_verbose flag.
// All logs (informational and warnings) are printed.
const char kInfoVerbosity[] = "info";
// Only warnings are printed.
const char kWarningVerbosity[] = "warning";
// No logs are printed.
const char kErrorVerbosity[] = "error";
// Returns true if and only if a log with the given severity is visible
// according to the --gmock_verbose flag.
GTEST_API_ bool LogIsVisible(LogSeverity severity);
// Prints the given message to stdout if and only if 'severity' >= the level
// specified by the --gmock_verbose flag. If stack_frames_to_skip >=
// 0, also prints the stack trace excluding the top
// stack_frames_to_skip frames. In opt mode, any positive
// stack_frames_to_skip is treated as 0, since we don't know which
// function calls will be inlined by the compiler and need to be
// conservative.
GTEST_API_ void Log(LogSeverity severity, const std::string& message,
int stack_frames_to_skip);
// A marker class that is used to resolve parameterless expectations to the
// correct overload. This must not be instantiable, to prevent client code from
// accidentally resolving to the overload; for example:
//
// ON_CALL(mock, Method({}, nullptr))...
//
class WithoutMatchers {
private:
WithoutMatchers() {}
friend GTEST_API_ WithoutMatchers GetWithoutMatchers();
};
// Internal use only: access the singleton instance of WithoutMatchers.
GTEST_API_ WithoutMatchers GetWithoutMatchers();
// Disable MSVC warnings for infinite recursion, since in this case the
// the recursion is unreachable.
#ifdef _MSC_VER
# pragma warning(push)
# pragma warning(disable:4717)
#endif
// Invalid<T>() is usable as an expression of type T, but will terminate
// the program with an assertion failure if actually run. This is useful
// when a value of type T is needed for compilation, but the statement
// will not really be executed (or we don't care if the statement
// crashes).
template <typename T>
inline T Invalid() {
Assert(false, "", -1, "Internal error: attempt to return invalid value");
// This statement is unreachable, and would never terminate even if it
// could be reached. It is provided only to placate compiler warnings
// about missing return statements.
return Invalid<T>();
}
#ifdef _MSC_VER
# pragma warning(pop)
#endif
// Given a raw type (i.e. having no top-level reference or const
// modifier) RawContainer that's either an STL-style container or a
// native array, class StlContainerView<RawContainer> has the
// following members:
//
// - type is a type that provides an STL-style container view to
// (i.e. implements the STL container concept for) RawContainer;
// - const_reference is a type that provides a reference to a const
// RawContainer;
// - ConstReference(raw_container) returns a const reference to an STL-style
// container view to raw_container, which is a RawContainer.
// - Copy(raw_container) returns an STL-style container view of a
// copy of raw_container, which is a RawContainer.
//
// This generic version is used when RawContainer itself is already an
// STL-style container.
template <class RawContainer>
class StlContainerView {
public:
typedef RawContainer type;
typedef const type& const_reference;
static const_reference ConstReference(const RawContainer& container) {
static_assert(!std::is_const<RawContainer>::value,
"RawContainer type must not be const");
return container;
}
static type Copy(const RawContainer& container) { return container; }
};
// This specialization is used when RawContainer is a native array type.
template <typename Element, size_t N>
class StlContainerView<Element[N]> {
public:
typedef typename std::remove_const<Element>::type RawElement;
typedef internal::NativeArray<RawElement> type;
// NativeArray<T> can represent a native array either by value or by
// reference (selected by a constructor argument), so 'const type'
// can be used to reference a const native array. We cannot
// 'typedef const type& const_reference' here, as that would mean
// ConstReference() has to return a reference to a local variable.
typedef const type const_reference;
static const_reference ConstReference(const Element (&array)[N]) {
static_assert(std::is_same<Element, RawElement>::value,
"Element type must not be const");
return type(array, N, RelationToSourceReference());
}
static type Copy(const Element (&array)[N]) {
return type(array, N, RelationToSourceCopy());
}
};
// This specialization is used when RawContainer is a native array
// represented as a (pointer, size) tuple.
template <typename ElementPointer, typename Size>
class StlContainerView< ::std::tuple<ElementPointer, Size> > {
public:
typedef typename std::remove_const<
typename std::pointer_traits<ElementPointer>::element_type>::type
RawElement;
typedef internal::NativeArray<RawElement> type;
typedef const type const_reference;
static const_reference ConstReference(
const ::std::tuple<ElementPointer, Size>& array) {
return type(std::get<0>(array), std::get<1>(array),
RelationToSourceReference());
}
static type Copy(const ::std::tuple<ElementPointer, Size>& array) {
return type(std::get<0>(array), std::get<1>(array), RelationToSourceCopy());
}
};
// The following specialization prevents the user from instantiating
// StlContainer with a reference type.
template <typename T> class StlContainerView<T&>;
// A type transform to remove constness from the first part of a pair.
// Pairs like that are used as the value_type of associative containers,
// and this transform produces a similar but assignable pair.
template <typename T>
struct RemoveConstFromKey {
typedef T type;
};
// Partially specialized to remove constness from std::pair<const K, V>.
template <typename K, typename V>
struct RemoveConstFromKey<std::pair<const K, V> > {
typedef std::pair<K, V> type;
};
// Emit an assertion failure due to incorrect DoDefault() usage. Out-of-lined to
// reduce code size.
GTEST_API_ void IllegalDoDefault(const char* file, int line);
template <typename F, typename Tuple, size_t... Idx>
auto ApplyImpl(F&& f, Tuple&& args, IndexSequence<Idx...>) -> decltype(
std::forward<F>(f)(std::get<Idx>(std::forward<Tuple>(args))...)) {
return std::forward<F>(f)(std::get<Idx>(std::forward<Tuple>(args))...);
}
// Apply the function to a tuple of arguments.
template <typename F, typename Tuple>
auto Apply(F&& f, Tuple&& args) -> decltype(
ApplyImpl(std::forward<F>(f), std::forward<Tuple>(args),
MakeIndexSequence<std::tuple_size<
typename std::remove_reference<Tuple>::type>::value>())) {
return ApplyImpl(std::forward<F>(f), std::forward<Tuple>(args),
MakeIndexSequence<std::tuple_size<
typename std::remove_reference<Tuple>::type>::value>());
}
// Template struct Function<F>, where F must be a function type, contains
// the following typedefs:
//
// Result: the function's return type.
// Arg<N>: the type of the N-th argument, where N starts with 0.
// ArgumentTuple: the tuple type consisting of all parameters of F.
// ArgumentMatcherTuple: the tuple type consisting of Matchers for all
// parameters of F.
// MakeResultVoid: the function type obtained by substituting void
// for the return type of F.
// MakeResultIgnoredValue:
// the function type obtained by substituting Something
// for the return type of F.
template <typename T>
struct Function;
template <typename R, typename... Args>
struct Function<R(Args...)> {
using Result = R;
static constexpr size_t ArgumentCount = sizeof...(Args);
template <size_t I>
using Arg = ElemFromList<I, Args...>;
using ArgumentTuple = std::tuple<Args...>;
using ArgumentMatcherTuple = std::tuple<Matcher<Args>...>;
using MakeResultVoid = void(Args...);
using MakeResultIgnoredValue = IgnoredValue(Args...);
};
template <typename R, typename... Args>
constexpr size_t Function<R(Args...)>::ArgumentCount;
#ifdef _MSC_VER
# pragma warning(pop)
#endif
} // namespace internal
} // namespace testing
#endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_
#ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PP_H_
#define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PP_H_
// Expands and concatenates the arguments. Constructed macros reevaluate.
#define GMOCK_PP_CAT(_1, _2) GMOCK_PP_INTERNAL_CAT(_1, _2)
// Expands and stringifies the only argument.
#define GMOCK_PP_STRINGIZE(...) GMOCK_PP_INTERNAL_STRINGIZE(__VA_ARGS__)
// Returns empty. Given a variadic number of arguments.
#define GMOCK_PP_EMPTY(...)
// Returns a comma. Given a variadic number of arguments.
#define GMOCK_PP_COMMA(...) ,
// Returns the only argument.
#define GMOCK_PP_IDENTITY(_1) _1
// Evaluates to the number of arguments after expansion.
//
// #define PAIR x, y
//
// GMOCK_PP_NARG() => 1
// GMOCK_PP_NARG(x) => 1
// GMOCK_PP_NARG(x, y) => 2
// GMOCK_PP_NARG(PAIR) => 2
//
// Requires: the number of arguments after expansion is at most 15.
#define GMOCK_PP_NARG(...) \
GMOCK_PP_INTERNAL_16TH( \
(__VA_ARGS__, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0))
// Returns 1 if the expansion of arguments has an unprotected comma. Otherwise
// returns 0. Requires no more than 15 unprotected commas.
#define GMOCK_PP_HAS_COMMA(...) \
GMOCK_PP_INTERNAL_16TH( \
(__VA_ARGS__, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0))
// Returns the first argument.
#define GMOCK_PP_HEAD(...) GMOCK_PP_INTERNAL_HEAD((__VA_ARGS__, unusedArg))
// Returns the tail. A variadic list of all arguments minus the first. Requires
// at least one argument.
#define GMOCK_PP_TAIL(...) GMOCK_PP_INTERNAL_TAIL((__VA_ARGS__))
// Calls CAT(_Macro, NARG(__VA_ARGS__))(__VA_ARGS__)
#define GMOCK_PP_VARIADIC_CALL(_Macro, ...) \
GMOCK_PP_IDENTITY( \
GMOCK_PP_CAT(_Macro, GMOCK_PP_NARG(__VA_ARGS__))(__VA_ARGS__))
// If the arguments after expansion have no tokens, evaluates to `1`. Otherwise
// evaluates to `0`.
//
// Requires: * the number of arguments after expansion is at most 15.
// * If the argument is a macro, it must be able to be called with one
// argument.
//
// Implementation details:
//
// There is one case when it generates a compile error: if the argument is macro
// that cannot be called with one argument.
//
// #define M(a, b) // it doesn't matter what it expands to
//
// // Expected: expands to `0`.
// // Actual: compile error.
// GMOCK_PP_IS_EMPTY(M)
//
// There are 4 cases tested:
//
// * __VA_ARGS__ possible expansion has no unparen'd commas. Expected 0.
// * __VA_ARGS__ possible expansion is not enclosed in parenthesis. Expected 0.
// * __VA_ARGS__ possible expansion is not a macro that ()-evaluates to a comma.
// Expected 0
// * __VA_ARGS__ is empty, or has unparen'd commas, or is enclosed in
// parenthesis, or is a macro that ()-evaluates to comma. Expected 1.
//
// We trigger detection on '0001', i.e. on empty.
#define GMOCK_PP_IS_EMPTY(...) \
GMOCK_PP_INTERNAL_IS_EMPTY(GMOCK_PP_HAS_COMMA(__VA_ARGS__), \
GMOCK_PP_HAS_COMMA(GMOCK_PP_COMMA __VA_ARGS__), \
GMOCK_PP_HAS_COMMA(__VA_ARGS__()), \
GMOCK_PP_HAS_COMMA(GMOCK_PP_COMMA __VA_ARGS__()))
// Evaluates to _Then if _Cond is 1 and _Else if _Cond is 0.
#define GMOCK_PP_IF(_Cond, _Then, _Else) \
GMOCK_PP_CAT(GMOCK_PP_INTERNAL_IF_, _Cond)(_Then, _Else)
// Similar to GMOCK_PP_IF but takes _Then and _Else in parentheses.
//
// GMOCK_PP_GENERIC_IF(1, (a, b, c), (d, e, f)) => a, b, c
// GMOCK_PP_GENERIC_IF(0, (a, b, c), (d, e, f)) => d, e, f
//
#define GMOCK_PP_GENERIC_IF(_Cond, _Then, _Else) \
GMOCK_PP_REMOVE_PARENS(GMOCK_PP_IF(_Cond, _Then, _Else))
// Evaluates to the number of arguments after expansion. Identifies 'empty' as
// 0.
//
// #define PAIR x, y
//
// GMOCK_PP_NARG0() => 0
// GMOCK_PP_NARG0(x) => 1
// GMOCK_PP_NARG0(x, y) => 2
// GMOCK_PP_NARG0(PAIR) => 2
//
// Requires: * the number of arguments after expansion is at most 15.
// * If the argument is a macro, it must be able to be called with one
// argument.
#define GMOCK_PP_NARG0(...) \
GMOCK_PP_IF(GMOCK_PP_IS_EMPTY(__VA_ARGS__), 0, GMOCK_PP_NARG(__VA_ARGS__))
// Expands to 1 if the first argument starts with something in parentheses,
// otherwise to 0.
#define GMOCK_PP_IS_BEGIN_PARENS(...) \
GMOCK_PP_HEAD(GMOCK_PP_CAT(GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_R_, \
GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_C __VA_ARGS__))
// Expands to 1 is there is only one argument and it is enclosed in parentheses.
#define GMOCK_PP_IS_ENCLOSED_PARENS(...) \
GMOCK_PP_IF(GMOCK_PP_IS_BEGIN_PARENS(__VA_ARGS__), \
GMOCK_PP_IS_EMPTY(GMOCK_PP_EMPTY __VA_ARGS__), 0)
// Remove the parens, requires GMOCK_PP_IS_ENCLOSED_PARENS(args) => 1.
#define GMOCK_PP_REMOVE_PARENS(...) GMOCK_PP_INTERNAL_REMOVE_PARENS __VA_ARGS__
// Expands to _Macro(0, _Data, e1) _Macro(1, _Data, e2) ... _Macro(K -1, _Data,
// eK) as many of GMOCK_INTERNAL_NARG0 _Tuple.
// Requires: * |_Macro| can be called with 3 arguments.
// * |_Tuple| expansion has no more than 15 elements.
#define GMOCK_PP_FOR_EACH(_Macro, _Data, _Tuple) \
GMOCK_PP_CAT(GMOCK_PP_INTERNAL_FOR_EACH_IMPL_, GMOCK_PP_NARG0 _Tuple) \
(0, _Macro, _Data, _Tuple)
// Expands to _Macro(0, _Data, ) _Macro(1, _Data, ) ... _Macro(K - 1, _Data, )
// Empty if _K = 0.
// Requires: * |_Macro| can be called with 3 arguments.
// * |_K| literal between 0 and 15
#define GMOCK_PP_REPEAT(_Macro, _Data, _N) \
GMOCK_PP_CAT(GMOCK_PP_INTERNAL_FOR_EACH_IMPL_, _N) \
(0, _Macro, _Data, GMOCK_PP_INTENRAL_EMPTY_TUPLE)
// Increments the argument, requires the argument to be between 0 and 15.
#define GMOCK_PP_INC(_i) GMOCK_PP_CAT(GMOCK_PP_INTERNAL_INC_, _i)
// Returns comma if _i != 0. Requires _i to be between 0 and 15.
#define GMOCK_PP_COMMA_IF(_i) GMOCK_PP_CAT(GMOCK_PP_INTERNAL_COMMA_IF_, _i)
// Internal details follow. Do not use any of these symbols outside of this
// file or we will break your code.
#define GMOCK_PP_INTENRAL_EMPTY_TUPLE (, , , , , , , , , , , , , , , )
#define GMOCK_PP_INTERNAL_CAT(_1, _2) _1##_2
#define GMOCK_PP_INTERNAL_STRINGIZE(...) #__VA_ARGS__
#define GMOCK_PP_INTERNAL_CAT_5(_1, _2, _3, _4, _5) _1##_2##_3##_4##_5
#define GMOCK_PP_INTERNAL_IS_EMPTY(_1, _2, _3, _4) \
GMOCK_PP_HAS_COMMA(GMOCK_PP_INTERNAL_CAT_5(GMOCK_PP_INTERNAL_IS_EMPTY_CASE_, \
_1, _2, _3, _4))
#define GMOCK_PP_INTERNAL_IS_EMPTY_CASE_0001 ,
#define GMOCK_PP_INTERNAL_IF_1(_Then, _Else) _Then
#define GMOCK_PP_INTERNAL_IF_0(_Then, _Else) _Else
// Because of MSVC treating a token with a comma in it as a single token when
// passed to another macro, we need to force it to evaluate it as multiple
// tokens. We do that by using a "IDENTITY(MACRO PARENTHESIZED_ARGS)" macro. We
// define one per possible macro that relies on this behavior. Note "_Args" must
// be parenthesized.
#define GMOCK_PP_INTERNAL_INTERNAL_16TH(_1, _2, _3, _4, _5, _6, _7, _8, _9, \
_10, _11, _12, _13, _14, _15, _16, \
...) \
_16
#define GMOCK_PP_INTERNAL_16TH(_Args) \
GMOCK_PP_IDENTITY(GMOCK_PP_INTERNAL_INTERNAL_16TH _Args)
#define GMOCK_PP_INTERNAL_INTERNAL_HEAD(_1, ...) _1
#define GMOCK_PP_INTERNAL_HEAD(_Args) \
GMOCK_PP_IDENTITY(GMOCK_PP_INTERNAL_INTERNAL_HEAD _Args)
#define GMOCK_PP_INTERNAL_INTERNAL_TAIL(_1, ...) __VA_ARGS__
#define GMOCK_PP_INTERNAL_TAIL(_Args) \
GMOCK_PP_IDENTITY(GMOCK_PP_INTERNAL_INTERNAL_TAIL _Args)
#define GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_C(...) 1 _
#define GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_R_1 1,
#define GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_R_GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_C \
0,
#define GMOCK_PP_INTERNAL_REMOVE_PARENS(...) __VA_ARGS__
#define GMOCK_PP_INTERNAL_INC_0 1
#define GMOCK_PP_INTERNAL_INC_1 2
#define GMOCK_PP_INTERNAL_INC_2 3
#define GMOCK_PP_INTERNAL_INC_3 4
#define GMOCK_PP_INTERNAL_INC_4 5
#define GMOCK_PP_INTERNAL_INC_5 6
#define GMOCK_PP_INTERNAL_INC_6 7
#define GMOCK_PP_INTERNAL_INC_7 8
#define GMOCK_PP_INTERNAL_INC_8 9
#define GMOCK_PP_INTERNAL_INC_9 10
#define GMOCK_PP_INTERNAL_INC_10 11
#define GMOCK_PP_INTERNAL_INC_11 12
#define GMOCK_PP_INTERNAL_INC_12 13
#define GMOCK_PP_INTERNAL_INC_13 14
#define GMOCK_PP_INTERNAL_INC_14 15
#define GMOCK_PP_INTERNAL_INC_15 16
#define GMOCK_PP_INTERNAL_COMMA_IF_0
#define GMOCK_PP_INTERNAL_COMMA_IF_1 ,
#define GMOCK_PP_INTERNAL_COMMA_IF_2 ,
#define GMOCK_PP_INTERNAL_COMMA_IF_3 ,
#define GMOCK_PP_INTERNAL_COMMA_IF_4 ,
#define GMOCK_PP_INTERNAL_COMMA_IF_5 ,
#define GMOCK_PP_INTERNAL_COMMA_IF_6 ,
#define GMOCK_PP_INTERNAL_COMMA_IF_7 ,
#define GMOCK_PP_INTERNAL_COMMA_IF_8 ,
#define GMOCK_PP_INTERNAL_COMMA_IF_9 ,
#define GMOCK_PP_INTERNAL_COMMA_IF_10 ,
#define GMOCK_PP_INTERNAL_COMMA_IF_11 ,
#define GMOCK_PP_INTERNAL_COMMA_IF_12 ,
#define GMOCK_PP_INTERNAL_COMMA_IF_13 ,
#define GMOCK_PP_INTERNAL_COMMA_IF_14 ,
#define GMOCK_PP_INTERNAL_COMMA_IF_15 ,
#define GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, _element) \
_Macro(_i, _Data, _element)
#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_0(_i, _Macro, _Data, _Tuple)
#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_1(_i, _Macro, _Data, _Tuple) \
GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple)
#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_2(_i, _Macro, _Data, _Tuple) \
GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
GMOCK_PP_INTERNAL_FOR_EACH_IMPL_1(GMOCK_PP_INC(_i), _Macro, _Data, \
(GMOCK_PP_TAIL _Tuple))
#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_3(_i, _Macro, _Data, _Tuple) \
GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
GMOCK_PP_INTERNAL_FOR_EACH_IMPL_2(GMOCK_PP_INC(_i), _Macro, _Data, \
(GMOCK_PP_TAIL _Tuple))
#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_4(_i, _Macro, _Data, _Tuple) \
GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
GMOCK_PP_INTERNAL_FOR_EACH_IMPL_3(GMOCK_PP_INC(_i), _Macro, _Data, \
(GMOCK_PP_TAIL _Tuple))
#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_5(_i, _Macro, _Data, _Tuple) \
GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
GMOCK_PP_INTERNAL_FOR_EACH_IMPL_4(GMOCK_PP_INC(_i), _Macro, _Data, \
(GMOCK_PP_TAIL _Tuple))
#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_6(_i, _Macro, _Data, _Tuple) \
GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
GMOCK_PP_INTERNAL_FOR_EACH_IMPL_5(GMOCK_PP_INC(_i), _Macro, _Data, \
(GMOCK_PP_TAIL _Tuple))
#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_7(_i, _Macro, _Data, _Tuple) \
GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
GMOCK_PP_INTERNAL_FOR_EACH_IMPL_6(GMOCK_PP_INC(_i), _Macro, _Data, \
(GMOCK_PP_TAIL _Tuple))
#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_8(_i, _Macro, _Data, _Tuple) \
GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
GMOCK_PP_INTERNAL_FOR_EACH_IMPL_7(GMOCK_PP_INC(_i), _Macro, _Data, \
(GMOCK_PP_TAIL _Tuple))
#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_9(_i, _Macro, _Data, _Tuple) \
GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
GMOCK_PP_INTERNAL_FOR_EACH_IMPL_8(GMOCK_PP_INC(_i), _Macro, _Data, \
(GMOCK_PP_TAIL _Tuple))
#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_10(_i, _Macro, _Data, _Tuple) \
GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
GMOCK_PP_INTERNAL_FOR_EACH_IMPL_9(GMOCK_PP_INC(_i), _Macro, _Data, \
(GMOCK_PP_TAIL _Tuple))
#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_11(_i, _Macro, _Data, _Tuple) \
GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
GMOCK_PP_INTERNAL_FOR_EACH_IMPL_10(GMOCK_PP_INC(_i), _Macro, _Data, \
(GMOCK_PP_TAIL _Tuple))
#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_12(_i, _Macro, _Data, _Tuple) \
GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
GMOCK_PP_INTERNAL_FOR_EACH_IMPL_11(GMOCK_PP_INC(_i), _Macro, _Data, \
(GMOCK_PP_TAIL _Tuple))
#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_13(_i, _Macro, _Data, _Tuple) \
GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
GMOCK_PP_INTERNAL_FOR_EACH_IMPL_12(GMOCK_PP_INC(_i), _Macro, _Data, \
(GMOCK_PP_TAIL _Tuple))
#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_14(_i, _Macro, _Data, _Tuple) \
GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
GMOCK_PP_INTERNAL_FOR_EACH_IMPL_13(GMOCK_PP_INC(_i), _Macro, _Data, \
(GMOCK_PP_TAIL _Tuple))
#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_15(_i, _Macro, _Data, _Tuple) \
GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
GMOCK_PP_INTERNAL_FOR_EACH_IMPL_14(GMOCK_PP_INC(_i), _Macro, _Data, \
(GMOCK_PP_TAIL _Tuple))
#endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PP_H_
#ifdef _MSC_VER
# pragma warning(push)
# pragma warning(disable:4100)
#endif
namespace testing {
// To implement an action Foo, define:
// 1. a class FooAction that implements the ActionInterface interface, and
// 2. a factory function that creates an Action object from a
// const FooAction*.
//
// The two-level delegation design follows that of Matcher, providing
// consistency for extension developers. It also eases ownership
// management as Action objects can now be copied like plain values.
namespace internal {
// BuiltInDefaultValueGetter<T, true>::Get() returns a
// default-constructed T value. BuiltInDefaultValueGetter<T,
// false>::Get() crashes with an error.
//
// This primary template is used when kDefaultConstructible is true.
template <typename T, bool kDefaultConstructible>
struct BuiltInDefaultValueGetter {
static T Get() { return T(); }
};
template <typename T>
struct BuiltInDefaultValueGetter<T, false> {
static T Get() {
Assert(false, __FILE__, __LINE__,
"Default action undefined for the function return type.");
return internal::Invalid<T>();
// The above statement will never be reached, but is required in
// order for this function to compile.
}
};
// BuiltInDefaultValue<T>::Get() returns the "built-in" default value
// for type T, which is NULL when T is a raw pointer type, 0 when T is
// a numeric type, false when T is bool, or "" when T is string or
// std::string. In addition, in C++11 and above, it turns a
// default-constructed T value if T is default constructible. For any
// other type T, the built-in default T value is undefined, and the
// function will abort the process.
template <typename T>
class BuiltInDefaultValue {
public:
// This function returns true if and only if type T has a built-in default
// value.
static bool Exists() {
return ::std::is_default_constructible<T>::value;
}
static T Get() {
return BuiltInDefaultValueGetter<
T, ::std::is_default_constructible<T>::value>::Get();
}
};
// This partial specialization says that we use the same built-in
// default value for T and const T.
template <typename T>
class BuiltInDefaultValue<const T> {
public:
static bool Exists() { return BuiltInDefaultValue<T>::Exists(); }
static T Get() { return BuiltInDefaultValue<T>::Get(); }
};
// This partial specialization defines the default values for pointer
// types.
template <typename T>
class BuiltInDefaultValue<T*> {
public:
static bool Exists() { return true; }
static T* Get() { return nullptr; }
};
// The following specializations define the default values for
// specific types we care about.
#define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \
template <> \
class BuiltInDefaultValue<type> { \
public: \
static bool Exists() { return true; } \
static type Get() { return value; } \
}
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, ); // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, "");
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0');
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0');
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0');
// There's no need for a default action for signed wchar_t, as that
// type is the same as wchar_t for gcc, and invalid for MSVC.
//
// There's also no need for a default action for unsigned wchar_t, as
// that type is the same as unsigned int for gcc, and invalid for
// MSVC.
#if GMOCK_WCHAR_T_IS_NATIVE_
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U); // NOLINT
#endif
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U); // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0); // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL); // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L); // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long long, 0); // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long long, 0); // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0);
#undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_
// Simple two-arg form of std::disjunction.
template <typename P, typename Q>
using disjunction = typename ::std::conditional<P::value, P, Q>::type;
} // namespace internal
// When an unexpected function call is encountered, Google Mock will
// let it return a default value if the user has specified one for its
// return type, or if the return type has a built-in default value;
// otherwise Google Mock won't know what value to return and will have
// to abort the process.
//
// The DefaultValue<T> class allows a user to specify the
// default value for a type T that is both copyable and publicly
// destructible (i.e. anything that can be used as a function return
// type). The usage is:
//
// // Sets the default value for type T to be foo.
// DefaultValue<T>::Set(foo);
template <typename T>
class DefaultValue {
public:
// Sets the default value for type T; requires T to be
// copy-constructable and have a public destructor.
static void Set(T x) {
delete producer_;
producer_ = new FixedValueProducer(x);
}
// Provides a factory function to be called to generate the default value.
// This method can be used even if T is only move-constructible, but it is not
// limited to that case.
typedef T (*FactoryFunction)();
static void SetFactory(FactoryFunction factory) {
delete producer_;
producer_ = new FactoryValueProducer(factory);
}
// Unsets the default value for type T.
static void Clear() {
delete producer_;
producer_ = nullptr;
}
// Returns true if and only if the user has set the default value for type T.
static bool IsSet() { return producer_ != nullptr; }
// Returns true if T has a default return value set by the user or there
// exists a built-in default value.
static bool Exists() {
return IsSet() || internal::BuiltInDefaultValue<T>::Exists();
}
// Returns the default value for type T if the user has set one;
// otherwise returns the built-in default value. Requires that Exists()
// is true, which ensures that the return value is well-defined.
static T Get() {
return producer_ == nullptr ? internal::BuiltInDefaultValue<T>::Get()
: producer_->Produce();
}
private:
class ValueProducer {
public:
virtual ~ValueProducer() {}
virtual T Produce() = 0;
};
class FixedValueProducer : public ValueProducer {
public:
explicit FixedValueProducer(T value) : value_(value) {}
T Produce() override { return value_; }
private:
const T value_;
GTEST_DISALLOW_COPY_AND_ASSIGN_(FixedValueProducer);
};
class FactoryValueProducer : public ValueProducer {
public:
explicit FactoryValueProducer(FactoryFunction factory)
: factory_(factory) {}
T Produce() override { return factory_(); }
private:
const FactoryFunction factory_;
GTEST_DISALLOW_COPY_AND_ASSIGN_(FactoryValueProducer);
};
static ValueProducer* producer_;
};
// This partial specialization allows a user to set default values for
// reference types.
template <typename T>
class DefaultValue<T&> {
public:
// Sets the default value for type T&.
static void Set(T& x) { // NOLINT
address_ = &x;
}
// Unsets the default value for type T&.
static void Clear() { address_ = nullptr; }
// Returns true if and only if the user has set the default value for type T&.
static bool IsSet() { return address_ != nullptr; }
// Returns true if T has a default return value set by the user or there
// exists a built-in default value.
static bool Exists() {
return IsSet() || internal::BuiltInDefaultValue<T&>::Exists();
}
// Returns the default value for type T& if the user has set one;
// otherwise returns the built-in default value if there is one;
// otherwise aborts the process.
static T& Get() {
return address_ == nullptr ? internal::BuiltInDefaultValue<T&>::Get()
: *address_;
}
private:
static T* address_;
};
// This specialization allows DefaultValue<void>::Get() to
// compile.
template <>
class DefaultValue<void> {
public:
static bool Exists() { return true; }
static void Get() {}
};
// Points to the user-set default value for type T.
template <typename T>
typename DefaultValue<T>::ValueProducer* DefaultValue<T>::producer_ = nullptr;
// Points to the user-set default value for type T&.
template <typename T>
T* DefaultValue<T&>::address_ = nullptr;
// Implement this interface to define an action for function type F.
template <typename F>
class ActionInterface {
public:
typedef typename internal::Function<F>::Result Result;
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
ActionInterface() {}
virtual ~ActionInterface() {}
// Performs the action. This method is not const, as in general an
// action can have side effects and be stateful. For example, a
// get-the-next-element-from-the-collection action will need to
// remember the current element.
virtual Result Perform(const ArgumentTuple& args) = 0;
private:
GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionInterface);
};
// An Action<F> is a copyable and IMMUTABLE (except by assignment)
// object that represents an action to be taken when a mock function
// of type F is called. The implementation of Action<T> is just a
// std::shared_ptr to const ActionInterface<T>. Don't inherit from Action!
// You can view an object implementing ActionInterface<F> as a
// concrete action (including its current state), and an Action<F>
// object as a handle to it.
template <typename F>
class Action {
// Adapter class to allow constructing Action from a legacy ActionInterface.
// New code should create Actions from functors instead.
struct ActionAdapter {
// Adapter must be copyable to satisfy std::function requirements.
::std::shared_ptr<ActionInterface<F>> impl_;
template <typename... Args>
typename internal::Function<F>::Result operator()(Args&&... args) {
return impl_->Perform(
::std::forward_as_tuple(::std::forward<Args>(args)...));
}
};
template <typename G>
using IsCompatibleFunctor = std::is_constructible<std::function<F>, G>;
public:
typedef typename internal::Function<F>::Result Result;
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
// Constructs a null Action. Needed for storing Action objects in
// STL containers.
Action() {}
// Construct an Action from a specified callable.
// This cannot take std::function directly, because then Action would not be
// directly constructible from lambda (it would require two conversions).
template <
typename G,
typename = typename std::enable_if<internal::disjunction<
IsCompatibleFunctor<G>, std::is_constructible<std::function<Result()>,
G>>::value>::type>
Action(G&& fun) { // NOLINT
Init(::std::forward<G>(fun), IsCompatibleFunctor<G>());
}
// Constructs an Action from its implementation.
explicit Action(ActionInterface<F>* impl)
: fun_(ActionAdapter{::std::shared_ptr<ActionInterface<F>>(impl)}) {}
// This constructor allows us to turn an Action<Func> object into an
// Action<F>, as long as F's arguments can be implicitly converted
// to Func's and Func's return type can be implicitly converted to F's.
template <typename Func>
explicit Action(const Action<Func>& action) : fun_(action.fun_) {}
// Returns true if and only if this is the DoDefault() action.
bool IsDoDefault() const { return fun_ == nullptr; }
// Performs the action. Note that this method is const even though
// the corresponding method in ActionInterface is not. The reason
// is that a const Action<F> means that it cannot be re-bound to
// another concrete action, not that the concrete action it binds to
// cannot change state. (Think of the difference between a const
// pointer and a pointer to const.)
Result Perform(ArgumentTuple args) const {
if (IsDoDefault()) {
internal::IllegalDoDefault(__FILE__, __LINE__);
}
return internal::Apply(fun_, ::std::move(args));
}
private:
template <typename G>
friend class Action;
template <typename G>
void Init(G&& g, ::std::true_type) {
fun_ = ::std::forward<G>(g);
}
template <typename G>
void Init(G&& g, ::std::false_type) {
fun_ = IgnoreArgs<typename ::std::decay<G>::type>{::std::forward<G>(g)};
}
template <typename FunctionImpl>
struct IgnoreArgs {
template <typename... Args>
Result operator()(const Args&...) const {
return function_impl();
}
FunctionImpl function_impl;
};
// fun_ is an empty function if and only if this is the DoDefault() action.
::std::function<F> fun_;
};
// The PolymorphicAction class template makes it easy to implement a
// polymorphic action (i.e. an action that can be used in mock
// functions of than one type, e.g. Return()).
//
// To define a polymorphic action, a user first provides a COPYABLE
// implementation class that has a Perform() method template:
//
// class FooAction {
// public:
// template <typename Result, typename ArgumentTuple>
// Result Perform(const ArgumentTuple& args) const {
// // Processes the arguments and returns a result, using
// // std::get<N>(args) to get the N-th (0-based) argument in the tuple.
// }
// ...
// };
//
// Then the user creates the polymorphic action using
// MakePolymorphicAction(object) where object has type FooAction. See
// the definition of Return(void) and SetArgumentPointee<N>(value) for
// complete examples.
template <typename Impl>
class PolymorphicAction {
public:
explicit PolymorphicAction(const Impl& impl) : impl_(impl) {}
template <typename F>
operator Action<F>() const {
return Action<F>(new MonomorphicImpl<F>(impl_));
}
private:
template <typename F>
class MonomorphicImpl : public ActionInterface<F> {
public:
typedef typename internal::Function<F>::Result Result;
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
Result Perform(const ArgumentTuple& args) override {
return impl_.template Perform<Result>(args);
}
private:
Impl impl_;
};
Impl impl_;
};
// Creates an Action from its implementation and returns it. The
// created Action object owns the implementation.
template <typename F>
Action<F> MakeAction(ActionInterface<F>* impl) {
return Action<F>(impl);
}
// Creates a polymorphic action from its implementation. This is
// easier to use than the PolymorphicAction<Impl> constructor as it
// doesn't require you to explicitly write the template argument, e.g.
//
// MakePolymorphicAction(foo);
// vs
// PolymorphicAction<TypeOfFoo>(foo);
template <typename Impl>
inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) {
return PolymorphicAction<Impl>(impl);
}
namespace internal {
// Helper struct to specialize ReturnAction to execute a move instead of a copy
// on return. Useful for move-only types, but could be used on any type.
template <typename T>
struct ByMoveWrapper {
explicit ByMoveWrapper(T value) : payload(std::move(value)) {}
T payload;
};
// Implements the polymorphic Return(x) action, which can be used in
// any function that returns the type of x, regardless of the argument
// types.
//
// Note: The value passed into Return must be converted into
// Function<F>::Result when this action is cast to Action<F> rather than
// when that action is performed. This is important in scenarios like
//
// MOCK_METHOD1(Method, T(U));
// ...
// {
// Foo foo;
// X x(&foo);
// EXPECT_CALL(mock, Method(_)).WillOnce(Return(x));
// }
//
// In the example above the variable x holds reference to foo which leaves
// scope and gets destroyed. If copying X just copies a reference to foo,
// that copy will be left with a hanging reference. If conversion to T
// makes a copy of foo, the above code is safe. To support that scenario, we
// need to make sure that the type conversion happens inside the EXPECT_CALL
// statement, and conversion of the result of Return to Action<T(U)> is a
// good place for that.
//
// The real life example of the above scenario happens when an invocation
// of gtl::Container() is passed into Return.
//
template <typename R>
class ReturnAction {
public:
// Constructs a ReturnAction object from the value to be returned.
// 'value' is passed by value instead of by const reference in order
// to allow Return("string literal") to compile.
explicit ReturnAction(R value) : value_(new R(std::move(value))) {}
// This template type conversion operator allows Return(x) to be
// used in ANY function that returns x's type.
template <typename F>
operator Action<F>() const { // NOLINT
// Assert statement belongs here because this is the best place to verify
// conditions on F. It produces the clearest error messages
// in most compilers.
// Impl really belongs in this scope as a local class but can't
// because MSVC produces duplicate symbols in different translation units
// in this case. Until MS fixes that bug we put Impl into the class scope
// and put the typedef both here (for use in assert statement) and
// in the Impl class. But both definitions must be the same.
typedef typename Function<F>::Result Result;
GTEST_COMPILE_ASSERT_(
!std::is_reference<Result>::value,
use_ReturnRef_instead_of_Return_to_return_a_reference);
static_assert(!std::is_void<Result>::value,
"Can't use Return() on an action expected to return `void`.");
return Action<F>(new Impl<R, F>(value_));
}
private:
// Implements the Return(x) action for a particular function type F.
template <typename R_, typename F>
class Impl : public ActionInterface<F> {
public:
typedef typename Function<F>::Result Result;
typedef typename Function<F>::ArgumentTuple ArgumentTuple;
// The implicit cast is necessary when Result has more than one
// single-argument constructor (e.g. Result is std::vector<int>) and R
// has a type conversion operator template. In that case, value_(value)
// won't compile as the compiler doesn't known which constructor of
// Result to call. ImplicitCast_ forces the compiler to convert R to
// Result without considering explicit constructors, thus resolving the
// ambiguity. value_ is then initialized using its copy constructor.
explicit Impl(const std::shared_ptr<R>& value)
: value_before_cast_(*value),
value_(ImplicitCast_<Result>(value_before_cast_)) {}
Result Perform(const ArgumentTuple&) override { return value_; }
private:
GTEST_COMPILE_ASSERT_(!std::is_reference<Result>::value,
Result_cannot_be_a_reference_type);
// We save the value before casting just in case it is being cast to a
// wrapper type.
R value_before_cast_;
Result value_;
GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl);
};
// Partially specialize for ByMoveWrapper. This version of ReturnAction will
// move its contents instead.
template <typename R_, typename F>
class Impl<ByMoveWrapper<R_>, F> : public ActionInterface<F> {
public:
typedef typename Function<F>::Result Result;
typedef typename Function<F>::ArgumentTuple ArgumentTuple;
explicit Impl(const std::shared_ptr<R>& wrapper)
: performed_(false), wrapper_(wrapper) {}
Result Perform(const ArgumentTuple&) override {
GTEST_CHECK_(!performed_)
<< "A ByMove() action should only be performed once.";
performed_ = true;
return std::move(wrapper_->payload);
}
private:
bool performed_;
const std::shared_ptr<R> wrapper_;
};
const std::shared_ptr<R> value_;
};
// Implements the ReturnNull() action.
class ReturnNullAction {
public:
// Allows ReturnNull() to be used in any pointer-returning function. In C++11
// this is enforced by returning nullptr, and in non-C++11 by asserting a
// pointer type on compile time.
template <typename Result, typename ArgumentTuple>
static Result Perform(const ArgumentTuple&) {
return nullptr;
}
};
// Implements the Return() action.
class ReturnVoidAction {
public:
// Allows Return() to be used in any void-returning function.
template <typename Result, typename ArgumentTuple>
static void Perform(const ArgumentTuple&) {
static_assert(std::is_void<Result>::value, "Result should be void.");
}
};
// Implements the polymorphic ReturnRef(x) action, which can be used
// in any function that returns a reference to the type of x,
// regardless of the argument types.
template <typename T>
class ReturnRefAction {
public:
// Constructs a ReturnRefAction object from the reference to be returned.
explicit ReturnRefAction(T& ref) : ref_(ref) {} // NOLINT
// This template type conversion operator allows ReturnRef(x) to be
// used in ANY function that returns a reference to x's type.
template <typename F>
operator Action<F>() const {
typedef typename Function<F>::Result Result;
// Asserts that the function return type is a reference. This
// catches the user error of using ReturnRef(x) when Return(x)
// should be used, and generates some helpful error message.
GTEST_COMPILE_ASSERT_(std::is_reference<Result>::value,
use_Return_instead_of_ReturnRef_to_return_a_value);
return Action<F>(new Impl<F>(ref_));
}
private:
// Implements the ReturnRef(x) action for a particular function type F.
template <typename F>
class Impl : public ActionInterface<F> {
public:
typedef typename Function<F>::Result Result;
typedef typename Function<F>::ArgumentTuple ArgumentTuple;
explicit Impl(T& ref) : ref_(ref) {} // NOLINT
Result Perform(const ArgumentTuple&) override { return ref_; }
private:
T& ref_;
};
T& ref_;
};
// Implements the polymorphic ReturnRefOfCopy(x) action, which can be
// used in any function that returns a reference to the type of x,
// regardless of the argument types.
template <typename T>
class ReturnRefOfCopyAction {
public:
// Constructs a ReturnRefOfCopyAction object from the reference to
// be returned.
explicit ReturnRefOfCopyAction(const T& value) : value_(value) {} // NOLINT
// This template type conversion operator allows ReturnRefOfCopy(x) to be
// used in ANY function that returns a reference to x's type.
template <typename F>
operator Action<F>() const {
typedef typename Function<F>::Result Result;
// Asserts that the function return type is a reference. This
// catches the user error of using ReturnRefOfCopy(x) when Return(x)
// should be used, and generates some helpful error message.
GTEST_COMPILE_ASSERT_(
std::is_reference<Result>::value,
use_Return_instead_of_ReturnRefOfCopy_to_return_a_value);
return Action<F>(new Impl<F>(value_));
}
private:
// Implements the ReturnRefOfCopy(x) action for a particular function type F.
template <typename F>
class Impl : public ActionInterface<F> {
public:
typedef typename Function<F>::Result Result;
typedef typename Function<F>::ArgumentTuple ArgumentTuple;
explicit Impl(const T& value) : value_(value) {} // NOLINT
Result Perform(const ArgumentTuple&) override { return value_; }
private:
T value_;
};
const T value_;
};
// Implements the polymorphic ReturnRoundRobin(v) action, which can be
// used in any function that returns the element_type of v.
template <typename T>
class ReturnRoundRobinAction {
public:
explicit ReturnRoundRobinAction(std::vector<T> values) {
GTEST_CHECK_(!values.empty())
<< "ReturnRoundRobin requires at least one element.";
state_->values = std::move(values);
}
template <typename... Args>
T operator()(Args&&...) const {
return state_->Next();
}
private:
struct State {
T Next() {
T ret_val = values[i++];
if (i == values.size()) i = 0;
return ret_val;
}
std::vector<T> values;
size_t i = 0;
};
std::shared_ptr<State> state_ = std::make_shared<State>();
};
// Implements the polymorphic DoDefault() action.
class DoDefaultAction {
public:
// This template type conversion operator allows DoDefault() to be
// used in any function.
template <typename F>
operator Action<F>() const { return Action<F>(); } // NOLINT
};
// Implements the Assign action to set a given pointer referent to a
// particular value.
template <typename T1, typename T2>
class AssignAction {
public:
AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {}
template <typename Result, typename ArgumentTuple>
void Perform(const ArgumentTuple& /* args */) const {
*ptr_ = value_;
}
private:
T1* const ptr_;
const T2 value_;
};
#if !GTEST_OS_WINDOWS_MOBILE
// Implements the SetErrnoAndReturn action to simulate return from
// various system calls and libc functions.
template <typename T>
class SetErrnoAndReturnAction {
public:
SetErrnoAndReturnAction(int errno_value, T result)
: errno_(errno_value),
result_(result) {}
template <typename Result, typename ArgumentTuple>
Result Perform(const ArgumentTuple& /* args */) const {
errno = errno_;
return result_;
}
private:
const int errno_;
const T result_;
};
#endif // !GTEST_OS_WINDOWS_MOBILE
// Implements the SetArgumentPointee<N>(x) action for any function
// whose N-th argument (0-based) is a pointer to x's type.
template <size_t N, typename A, typename = void>
struct SetArgumentPointeeAction {
A value;
template <typename... Args>
void operator()(const Args&... args) const {
*::std::get<N>(std::tie(args...)) = value;
}
};
// Implements the Invoke(object_ptr, &Class::Method) action.
template <class Class, typename MethodPtr>
struct InvokeMethodAction {
Class* const obj_ptr;
const MethodPtr method_ptr;
template <typename... Args>
auto operator()(Args&&... args) const
-> decltype((obj_ptr->*method_ptr)(std::forward<Args>(args)...)) {
return (obj_ptr->*method_ptr)(std::forward<Args>(args)...);
}
};
// Implements the InvokeWithoutArgs(f) action. The template argument
// FunctionImpl is the implementation type of f, which can be either a
// function pointer or a functor. InvokeWithoutArgs(f) can be used as an
// Action<F> as long as f's type is compatible with F.
template <typename FunctionImpl>
struct InvokeWithoutArgsAction {
FunctionImpl function_impl;
// Allows InvokeWithoutArgs(f) to be used as any action whose type is
// compatible with f.
template <typename... Args>
auto operator()(const Args&...) -> decltype(function_impl()) {
return function_impl();
}
};
// Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action.
template <class Class, typename MethodPtr>
struct InvokeMethodWithoutArgsAction {
Class* const obj_ptr;
const MethodPtr method_ptr;
using ReturnType =
decltype((std::declval<Class*>()->*std::declval<MethodPtr>())());
template <typename... Args>
ReturnType operator()(const Args&...) const {
return (obj_ptr->*method_ptr)();
}
};
// Implements the IgnoreResult(action) action.
template <typename A>
class IgnoreResultAction {
public:
explicit IgnoreResultAction(const A& action) : action_(action) {}
template <typename F>
operator Action<F>() const {
// Assert statement belongs here because this is the best place to verify
// conditions on F. It produces the clearest error messages
// in most compilers.
// Impl really belongs in this scope as a local class but can't
// because MSVC produces duplicate symbols in different translation units
// in this case. Until MS fixes that bug we put Impl into the class scope
// and put the typedef both here (for use in assert statement) and
// in the Impl class. But both definitions must be the same.
typedef typename internal::Function<F>::Result Result;
// Asserts at compile time that F returns void.
static_assert(std::is_void<Result>::value, "Result type should be void.");
return Action<F>(new Impl<F>(action_));
}
private:
template <typename F>
class Impl : public ActionInterface<F> {
public:
typedef typename internal::Function<F>::Result Result;
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
explicit Impl(const A& action) : action_(action) {}
void Perform(const ArgumentTuple& args) override {
// Performs the action and ignores its result.
action_.Perform(args);
}
private:
// Type OriginalFunction is the same as F except that its return
// type is IgnoredValue.
typedef typename internal::Function<F>::MakeResultIgnoredValue
OriginalFunction;
const Action<OriginalFunction> action_;
};
const A action_;
};
template <typename InnerAction, size_t... I>
struct WithArgsAction {
InnerAction action;
// The inner action could be anything convertible to Action<X>.
// We use the conversion operator to detect the signature of the inner Action.
template <typename R, typename... Args>
operator Action<R(Args...)>() const { // NOLINT
using TupleType = std::tuple<Args...>;
Action<R(typename std::tuple_element<I, TupleType>::type...)>
converted(action);
return [converted](Args... args) -> R {
return converted.Perform(std::forward_as_tuple(
std::get<I>(std::forward_as_tuple(std::forward<Args>(args)...))...));
};
}
};
template <typename... Actions>
struct DoAllAction {
private:
template <typename T>
using NonFinalType =
typename std::conditional<std::is_scalar<T>::value, T, const T&>::type;
template <typename ActionT, size_t... I>
std::vector<ActionT> Convert(IndexSequence<I...>) const {
return {ActionT(std::get<I>(actions))...};
}
public:
std::tuple<Actions...> actions;
template <typename R, typename... Args>
operator Action<R(Args...)>() const { // NOLINT
struct Op {
std::vector<Action<void(NonFinalType<Args>...)>> converted;
Action<R(Args...)> last;
R operator()(Args... args) const {
auto tuple_args = std::forward_as_tuple(std::forward<Args>(args)...);
for (auto& a : converted) {
a.Perform(tuple_args);
}
return last.Perform(std::move(tuple_args));
}
};
return Op{Convert<Action<void(NonFinalType<Args>...)>>(
MakeIndexSequence<sizeof...(Actions) - 1>()),
std::get<sizeof...(Actions) - 1>(actions)};
}
};
template <typename T, typename... Params>
struct ReturnNewAction {
T* operator()() const {
return internal::Apply(
[](const Params&... unpacked_params) {
return new T(unpacked_params...);
},
params);
}
std::tuple<Params...> params;
};
template <size_t k>
struct ReturnArgAction {
template <typename... Args>
auto operator()(const Args&... args) const ->
typename std::tuple_element<k, std::tuple<Args...>>::type {
return std::get<k>(std::tie(args...));
}
};
template <size_t k, typename Ptr>
struct SaveArgAction {
Ptr pointer;
template <typename... Args>
void operator()(const Args&... args) const {
*pointer = std::get<k>(std::tie(args...));
}
};
template <size_t k, typename Ptr>
struct SaveArgPointeeAction {
Ptr pointer;
template <typename... Args>
void operator()(const Args&... args) const {
*pointer = *std::get<k>(std::tie(args...));
}
};
template <size_t k, typename T>
struct SetArgRefereeAction {
T value;
template <typename... Args>
void operator()(Args&&... args) const {
using argk_type =
typename ::std::tuple_element<k, std::tuple<Args...>>::type;
static_assert(std::is_lvalue_reference<argk_type>::value,
"Argument must be a reference type.");
std::get<k>(std::tie(args...)) = value;
}
};
template <size_t k, typename I1, typename I2>
struct SetArrayArgumentAction {
I1 first;
I2 last;
template <typename... Args>
void operator()(const Args&... args) const {
auto value = std::get<k>(std::tie(args...));
for (auto it = first; it != last; ++it, (void)++value) {
*value = *it;
}
}
};
template <size_t k>
struct DeleteArgAction {
template <typename... Args>
void operator()(const Args&... args) const {
delete std::get<k>(std::tie(args...));
}
};
template <typename Ptr>
struct ReturnPointeeAction {
Ptr pointer;
template <typename... Args>
auto operator()(const Args&...) const -> decltype(*pointer) {
return *pointer;
}
};
#if GTEST_HAS_EXCEPTIONS
template <typename T>
struct ThrowAction {
T exception;
// We use a conversion operator to adapt to any return type.
template <typename R, typename... Args>
operator Action<R(Args...)>() const { // NOLINT
T copy = exception;
return [copy](Args...) -> R { throw copy; };
}
};
#endif // GTEST_HAS_EXCEPTIONS
} // namespace internal
// An Unused object can be implicitly constructed from ANY value.
// This is handy when defining actions that ignore some or all of the
// mock function arguments. For example, given
//
// MOCK_METHOD3(Foo, double(const string& label, double x, double y));
// MOCK_METHOD3(Bar, double(int index, double x, double y));
//
// instead of
//
// double DistanceToOriginWithLabel(const string& label, double x, double y) {
// return sqrt(x*x + y*y);
// }
// double DistanceToOriginWithIndex(int index, double x, double y) {
// return sqrt(x*x + y*y);
// }
// ...
// EXPECT_CALL(mock, Foo("abc", _, _))
// .WillOnce(Invoke(DistanceToOriginWithLabel));
// EXPECT_CALL(mock, Bar(5, _, _))
// .WillOnce(Invoke(DistanceToOriginWithIndex));
//
// you could write
//
// // We can declare any uninteresting argument as Unused.
// double DistanceToOrigin(Unused, double x, double y) {
// return sqrt(x*x + y*y);
// }
// ...
// EXPECT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin));
// EXPECT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin));
typedef internal::IgnoredValue Unused;
// Creates an action that does actions a1, a2, ..., sequentially in
// each invocation. All but the last action will have a readonly view of the
// arguments.
template <typename... Action>
internal::DoAllAction<typename std::decay<Action>::type...> DoAll(
Action&&... action) {
return {std::forward_as_tuple(std::forward<Action>(action)...)};
}
// WithArg<k>(an_action) creates an action that passes the k-th
// (0-based) argument of the mock function to an_action and performs
// it. It adapts an action accepting one argument to one that accepts
// multiple arguments. For convenience, we also provide
// WithArgs<k>(an_action) (defined below) as a synonym.
template <size_t k, typename InnerAction>
internal::WithArgsAction<typename std::decay<InnerAction>::type, k>
WithArg(InnerAction&& action) {
return {std::forward<InnerAction>(action)};
}
// WithArgs<N1, N2, ..., Nk>(an_action) creates an action that passes
// the selected arguments of the mock function to an_action and
// performs it. It serves as an adaptor between actions with
// different argument lists.
template <size_t k, size_t... ks, typename InnerAction>
internal::WithArgsAction<typename std::decay<InnerAction>::type, k, ks...>
WithArgs(InnerAction&& action) {
return {std::forward<InnerAction>(action)};
}
// WithoutArgs(inner_action) can be used in a mock function with a
// non-empty argument list to perform inner_action, which takes no
// argument. In other words, it adapts an action accepting no
// argument to one that accepts (and ignores) arguments.
template <typename InnerAction>
internal::WithArgsAction<typename std::decay<InnerAction>::type>
WithoutArgs(InnerAction&& action) {
return {std::forward<InnerAction>(action)};
}
// Creates an action that returns 'value'. 'value' is passed by value
// instead of const reference - otherwise Return("string literal")
// will trigger a compiler error about using array as initializer.
template <typename R>
internal::ReturnAction<R> Return(R value) {
return internal::ReturnAction<R>(std::move(value));
}
// Creates an action that returns NULL.
inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() {
return MakePolymorphicAction(internal::ReturnNullAction());
}
// Creates an action that returns from a void function.
inline PolymorphicAction<internal::ReturnVoidAction> Return() {
return MakePolymorphicAction(internal::ReturnVoidAction());
}
// Creates an action that returns the reference to a variable.
template <typename R>
inline internal::ReturnRefAction<R> ReturnRef(R& x) { // NOLINT
return internal::ReturnRefAction<R>(x);
}
// Prevent using ReturnRef on reference to temporary.
template <typename R, R* = nullptr>
internal::ReturnRefAction<R> ReturnRef(R&&) = delete;
// Creates an action that returns the reference to a copy of the
// argument. The copy is created when the action is constructed and
// lives as long as the action.
template <typename R>
inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) {
return internal::ReturnRefOfCopyAction<R>(x);
}
// Modifies the parent action (a Return() action) to perform a move of the
// argument instead of a copy.
// Return(ByMove()) actions can only be executed once and will assert this
// invariant.
template <typename R>
internal::ByMoveWrapper<R> ByMove(R x) {
return internal::ByMoveWrapper<R>(std::move(x));
}
// Creates an action that returns an element of `vals`. Calling this action will
// repeatedly return the next value from `vals` until it reaches the end and
// will restart from the beginning.
template <typename T>
internal::ReturnRoundRobinAction<T> ReturnRoundRobin(std::vector<T> vals) {
return internal::ReturnRoundRobinAction<T>(std::move(vals));
}
// Creates an action that returns an element of `vals`. Calling this action will
// repeatedly return the next value from `vals` until it reaches the end and
// will restart from the beginning.
template <typename T>
internal::ReturnRoundRobinAction<T> ReturnRoundRobin(
std::initializer_list<T> vals) {
return internal::ReturnRoundRobinAction<T>(std::vector<T>(vals));
}
// Creates an action that does the default action for the give mock function.
inline internal::DoDefaultAction DoDefault() {
return internal::DoDefaultAction();
}
// Creates an action that sets the variable pointed by the N-th
// (0-based) function argument to 'value'.
template <size_t N, typename T>
internal::SetArgumentPointeeAction<N, T> SetArgPointee(T value) {
return {std::move(value)};
}
// The following version is DEPRECATED.
template <size_t N, typename T>
internal::SetArgumentPointeeAction<N, T> SetArgumentPointee(T value) {
return {std::move(value)};
}
// Creates an action that sets a pointer referent to a given value.
template <typename T1, typename T2>
PolymorphicAction<internal::AssignAction<T1, T2> > Assign(T1* ptr, T2 val) {
return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val));
}
#if !GTEST_OS_WINDOWS_MOBILE
// Creates an action that sets errno and returns the appropriate error.
template <typename T>
PolymorphicAction<internal::SetErrnoAndReturnAction<T> >
SetErrnoAndReturn(int errval, T result) {
return MakePolymorphicAction(
internal::SetErrnoAndReturnAction<T>(errval, result));
}
#endif // !GTEST_OS_WINDOWS_MOBILE
// Various overloads for Invoke().
// Legacy function.
// Actions can now be implicitly constructed from callables. No need to create
// wrapper objects.
// This function exists for backwards compatibility.
template <typename FunctionImpl>
typename std::decay<FunctionImpl>::type Invoke(FunctionImpl&& function_impl) {
return std::forward<FunctionImpl>(function_impl);
}
// Creates an action that invokes the given method on the given object
// with the mock function's arguments.
template <class Class, typename MethodPtr>
internal::InvokeMethodAction<Class, MethodPtr> Invoke(Class* obj_ptr,
MethodPtr method_ptr) {
return {obj_ptr, method_ptr};
}
// Creates an action that invokes 'function_impl' with no argument.
template <typename FunctionImpl>
internal::InvokeWithoutArgsAction<typename std::decay<FunctionImpl>::type>
InvokeWithoutArgs(FunctionImpl function_impl) {
return {std::move(function_impl)};
}
// Creates an action that invokes the given method on the given object
// with no argument.
template <class Class, typename MethodPtr>
internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> InvokeWithoutArgs(
Class* obj_ptr, MethodPtr method_ptr) {
return {obj_ptr, method_ptr};
}
// Creates an action that performs an_action and throws away its
// result. In other words, it changes the return type of an_action to
// void. an_action MUST NOT return void, or the code won't compile.
template <typename A>
inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) {
return internal::IgnoreResultAction<A>(an_action);
}
// Creates a reference wrapper for the given L-value. If necessary,
// you can explicitly specify the type of the reference. For example,
// suppose 'derived' is an object of type Derived, ByRef(derived)
// would wrap a Derived&. If you want to wrap a const Base& instead,
// where Base is a base class of Derived, just write:
//
// ByRef<const Base>(derived)
//
// N.B. ByRef is redundant with std::ref, std::cref and std::reference_wrapper.
// However, it may still be used for consistency with ByMove().
template <typename T>
inline ::std::reference_wrapper<T> ByRef(T& l_value) { // NOLINT
return ::std::reference_wrapper<T>(l_value);
}
// The ReturnNew<T>(a1, a2, ..., a_k) action returns a pointer to a new
// instance of type T, constructed on the heap with constructor arguments
// a1, a2, ..., and a_k. The caller assumes ownership of the returned value.
template <typename T, typename... Params>
internal::ReturnNewAction<T, typename std::decay<Params>::type...> ReturnNew(
Params&&... params) {
return {std::forward_as_tuple(std::forward<Params>(params)...)};
}
// Action ReturnArg<k>() returns the k-th argument of the mock function.
template <size_t k>
internal::ReturnArgAction<k> ReturnArg() {
return {};
}
// Action SaveArg<k>(pointer) saves the k-th (0-based) argument of the
// mock function to *pointer.
template <size_t k, typename Ptr>
internal::SaveArgAction<k, Ptr> SaveArg(Ptr pointer) {
return {pointer};
}
// Action SaveArgPointee<k>(pointer) saves the value pointed to
// by the k-th (0-based) argument of the mock function to *pointer.
template <size_t k, typename Ptr>
internal::SaveArgPointeeAction<k, Ptr> SaveArgPointee(Ptr pointer) {
return {pointer};
}
// Action SetArgReferee<k>(value) assigns 'value' to the variable
// referenced by the k-th (0-based) argument of the mock function.
template <size_t k, typename T>
internal::SetArgRefereeAction<k, typename std::decay<T>::type> SetArgReferee(
T&& value) {
return {std::forward<T>(value)};
}
// Action SetArrayArgument<k>(first, last) copies the elements in
// source range [first, last) to the array pointed to by the k-th
// (0-based) argument, which can be either a pointer or an
// iterator. The action does not take ownership of the elements in the
// source range.
template <size_t k, typename I1, typename I2>
internal::SetArrayArgumentAction<k, I1, I2> SetArrayArgument(I1 first,
I2 last) {
return {first, last};
}
// Action DeleteArg<k>() deletes the k-th (0-based) argument of the mock
// function.
template <size_t k>
internal::DeleteArgAction<k> DeleteArg() {
return {};
}
// This action returns the value pointed to by 'pointer'.
template <typename Ptr>
internal::ReturnPointeeAction<Ptr> ReturnPointee(Ptr pointer) {
return {pointer};
}
// Action Throw(exception) can be used in a mock function of any type
// to throw the given exception. Any copyable value can be thrown.
#if GTEST_HAS_EXCEPTIONS
template <typename T>
internal::ThrowAction<typename std::decay<T>::type> Throw(T&& exception) {
return {std::forward<T>(exception)};
}
#endif // GTEST_HAS_EXCEPTIONS
namespace internal {
// A macro from the ACTION* family (defined later in gmock-generated-actions.h)
// defines an action that can be used in a mock function. Typically,
// these actions only care about a subset of the arguments of the mock
// function. For example, if such an action only uses the second
// argument, it can be used in any mock function that takes >= 2
// arguments where the type of the second argument is compatible.
//
// Therefore, the action implementation must be prepared to take more
// arguments than it needs. The ExcessiveArg type is used to
// represent those excessive arguments. In order to keep the compiler
// error messages tractable, we define it in the testing namespace
// instead of testing::internal. However, this is an INTERNAL TYPE
// and subject to change without notice, so a user MUST NOT USE THIS
// TYPE DIRECTLY.
struct ExcessiveArg {};
// Builds an implementation of an Action<> for some particular signature, using
// a class defined by an ACTION* macro.
template <typename F, typename Impl> struct ActionImpl;
template <typename Impl>
struct ImplBase {
struct Holder {
// Allows each copy of the Action<> to get to the Impl.
explicit operator const Impl&() const { return *ptr; }
std::shared_ptr<Impl> ptr;
};
using type = typename std::conditional<std::is_constructible<Impl>::value,
Impl, Holder>::type;
};
template <typename R, typename... Args, typename Impl>
struct ActionImpl<R(Args...), Impl> : ImplBase<Impl>::type {
using Base = typename ImplBase<Impl>::type;
using function_type = R(Args...);
using args_type = std::tuple<Args...>;
ActionImpl() = default; // Only defined if appropriate for Base.
explicit ActionImpl(std::shared_ptr<Impl> impl) : Base{std::move(impl)} { }
R operator()(Args&&... arg) const {
static constexpr size_t kMaxArgs =
sizeof...(Args) <= 10 ? sizeof...(Args) : 10;
return Apply(MakeIndexSequence<kMaxArgs>{},
MakeIndexSequence<10 - kMaxArgs>{},
args_type{std::forward<Args>(arg)...});
}
template <std::size_t... arg_id, std::size_t... excess_id>
R Apply(IndexSequence<arg_id...>, IndexSequence<excess_id...>,
const args_type& args) const {
// Impl need not be specific to the signature of action being implemented;
// only the implementing function body needs to have all of the specific
// types instantiated. Up to 10 of the args that are provided by the
// args_type get passed, followed by a dummy of unspecified type for the
// remainder up to 10 explicit args.
static constexpr ExcessiveArg kExcessArg{};
return static_cast<const Impl&>(*this).template gmock_PerformImpl<
/*function_type=*/function_type, /*return_type=*/R,
/*args_type=*/args_type,
/*argN_type=*/typename std::tuple_element<arg_id, args_type>::type...>(
/*args=*/args, std::get<arg_id>(args)...,
((void)excess_id, kExcessArg)...);
}
};
// Stores a default-constructed Impl as part of the Action<>'s
// std::function<>. The Impl should be trivial to copy.
template <typename F, typename Impl>
::testing::Action<F> MakeAction() {
return ::testing::Action<F>(ActionImpl<F, Impl>());
}
// Stores just the one given instance of Impl.
template <typename F, typename Impl>
::testing::Action<F> MakeAction(std::shared_ptr<Impl> impl) {
return ::testing::Action<F>(ActionImpl<F, Impl>(std::move(impl)));
}
#define GMOCK_INTERNAL_ARG_UNUSED(i, data, el) \
, const arg##i##_type& arg##i GTEST_ATTRIBUTE_UNUSED_
#define GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_ \
const args_type& args GTEST_ATTRIBUTE_UNUSED_ GMOCK_PP_REPEAT( \
GMOCK_INTERNAL_ARG_UNUSED, , 10)
#define GMOCK_INTERNAL_ARG(i, data, el) , const arg##i##_type& arg##i
#define GMOCK_ACTION_ARG_TYPES_AND_NAMES_ \
const args_type& args GMOCK_PP_REPEAT(GMOCK_INTERNAL_ARG, , 10)
#define GMOCK_INTERNAL_TEMPLATE_ARG(i, data, el) , typename arg##i##_type
#define GMOCK_ACTION_TEMPLATE_ARGS_NAMES_ \
GMOCK_PP_TAIL(GMOCK_PP_REPEAT(GMOCK_INTERNAL_TEMPLATE_ARG, , 10))
#define GMOCK_INTERNAL_TYPENAME_PARAM(i, data, param) , typename param##_type
#define GMOCK_ACTION_TYPENAME_PARAMS_(params) \
GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPENAME_PARAM, , params))
#define GMOCK_INTERNAL_TYPE_PARAM(i, data, param) , param##_type
#define GMOCK_ACTION_TYPE_PARAMS_(params) \
GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_PARAM, , params))
#define GMOCK_INTERNAL_TYPE_GVALUE_PARAM(i, data, param) \
, param##_type gmock_p##i
#define GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params) \
GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_GVALUE_PARAM, , params))
#define GMOCK_INTERNAL_GVALUE_PARAM(i, data, param) \
, std::forward<param##_type>(gmock_p##i)
#define GMOCK_ACTION_GVALUE_PARAMS_(params) \
GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GVALUE_PARAM, , params))
#define GMOCK_INTERNAL_INIT_PARAM(i, data, param) \
, param(::std::forward<param##_type>(gmock_p##i))
#define GMOCK_ACTION_INIT_PARAMS_(params) \
GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_INIT_PARAM, , params))
#define GMOCK_INTERNAL_FIELD_PARAM(i, data, param) param##_type param;
#define GMOCK_ACTION_FIELD_PARAMS_(params) \
GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_FIELD_PARAM, , params)
#define GMOCK_INTERNAL_ACTION(name, full_name, params) \
template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \
class full_name { \
public: \
explicit full_name(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \
: impl_(std::make_shared<gmock_Impl>( \
GMOCK_ACTION_GVALUE_PARAMS_(params))) { } \
full_name(const full_name&) = default; \
full_name(full_name&&) noexcept = default; \
template <typename F> \
operator ::testing::Action<F>() const { \
return ::testing::internal::MakeAction<F>(impl_); \
} \
private: \
class gmock_Impl { \
public: \
explicit gmock_Impl(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \
: GMOCK_ACTION_INIT_PARAMS_(params) {} \
template <typename function_type, typename return_type, \
typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \
GMOCK_ACTION_FIELD_PARAMS_(params) \
}; \
std::shared_ptr<const gmock_Impl> impl_; \
}; \
template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \
inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name( \
GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) { \
return full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>( \
GMOCK_ACTION_GVALUE_PARAMS_(params)); \
} \
template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \
template <typename function_type, typename return_type, typename args_type, \
GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
return_type full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>::gmock_Impl:: \
gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
} // namespace internal
// Similar to GMOCK_INTERNAL_ACTION, but no bound parameters are stored.
#define ACTION(name) \
class name##Action { \
public: \
explicit name##Action() noexcept {} \
name##Action(const name##Action&) noexcept {} \
template <typename F> \
operator ::testing::Action<F>() const { \
return ::testing::internal::MakeAction<F, gmock_Impl>(); \
} \
private: \
class gmock_Impl { \
public: \
template <typename function_type, typename return_type, \
typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \
}; \
}; \
inline name##Action name() GTEST_MUST_USE_RESULT_; \
inline name##Action name() { return name##Action(); } \
template <typename function_type, typename return_type, typename args_type, \
GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
return_type name##Action::gmock_Impl::gmock_PerformImpl( \
GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
#define ACTION_P(name, ...) \
GMOCK_INTERNAL_ACTION(name, name##ActionP, (__VA_ARGS__))
#define ACTION_P2(name, ...) \
GMOCK_INTERNAL_ACTION(name, name##ActionP2, (__VA_ARGS__))
#define ACTION_P3(name, ...) \
GMOCK_INTERNAL_ACTION(name, name##ActionP3, (__VA_ARGS__))
#define ACTION_P4(name, ...) \
GMOCK_INTERNAL_ACTION(name, name##ActionP4, (__VA_ARGS__))
#define ACTION_P5(name, ...) \
GMOCK_INTERNAL_ACTION(name, name##ActionP5, (__VA_ARGS__))
#define ACTION_P6(name, ...) \
GMOCK_INTERNAL_ACTION(name, name##ActionP6, (__VA_ARGS__))
#define ACTION_P7(name, ...) \
GMOCK_INTERNAL_ACTION(name, name##ActionP7, (__VA_ARGS__))
#define ACTION_P8(name, ...) \
GMOCK_INTERNAL_ACTION(name, name##ActionP8, (__VA_ARGS__))
#define ACTION_P9(name, ...) \
GMOCK_INTERNAL_ACTION(name, name##ActionP9, (__VA_ARGS__))
#define ACTION_P10(name, ...) \
GMOCK_INTERNAL_ACTION(name, name##ActionP10, (__VA_ARGS__))
} // namespace testing
#ifdef _MSC_VER
# pragma warning(pop)
#endif
#endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
// Copyright 2007, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Google Mock - a framework for writing C++ mock classes.
//
// This file implements some commonly used cardinalities. More
// cardinalities can be defined by the user implementing the
// CardinalityInterface interface if necessary.
// GOOGLETEST_CM0002 DO NOT DELETE
#ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_CARDINALITIES_H_
#define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_CARDINALITIES_H_
#include <limits.h>
#include <memory>
#include <ostream> // NOLINT
GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \
/* class A needs to have dll-interface to be used by clients of class B */)
namespace testing {
// To implement a cardinality Foo, define:
// 1. a class FooCardinality that implements the
// CardinalityInterface interface, and
// 2. a factory function that creates a Cardinality object from a
// const FooCardinality*.
//
// The two-level delegation design follows that of Matcher, providing
// consistency for extension developers. It also eases ownership
// management as Cardinality objects can now be copied like plain values.
// The implementation of a cardinality.
class CardinalityInterface {
public:
virtual ~CardinalityInterface() {}
// Conservative estimate on the lower/upper bound of the number of
// calls allowed.
virtual int ConservativeLowerBound() const { return 0; }
virtual int ConservativeUpperBound() const { return INT_MAX; }
// Returns true if and only if call_count calls will satisfy this
// cardinality.
virtual bool IsSatisfiedByCallCount(int call_count) const = 0;
// Returns true if and only if call_count calls will saturate this
// cardinality.
virtual bool IsSaturatedByCallCount(int call_count) const = 0;
// Describes self to an ostream.
virtual void DescribeTo(::std::ostream* os) const = 0;
};
// A Cardinality is a copyable and IMMUTABLE (except by assignment)
// object that specifies how many times a mock function is expected to
// be called. The implementation of Cardinality is just a std::shared_ptr
// to const CardinalityInterface. Don't inherit from Cardinality!
class GTEST_API_ Cardinality {
public:
// Constructs a null cardinality. Needed for storing Cardinality
// objects in STL containers.
Cardinality() {}
// Constructs a Cardinality from its implementation.
explicit Cardinality(const CardinalityInterface* impl) : impl_(impl) {}
// Conservative estimate on the lower/upper bound of the number of
// calls allowed.
int ConservativeLowerBound() const { return impl_->ConservativeLowerBound(); }
int ConservativeUpperBound() const { return impl_->ConservativeUpperBound(); }
// Returns true if and only if call_count calls will satisfy this
// cardinality.
bool IsSatisfiedByCallCount(int call_count) const {
return impl_->IsSatisfiedByCallCount(call_count);
}
// Returns true if and only if call_count calls will saturate this
// cardinality.
bool IsSaturatedByCallCount(int call_count) const {
return impl_->IsSaturatedByCallCount(call_count);
}
// Returns true if and only if call_count calls will over-saturate this
// cardinality, i.e. exceed the maximum number of allowed calls.
bool IsOverSaturatedByCallCount(int call_count) const {
return impl_->IsSaturatedByCallCount(call_count) &&
!impl_->IsSatisfiedByCallCount(call_count);
}
// Describes self to an ostream
void DescribeTo(::std::ostream* os) const { impl_->DescribeTo(os); }
// Describes the given actual call count to an ostream.
static void DescribeActualCallCountTo(int actual_call_count,
::std::ostream* os);
private:
std::shared_ptr<const CardinalityInterface> impl_;
};
// Creates a cardinality that allows at least n calls.
GTEST_API_ Cardinality AtLeast(int n);
// Creates a cardinality that allows at most n calls.
GTEST_API_ Cardinality AtMost(int n);
// Creates a cardinality that allows any number of calls.
GTEST_API_ Cardinality AnyNumber();
// Creates a cardinality that allows between min and max calls.
GTEST_API_ Cardinality Between(int min, int max);
// Creates a cardinality that allows exactly n calls.
GTEST_API_ Cardinality Exactly(int n);
// Creates a cardinality from its implementation.
inline Cardinality MakeCardinality(const CardinalityInterface* c) {
return Cardinality(c);
}
} // namespace testing
GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251
#endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_CARDINALITIES_H_
// Copyright 2007, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Google Mock - a framework for writing C++ mock classes.
//
// This file implements MOCK_METHOD.
// GOOGLETEST_CM0002 DO NOT DELETE
#ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_FUNCTION_MOCKER_H_ // NOLINT
#define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_FUNCTION_MOCKER_H_ // NOLINT
#include <type_traits> // IWYU pragma: keep
#include <utility> // IWYU pragma: keep
// Copyright 2007, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Google Mock - a framework for writing C++ mock classes.
//
// This file implements the ON_CALL() and EXPECT_CALL() macros.
//
// A user can use the ON_CALL() macro to specify the default action of
// a mock method. The syntax is:
//
// ON_CALL(mock_object, Method(argument-matchers))
// .With(multi-argument-matcher)
// .WillByDefault(action);
//
// where the .With() clause is optional.
//
// A user can use the EXPECT_CALL() macro to specify an expectation on
// a mock method. The syntax is:
//
// EXPECT_CALL(mock_object, Method(argument-matchers))
// .With(multi-argument-matchers)
// .Times(cardinality)
// .InSequence(sequences)
// .After(expectations)
// .WillOnce(action)
// .WillRepeatedly(action)
// .RetiresOnSaturation();
//
// where all clauses are optional, and .InSequence()/.After()/
// .WillOnce() can appear any number of times.
// GOOGLETEST_CM0002 DO NOT DELETE
#ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_SPEC_BUILDERS_H_
#define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_SPEC_BUILDERS_H_
#include <functional>
#include <map>
#include <memory>
#include <set>
#include <sstream>
#include <string>
#include <type_traits>
#include <utility>
#include <vector>
// Copyright 2007, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Google Mock - a framework for writing C++ mock classes.
//
// The MATCHER* family of macros can be used in a namespace scope to
// define custom matchers easily.
//
// Basic Usage
// ===========
//
// The syntax
//
// MATCHER(name, description_string) { statements; }
//
// defines a matcher with the given name that executes the statements,
// which must return a bool to indicate if the match succeeds. Inside
// the statements, you can refer to the value being matched by 'arg',
// and refer to its type by 'arg_type'.
//
// The description string documents what the matcher does, and is used
// to generate the failure message when the match fails. Since a
// MATCHER() is usually defined in a header file shared by multiple
// C++ source files, we require the description to be a C-string
// literal to avoid possible side effects. It can be empty, in which
// case we'll use the sequence of words in the matcher name as the
// description.
//
// For example:
//
// MATCHER(IsEven, "") { return (arg % 2) == 0; }
//
// allows you to write
//
// // Expects mock_foo.Bar(n) to be called where n is even.
// EXPECT_CALL(mock_foo, Bar(IsEven()));
//
// or,
//
// // Verifies that the value of some_expression is even.
// EXPECT_THAT(some_expression, IsEven());
//
// If the above assertion fails, it will print something like:
//
// Value of: some_expression
// Expected: is even
// Actual: 7
//
// where the description "is even" is automatically calculated from the
// matcher name IsEven.
//
// Argument Type
// =============
//
// Note that the type of the value being matched (arg_type) is
// determined by the context in which you use the matcher and is
// supplied to you by the compiler, so you don't need to worry about
// declaring it (nor can you). This allows the matcher to be
// polymorphic. For example, IsEven() can be used to match any type
// where the value of "(arg % 2) == 0" can be implicitly converted to
// a bool. In the "Bar(IsEven())" example above, if method Bar()
// takes an int, 'arg_type' will be int; if it takes an unsigned long,
// 'arg_type' will be unsigned long; and so on.
//
// Parameterizing Matchers
// =======================
//
// Sometimes you'll want to parameterize the matcher. For that you
// can use another macro:
//
// MATCHER_P(name, param_name, description_string) { statements; }
//
// For example:
//
// MATCHER_P(HasAbsoluteValue, value, "") { return abs(arg) == value; }
//
// will allow you to write:
//
// EXPECT_THAT(Blah("a"), HasAbsoluteValue(n));
//
// which may lead to this message (assuming n is 10):
//
// Value of: Blah("a")
// Expected: has absolute value 10
// Actual: -9
//
// Note that both the matcher description and its parameter are
// printed, making the message human-friendly.
//
// In the matcher definition body, you can write 'foo_type' to
// reference the type of a parameter named 'foo'. For example, in the
// body of MATCHER_P(HasAbsoluteValue, value) above, you can write
// 'value_type' to refer to the type of 'value'.
//
// We also provide MATCHER_P2, MATCHER_P3, ..., up to MATCHER_P$n to
// support multi-parameter matchers.
//
// Describing Parameterized Matchers
// =================================
//
// The last argument to MATCHER*() is a string-typed expression. The
// expression can reference all of the matcher's parameters and a
// special bool-typed variable named 'negation'. When 'negation' is
// false, the expression should evaluate to the matcher's description;
// otherwise it should evaluate to the description of the negation of
// the matcher. For example,
//
// using testing::PrintToString;
//
// MATCHER_P2(InClosedRange, low, hi,
// std::string(negation ? "is not" : "is") + " in range [" +
// PrintToString(low) + ", " + PrintToString(hi) + "]") {
// return low <= arg && arg <= hi;
// }
// ...
// EXPECT_THAT(3, InClosedRange(4, 6));
// EXPECT_THAT(3, Not(InClosedRange(2, 4)));
//
// would generate two failures that contain the text:
//
// Expected: is in range [4, 6]
// ...
// Expected: is not in range [2, 4]
//
// If you specify "" as the description, the failure message will
// contain the sequence of words in the matcher name followed by the
// parameter values printed as a tuple. For example,
//
// MATCHER_P2(InClosedRange, low, hi, "") { ... }
// ...
// EXPECT_THAT(3, InClosedRange(4, 6));
// EXPECT_THAT(3, Not(InClosedRange(2, 4)));
//
// would generate two failures that contain the text:
//
// Expected: in closed range (4, 6)
// ...
// Expected: not (in closed range (2, 4))
//
// Types of Matcher Parameters
// ===========================
//
// For the purpose of typing, you can view
//
// MATCHER_Pk(Foo, p1, ..., pk, description_string) { ... }
//
// as shorthand for
//
// template <typename p1_type, ..., typename pk_type>
// FooMatcherPk<p1_type, ..., pk_type>
// Foo(p1_type p1, ..., pk_type pk) { ... }
//
// When you write Foo(v1, ..., vk), the compiler infers the types of
// the parameters v1, ..., and vk for you. If you are not happy with
// the result of the type inference, you can specify the types by
// explicitly instantiating the template, as in Foo<long, bool>(5,
// false). As said earlier, you don't get to (or need to) specify
// 'arg_type' as that's determined by the context in which the matcher
// is used. You can assign the result of expression Foo(p1, ..., pk)
// to a variable of type FooMatcherPk<p1_type, ..., pk_type>. This
// can be useful when composing matchers.
//
// While you can instantiate a matcher template with reference types,
// passing the parameters by pointer usually makes your code more
// readable. If, however, you still want to pass a parameter by
// reference, be aware that in the failure message generated by the
// matcher you will see the value of the referenced object but not its
// address.
//
// Explaining Match Results
// ========================
//
// Sometimes the matcher description alone isn't enough to explain why
// the match has failed or succeeded. For example, when expecting a
// long string, it can be very helpful to also print the diff between
// the expected string and the actual one. To achieve that, you can
// optionally stream additional information to a special variable
// named result_listener, whose type is a pointer to class
// MatchResultListener:
//
// MATCHER_P(EqualsLongString, str, "") {
// if (arg == str) return true;
//
// *result_listener << "the difference: "
/// << DiffStrings(str, arg);
// return false;
// }
//
// Overloading Matchers
// ====================
//
// You can overload matchers with different numbers of parameters:
//
// MATCHER_P(Blah, a, description_string1) { ... }
// MATCHER_P2(Blah, a, b, description_string2) { ... }
//
// Caveats
// =======
//
// When defining a new matcher, you should also consider implementing
// MatcherInterface or using MakePolymorphicMatcher(). These
// approaches require more work than the MATCHER* macros, but also
// give you more control on the types of the value being matched and
// the matcher parameters, which may leads to better compiler error
// messages when the matcher is used wrong. They also allow
// overloading matchers based on parameter types (as opposed to just
// based on the number of parameters).
//
// MATCHER*() can only be used in a namespace scope as templates cannot be
// declared inside of a local class.
//
// More Information
// ================
//
// To learn more about using these macros, please search for 'MATCHER'
// on
// https://github.com/google/googletest/blob/master/docs/gmock_cook_book.md
//
// This file also implements some commonly used argument matchers. More
// matchers can be defined by the user implementing the
// MatcherInterface<T> interface if necessary.
//
// See googletest/include/gtest/gtest-matchers.h for the definition of class
// Matcher, class MatcherInterface, and others.
// GOOGLETEST_CM0002 DO NOT DELETE
#ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
#define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
#include <algorithm>
#include <cmath>
#include <initializer_list>
#include <iterator>
#include <limits>
#include <memory>
#include <ostream> // NOLINT
#include <sstream>
#include <string>
#include <type_traits>
#include <utility>
#include <vector>
// MSVC warning C5046 is new as of VS2017 version 15.8.
#if defined(_MSC_VER) && _MSC_VER >= 1915
#define GMOCK_MAYBE_5046_ 5046
#else
#define GMOCK_MAYBE_5046_
#endif
GTEST_DISABLE_MSC_WARNINGS_PUSH_(
4251 GMOCK_MAYBE_5046_ /* class A needs to have dll-interface to be used by
clients of class B */
/* Symbol involving type with internal linkage not defined */)
namespace testing {
// To implement a matcher Foo for type T, define:
// 1. a class FooMatcherImpl that implements the
// MatcherInterface<T> interface, and
// 2. a factory function that creates a Matcher<T> object from a
// FooMatcherImpl*.
//
// The two-level delegation design makes it possible to allow a user
// to write "v" instead of "Eq(v)" where a Matcher is expected, which
// is impossible if we pass matchers by pointers. It also eases
// ownership management as Matcher objects can now be copied like
// plain values.
// A match result listener that stores the explanation in a string.
class StringMatchResultListener : public MatchResultListener {
public:
StringMatchResultListener() : MatchResultListener(&ss_) {}
// Returns the explanation accumulated so far.
std::string str() const { return ss_.str(); }
// Clears the explanation accumulated so far.
void Clear() { ss_.str(""); }
private:
::std::stringstream ss_;
GTEST_DISALLOW_COPY_AND_ASSIGN_(StringMatchResultListener);
};
// Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
// and MUST NOT BE USED IN USER CODE!!!
namespace internal {
// The MatcherCastImpl class template is a helper for implementing
// MatcherCast(). We need this helper in order to partially
// specialize the implementation of MatcherCast() (C++ allows
// class/struct templates to be partially specialized, but not
// function templates.).
// This general version is used when MatcherCast()'s argument is a
// polymorphic matcher (i.e. something that can be converted to a
// Matcher but is not one yet; for example, Eq(value)) or a value (for
// example, "hello").
template <typename T, typename M>
class MatcherCastImpl {
public:
static Matcher<T> Cast(const M& polymorphic_matcher_or_value) {
// M can be a polymorphic matcher, in which case we want to use
// its conversion operator to create Matcher<T>. Or it can be a value
// that should be passed to the Matcher<T>'s constructor.
//
// We can't call Matcher<T>(polymorphic_matcher_or_value) when M is a
// polymorphic matcher because it'll be ambiguous if T has an implicit
// constructor from M (this usually happens when T has an implicit
// constructor from any type).
//
// It won't work to unconditionally implicit_cast
// polymorphic_matcher_or_value to Matcher<T> because it won't trigger
// a user-defined conversion from M to T if one exists (assuming M is
// a value).
return CastImpl(polymorphic_matcher_or_value,
std::is_convertible<M, Matcher<T>>{},
std::is_convertible<M, T>{});
}
private:
template <bool Ignore>
static Matcher<T> CastImpl(const M& polymorphic_matcher_or_value,
std::true_type /* convertible_to_matcher */,
std::integral_constant<bool, Ignore>) {
// M is implicitly convertible to Matcher<T>, which means that either
// M is a polymorphic matcher or Matcher<T> has an implicit constructor
// from M. In both cases using the implicit conversion will produce a
// matcher.
//
// Even if T has an implicit constructor from M, it won't be called because
// creating Matcher<T> would require a chain of two user-defined conversions
// (first to create T from M and then to create Matcher<T> from T).
return polymorphic_matcher_or_value;
}
// M can't be implicitly converted to Matcher<T>, so M isn't a polymorphic
// matcher. It's a value of a type implicitly convertible to T. Use direct
// initialization to create a matcher.
static Matcher<T> CastImpl(const M& value,
std::false_type /* convertible_to_matcher */,
std::true_type /* convertible_to_T */) {
return Matcher<T>(ImplicitCast_<T>(value));
}
// M can't be implicitly converted to either Matcher<T> or T. Attempt to use
// polymorphic matcher Eq(value) in this case.
//
// Note that we first attempt to perform an implicit cast on the value and
// only fall back to the polymorphic Eq() matcher afterwards because the
// latter calls bool operator==(const Lhs& lhs, const Rhs& rhs) in the end
// which might be undefined even when Rhs is implicitly convertible to Lhs
// (e.g. std::pair<const int, int> vs. std::pair<int, int>).
//
// We don't define this method inline as we need the declaration of Eq().
static Matcher<T> CastImpl(const M& value,
std::false_type /* convertible_to_matcher */,
std::false_type /* convertible_to_T */);
};
// This more specialized version is used when MatcherCast()'s argument
// is already a Matcher. This only compiles when type T can be
// statically converted to type U.
template <typename T, typename U>
class MatcherCastImpl<T, Matcher<U> > {
public:
static Matcher<T> Cast(const Matcher<U>& source_matcher) {
return Matcher<T>(new Impl(source_matcher));
}
private:
class Impl : public MatcherInterface<T> {
public:
explicit Impl(const Matcher<U>& source_matcher)
: source_matcher_(source_matcher) {}
// We delegate the matching logic to the source matcher.
bool MatchAndExplain(T x, MatchResultListener* listener) const override {
using FromType = typename std::remove_cv<typename std::remove_pointer<
typename std::remove_reference<T>::type>::type>::type;
using ToType = typename std::remove_cv<typename std::remove_pointer<
typename std::remove_reference<U>::type>::type>::type;
// Do not allow implicitly converting base*/& to derived*/&.
static_assert(
// Do not trigger if only one of them is a pointer. That implies a
// regular conversion and not a down_cast.
(std::is_pointer<typename std::remove_reference<T>::type>::value !=
std::is_pointer<typename std::remove_reference<U>::type>::value) ||
std::is_same<FromType, ToType>::value ||
!std::is_base_of<FromType, ToType>::value,
"Can't implicitly convert from <base> to <derived>");
// Do the cast to `U` explicitly if necessary.
// Otherwise, let implicit conversions do the trick.
using CastType =
typename std::conditional<std::is_convertible<T&, const U&>::value,
T&, U>::type;
return source_matcher_.MatchAndExplain(static_cast<CastType>(x),
listener);
}
void DescribeTo(::std::ostream* os) const override {
source_matcher_.DescribeTo(os);
}
void DescribeNegationTo(::std::ostream* os) const override {
source_matcher_.DescribeNegationTo(os);
}
private:
const Matcher<U> source_matcher_;
};
};
// This even more specialized version is used for efficiently casting
// a matcher to its own type.
template <typename T>
class MatcherCastImpl<T, Matcher<T> > {
public:
static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; }
};
// Template specialization for parameterless Matcher.
template <typename Derived>
class MatcherBaseImpl {
public:
MatcherBaseImpl() = default;
template <typename T>
operator ::testing::Matcher<T>() const { // NOLINT(runtime/explicit)
return ::testing::Matcher<T>(new
typename Derived::template gmock_Impl<T>());
}
};
// Template specialization for Matcher with parameters.
template <template <typename...> class Derived, typename... Ts>
class MatcherBaseImpl<Derived<Ts...>> {
public:
// Mark the constructor explicit for single argument T to avoid implicit
// conversions.
template <typename E = std::enable_if<sizeof...(Ts) == 1>,
typename E::type* = nullptr>
explicit MatcherBaseImpl(Ts... params)
: params_(std::forward<Ts>(params)...) {}
template <typename E = std::enable_if<sizeof...(Ts) != 1>,
typename = typename E::type>
MatcherBaseImpl(Ts... params) // NOLINT
: params_(std::forward<Ts>(params)...) {}
template <typename F>
operator ::testing::Matcher<F>() const { // NOLINT(runtime/explicit)
return Apply<F>(MakeIndexSequence<sizeof...(Ts)>{});
}
private:
template <typename F, std::size_t... tuple_ids>
::testing::Matcher<F> Apply(IndexSequence<tuple_ids...>) const {
return ::testing::Matcher<F>(
new typename Derived<Ts...>::template gmock_Impl<F>(
std::get<tuple_ids>(params_)...));
}
const std::tuple<Ts...> params_;
};
} // namespace internal
// In order to be safe and clear, casting between different matcher
// types is done explicitly via MatcherCast<T>(m), which takes a
// matcher m and returns a Matcher<T>. It compiles only when T can be
// statically converted to the argument type of m.
template <typename T, typename M>
inline Matcher<T> MatcherCast(const M& matcher) {
return internal::MatcherCastImpl<T, M>::Cast(matcher);
}
// This overload handles polymorphic matchers and values only since
// monomorphic matchers are handled by the next one.
template <typename T, typename M>
inline Matcher<T> SafeMatcherCast(const M& polymorphic_matcher_or_value) {
return MatcherCast<T>(polymorphic_matcher_or_value);
}
// This overload handles monomorphic matchers.
//
// In general, if type T can be implicitly converted to type U, we can
// safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is
// contravariant): just keep a copy of the original Matcher<U>, convert the
// argument from type T to U, and then pass it to the underlying Matcher<U>.
// The only exception is when U is a reference and T is not, as the
// underlying Matcher<U> may be interested in the argument's address, which
// is not preserved in the conversion from T to U.
template <typename T, typename U>
inline Matcher<T> SafeMatcherCast(const Matcher<U>& matcher) {
// Enforce that T can be implicitly converted to U.
static_assert(std::is_convertible<const T&, const U&>::value,
"T must be implicitly convertible to U");
// Enforce that we are not converting a non-reference type T to a reference
// type U.
GTEST_COMPILE_ASSERT_(
std::is_reference<T>::value || !std::is_reference<U>::value,
cannot_convert_non_reference_arg_to_reference);
// In case both T and U are arithmetic types, enforce that the
// conversion is not lossy.
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(T) RawT;
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(U) RawU;
constexpr bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther;
constexpr bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther;
GTEST_COMPILE_ASSERT_(
kTIsOther || kUIsOther ||
(internal::LosslessArithmeticConvertible<RawT, RawU>::value),
conversion_of_arithmetic_types_must_be_lossless);
return MatcherCast<T>(matcher);
}
// A<T>() returns a matcher that matches any value of type T.
template <typename T>
Matcher<T> A();
// Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
// and MUST NOT BE USED IN USER CODE!!!
namespace internal {
// If the explanation is not empty, prints it to the ostream.
inline void PrintIfNotEmpty(const std::string& explanation,
::std::ostream* os) {
if (explanation != "" && os != nullptr) {
*os << ", " << explanation;
}
}
// Returns true if the given type name is easy to read by a human.
// This is used to decide whether printing the type of a value might
// be helpful.
inline bool IsReadableTypeName(const std::string& type_name) {
// We consider a type name readable if it's short or doesn't contain
// a template or function type.
return (type_name.length() <= 20 ||
type_name.find_first_of("<(") == std::string::npos);
}
// Matches the value against the given matcher, prints the value and explains
// the match result to the listener. Returns the match result.
// 'listener' must not be NULL.
// Value cannot be passed by const reference, because some matchers take a
// non-const argument.
template <typename Value, typename T>
bool MatchPrintAndExplain(Value& value, const Matcher<T>& matcher,
MatchResultListener* listener) {
if (!listener->IsInterested()) {
// If the listener is not interested, we do not need to construct the
// inner explanation.
return matcher.Matches(value);
}
StringMatchResultListener inner_listener;
const bool match = matcher.MatchAndExplain(value, &inner_listener);
UniversalPrint(value, listener->stream());
#if GTEST_HAS_RTTI
const std::string& type_name = GetTypeName<Value>();
if (IsReadableTypeName(type_name))
*listener->stream() << " (of type " << type_name << ")";
#endif
PrintIfNotEmpty(inner_listener.str(), listener->stream());
return match;
}
// An internal helper class for doing compile-time loop on a tuple's
// fields.
template <size_t N>
class TuplePrefix {
public:
// TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true
// if and only if the first N fields of matcher_tuple matches
// the first N fields of value_tuple, respectively.
template <typename MatcherTuple, typename ValueTuple>
static bool Matches(const MatcherTuple& matcher_tuple,
const ValueTuple& value_tuple) {
return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple) &&
std::get<N - 1>(matcher_tuple).Matches(std::get<N - 1>(value_tuple));
}
// TuplePrefix<N>::ExplainMatchFailuresTo(matchers, values, os)
// describes failures in matching the first N fields of matchers
// against the first N fields of values. If there is no failure,
// nothing will be streamed to os.
template <typename MatcherTuple, typename ValueTuple>
static void ExplainMatchFailuresTo(const MatcherTuple& matchers,
const ValueTuple& values,
::std::ostream* os) {
// First, describes failures in the first N - 1 fields.
TuplePrefix<N - 1>::ExplainMatchFailuresTo(matchers, values, os);
// Then describes the failure (if any) in the (N - 1)-th (0-based)
// field.
typename std::tuple_element<N - 1, MatcherTuple>::type matcher =
std::get<N - 1>(matchers);
typedef typename std::tuple_element<N - 1, ValueTuple>::type Value;
const Value& value = std::get<N - 1>(values);
StringMatchResultListener listener;
if (!matcher.MatchAndExplain(value, &listener)) {
*os << " Expected arg #" << N - 1 << ": ";
std::get<N - 1>(matchers).DescribeTo(os);
*os << "\n Actual: ";
// We remove the reference in type Value to prevent the
// universal printer from printing the address of value, which
// isn't interesting to the user most of the time. The
// matcher's MatchAndExplain() method handles the case when
// the address is interesting.
internal::UniversalPrint(value, os);
PrintIfNotEmpty(listener.str(), os);
*os << "\n";
}
}
};
// The base case.
template <>
class TuplePrefix<0> {
public:
template <typename MatcherTuple, typename ValueTuple>
static bool Matches(const MatcherTuple& /* matcher_tuple */,
const ValueTuple& /* value_tuple */) {
return true;
}
template <typename MatcherTuple, typename ValueTuple>
static void ExplainMatchFailuresTo(const MatcherTuple& /* matchers */,
const ValueTuple& /* values */,
::std::ostream* /* os */) {}
};
// TupleMatches(matcher_tuple, value_tuple) returns true if and only if
// all matchers in matcher_tuple match the corresponding fields in
// value_tuple. It is a compiler error if matcher_tuple and
// value_tuple have different number of fields or incompatible field
// types.
template <typename MatcherTuple, typename ValueTuple>
bool TupleMatches(const MatcherTuple& matcher_tuple,
const ValueTuple& value_tuple) {
// Makes sure that matcher_tuple and value_tuple have the same
// number of fields.
GTEST_COMPILE_ASSERT_(std::tuple_size<MatcherTuple>::value ==
std::tuple_size<ValueTuple>::value,
matcher_and_value_have_different_numbers_of_fields);
return TuplePrefix<std::tuple_size<ValueTuple>::value>::Matches(matcher_tuple,
value_tuple);
}
// Describes failures in matching matchers against values. If there
// is no failure, nothing will be streamed to os.
template <typename MatcherTuple, typename ValueTuple>
void ExplainMatchFailureTupleTo(const MatcherTuple& matchers,
const ValueTuple& values,
::std::ostream* os) {
TuplePrefix<std::tuple_size<MatcherTuple>::value>::ExplainMatchFailuresTo(
matchers, values, os);
}
// TransformTupleValues and its helper.
//
// TransformTupleValuesHelper hides the internal machinery that
// TransformTupleValues uses to implement a tuple traversal.
template <typename Tuple, typename Func, typename OutIter>
class TransformTupleValuesHelper {
private:
typedef ::std::tuple_size<Tuple> TupleSize;
public:
// For each member of tuple 't', taken in order, evaluates '*out++ = f(t)'.
// Returns the final value of 'out' in case the caller needs it.
static OutIter Run(Func f, const Tuple& t, OutIter out) {
return IterateOverTuple<Tuple, TupleSize::value>()(f, t, out);
}
private:
template <typename Tup, size_t kRemainingSize>
struct IterateOverTuple {
OutIter operator() (Func f, const Tup& t, OutIter out) const {
*out++ = f(::std::get<TupleSize::value - kRemainingSize>(t));
return IterateOverTuple<Tup, kRemainingSize - 1>()(f, t, out);
}
};
template <typename Tup>
struct IterateOverTuple<Tup, 0> {
OutIter operator() (Func /* f */, const Tup& /* t */, OutIter out) const {
return out;
}
};
};
// Successively invokes 'f(element)' on each element of the tuple 't',
// appending each result to the 'out' iterator. Returns the final value
// of 'out'.
template <typename Tuple, typename Func, typename OutIter>
OutIter TransformTupleValues(Func f, const Tuple& t, OutIter out) {
return TransformTupleValuesHelper<Tuple, Func, OutIter>::Run(f, t, out);
}
// Implements _, a matcher that matches any value of any
// type. This is a polymorphic matcher, so we need a template type
// conversion operator to make it appearing as a Matcher<T> for any
// type T.
class AnythingMatcher {
public:
using is_gtest_matcher = void;
template <typename T>
bool MatchAndExplain(const T& /* x */, std::ostream* /* listener */) const {
return true;
}
void DescribeTo(std::ostream* os) const { *os << "is anything"; }
void DescribeNegationTo(::std::ostream* os) const {
// This is mostly for completeness' sake, as it's not very useful
// to write Not(A<bool>()). However we cannot completely rule out
// such a possibility, and it doesn't hurt to be prepared.
*os << "never matches";
}
};
// Implements the polymorphic IsNull() matcher, which matches any raw or smart
// pointer that is NULL.
class IsNullMatcher {
public:
template <typename Pointer>
bool MatchAndExplain(const Pointer& p,
MatchResultListener* /* listener */) const {
return p == nullptr;
}
void DescribeTo(::std::ostream* os) const { *os << "is NULL"; }
void DescribeNegationTo(::std::ostream* os) const {
*os << "isn't NULL";
}
};
// Implements the polymorphic NotNull() matcher, which matches any raw or smart
// pointer that is not NULL.
class NotNullMatcher {
public:
template <typename Pointer>
bool MatchAndExplain(const Pointer& p,
MatchResultListener* /* listener */) const {
return p != nullptr;
}
void DescribeTo(::std::ostream* os) const { *os << "isn't NULL"; }
void DescribeNegationTo(::std::ostream* os) const {
*os << "is NULL";
}
};
// Ref(variable) matches any argument that is a reference to
// 'variable'. This matcher is polymorphic as it can match any
// super type of the type of 'variable'.
//
// The RefMatcher template class implements Ref(variable). It can
// only be instantiated with a reference type. This prevents a user
// from mistakenly using Ref(x) to match a non-reference function
// argument. For example, the following will righteously cause a
// compiler error:
//
// int n;
// Matcher<int> m1 = Ref(n); // This won't compile.
// Matcher<int&> m2 = Ref(n); // This will compile.
template <typename T>
class RefMatcher;
template <typename T>
class RefMatcher<T&> {
// Google Mock is a generic framework and thus needs to support
// mocking any function types, including those that take non-const
// reference arguments. Therefore the template parameter T (and
// Super below) can be instantiated to either a const type or a
// non-const type.
public:
// RefMatcher() takes a T& instead of const T&, as we want the
// compiler to catch using Ref(const_value) as a matcher for a
// non-const reference.
explicit RefMatcher(T& x) : object_(x) {} // NOLINT
template <typename Super>
operator Matcher<Super&>() const {
// By passing object_ (type T&) to Impl(), which expects a Super&,
// we make sure that Super is a super type of T. In particular,
// this catches using Ref(const_value) as a matcher for a
// non-const reference, as you cannot implicitly convert a const
// reference to a non-const reference.
return MakeMatcher(new Impl<Super>(object_));
}
private:
template <typename Super>
class Impl : public MatcherInterface<Super&> {
public:
explicit Impl(Super& x) : object_(x) {} // NOLINT
// MatchAndExplain() takes a Super& (as opposed to const Super&)
// in order to match the interface MatcherInterface<Super&>.
bool MatchAndExplain(Super& x,
MatchResultListener* listener) const override {
*listener << "which is located @" << static_cast<const void*>(&x);
return &x == &object_;
}
void DescribeTo(::std::ostream* os) const override {
*os << "references the variable ";
UniversalPrinter<Super&>::Print(object_, os);
}
void DescribeNegationTo(::std::ostream* os) const override {
*os << "does not reference the variable ";
UniversalPrinter<Super&>::Print(object_, os);
}
private:
const Super& object_;
};
T& object_;
};
// Polymorphic helper functions for narrow and wide string matchers.
inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) {
return String::CaseInsensitiveCStringEquals(lhs, rhs);
}
inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs,
const wchar_t* rhs) {
return String::CaseInsensitiveWideCStringEquals(lhs, rhs);
}
// String comparison for narrow or wide strings that can have embedded NUL
// characters.
template <typename StringType>
bool CaseInsensitiveStringEquals(const StringType& s1,
const StringType& s2) {
// Are the heads equal?
if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) {
return false;
}
// Skip the equal heads.
const typename StringType::value_type nul = 0;
const size_t i1 = s1.find(nul), i2 = s2.find(nul);
// Are we at the end of either s1 or s2?
if (i1 == StringType::npos || i2 == StringType::npos) {
return i1 == i2;
}
// Are the tails equal?
return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1));
}
// String matchers.
// Implements equality-based string matchers like StrEq, StrCaseNe, and etc.
template <typename StringType>
class StrEqualityMatcher {
public:
StrEqualityMatcher(StringType str, bool expect_eq, bool case_sensitive)
: string_(std::move(str)),
expect_eq_(expect_eq),
case_sensitive_(case_sensitive) {}
#if GTEST_INTERNAL_HAS_STRING_VIEW
bool MatchAndExplain(const internal::StringView& s,
MatchResultListener* listener) const {
// This should fail to compile if StringView is used with wide
// strings.
const StringType& str = std::string(s);
return MatchAndExplain(str, listener);
}
#endif // GTEST_INTERNAL_HAS_STRING_VIEW
// Accepts pointer types, particularly:
// const char*
// char*
// const wchar_t*
// wchar_t*
template <typename CharType>
bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
if (s == nullptr) {
return !expect_eq_;
}
return MatchAndExplain(StringType(s), listener);
}
// Matches anything that can convert to StringType.
//
// This is a template, not just a plain function with const StringType&,
// because StringView has some interfering non-explicit constructors.
template <typename MatcheeStringType>
bool MatchAndExplain(const MatcheeStringType& s,
MatchResultListener* /* listener */) const {
const StringType s2(s);
const bool eq = case_sensitive_ ? s2 == string_ :
CaseInsensitiveStringEquals(s2, string_);
return expect_eq_ == eq;
}
void DescribeTo(::std::ostream* os) const {
DescribeToHelper(expect_eq_, os);
}
void DescribeNegationTo(::std::ostream* os) const {
DescribeToHelper(!expect_eq_, os);
}
private:
void DescribeToHelper(bool expect_eq, ::std::ostream* os) const {
*os << (expect_eq ? "is " : "isn't ");
*os << "equal to ";
if (!case_sensitive_) {
*os << "(ignoring case) ";
}
UniversalPrint(string_, os);
}
const StringType string_;
const bool expect_eq_;
const bool case_sensitive_;
};
// Implements the polymorphic HasSubstr(substring) matcher, which
// can be used as a Matcher<T> as long as T can be converted to a
// string.
template <typename StringType>
class HasSubstrMatcher {
public:
explicit HasSubstrMatcher(const StringType& substring)
: substring_(substring) {}
#if GTEST_INTERNAL_HAS_STRING_VIEW
bool MatchAndExplain(const internal::StringView& s,
MatchResultListener* listener) const {
// This should fail to compile if StringView is used with wide
// strings.
const StringType& str = std::string(s);
return MatchAndExplain(str, listener);
}
#endif // GTEST_INTERNAL_HAS_STRING_VIEW
// Accepts pointer types, particularly:
// const char*
// char*
// const wchar_t*
// wchar_t*
template <typename CharType>
bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
return s != nullptr && MatchAndExplain(StringType(s), listener);
}
// Matches anything that can convert to StringType.
//
// This is a template, not just a plain function with const StringType&,
// because StringView has some interfering non-explicit constructors.
template <typename MatcheeStringType>
bool MatchAndExplain(const MatcheeStringType& s,
MatchResultListener* /* listener */) const {
return StringType(s).find(substring_) != StringType::npos;
}
// Describes what this matcher matches.
void DescribeTo(::std::ostream* os) const {
*os << "has substring ";
UniversalPrint(substring_, os);
}
void DescribeNegationTo(::std::ostream* os) const {
*os << "has no substring ";
UniversalPrint(substring_, os);
}
private:
const StringType substring_;
};
// Implements the polymorphic StartsWith(substring) matcher, which
// can be used as a Matcher<T> as long as T can be converted to a
// string.
template <typename StringType>
class StartsWithMatcher {
public:
explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) {
}
#if GTEST_INTERNAL_HAS_STRING_VIEW
bool MatchAndExplain(const internal::StringView& s,
MatchResultListener* listener) const {
// This should fail to compile if StringView is used with wide
// strings.
const StringType& str = std::string(s);
return MatchAndExplain(str, listener);
}
#endif // GTEST_INTERNAL_HAS_STRING_VIEW
// Accepts pointer types, particularly:
// const char*
// char*
// const wchar_t*
// wchar_t*
template <typename CharType>
bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
return s != nullptr && MatchAndExplain(StringType(s), listener);
}
// Matches anything that can convert to StringType.
//
// This is a template, not just a plain function with const StringType&,
// because StringView has some interfering non-explicit constructors.
template <typename MatcheeStringType>
bool MatchAndExplain(const MatcheeStringType& s,
MatchResultListener* /* listener */) const {
const StringType& s2(s);
return s2.length() >= prefix_.length() &&
s2.substr(0, prefix_.length()) == prefix_;
}
void DescribeTo(::std::ostream* os) const {
*os << "starts with ";
UniversalPrint(prefix_, os);
}
void DescribeNegationTo(::std::ostream* os) const {
*os << "doesn't start with ";
UniversalPrint(prefix_, os);
}
private:
const StringType prefix_;
};
// Implements the polymorphic EndsWith(substring) matcher, which
// can be used as a Matcher<T> as long as T can be converted to a
// string.
template <typename StringType>
class EndsWithMatcher {
public:
explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {}
#if GTEST_INTERNAL_HAS_STRING_VIEW
bool MatchAndExplain(const internal::StringView& s,
MatchResultListener* listener) const {
// This should fail to compile if StringView is used with wide
// strings.
const StringType& str = std::string(s);
return MatchAndExplain(str, listener);
}
#endif // GTEST_INTERNAL_HAS_STRING_VIEW
// Accepts pointer types, particularly:
// const char*
// char*
// const wchar_t*
// wchar_t*
template <typename CharType>
bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
return s != nullptr && MatchAndExplain(StringType(s), listener);
}
// Matches anything that can convert to StringType.
//
// This is a template, not just a plain function with const StringType&,
// because StringView has some interfering non-explicit constructors.
template <typename MatcheeStringType>
bool MatchAndExplain(const MatcheeStringType& s,
MatchResultListener* /* listener */) const {
const StringType& s2(s);
return s2.length() >= suffix_.length() &&
s2.substr(s2.length() - suffix_.length()) == suffix_;
}
void DescribeTo(::std::ostream* os) const {
*os << "ends with ";
UniversalPrint(suffix_, os);
}
void DescribeNegationTo(::std::ostream* os) const {
*os << "doesn't end with ";
UniversalPrint(suffix_, os);
}
private:
const StringType suffix_;
};
// Implements a matcher that compares the two fields of a 2-tuple
// using one of the ==, <=, <, etc, operators. The two fields being
// compared don't have to have the same type.
//
// The matcher defined here is polymorphic (for example, Eq() can be
// used to match a std::tuple<int, short>, a std::tuple<const long&, double>,
// etc). Therefore we use a template type conversion operator in the
// implementation.
template <typename D, typename Op>
class PairMatchBase {
public:
template <typename T1, typename T2>
operator Matcher<::std::tuple<T1, T2>>() const {
return Matcher<::std::tuple<T1, T2>>(new Impl<const ::std::tuple<T1, T2>&>);
}
template <typename T1, typename T2>
operator Matcher<const ::std::tuple<T1, T2>&>() const {
return MakeMatcher(new Impl<const ::std::tuple<T1, T2>&>);
}
private:
static ::std::ostream& GetDesc(::std::ostream& os) { // NOLINT
return os << D::Desc();
}
template <typename Tuple>
class Impl : public MatcherInterface<Tuple> {
public:
bool MatchAndExplain(Tuple args,
MatchResultListener* /* listener */) const override {
return Op()(::std::get<0>(args), ::std::get<1>(args));
}
void DescribeTo(::std::ostream* os) const override {
*os << "are " << GetDesc;
}
void DescribeNegationTo(::std::ostream* os) const override {
*os << "aren't " << GetDesc;
}
};
};
class Eq2Matcher : public PairMatchBase<Eq2Matcher, AnyEq> {
public:
static const char* Desc() { return "an equal pair"; }
};
class Ne2Matcher : public PairMatchBase<Ne2Matcher, AnyNe> {
public:
static const char* Desc() { return "an unequal pair"; }
};
class Lt2Matcher : public PairMatchBase<Lt2Matcher, AnyLt> {
public:
static const char* Desc() { return "a pair where the first < the second"; }
};
class Gt2Matcher : public PairMatchBase<Gt2Matcher, AnyGt> {
public:
static const char* Desc() { return "a pair where the first > the second"; }
};
class Le2Matcher : public PairMatchBase<Le2Matcher, AnyLe> {
public:
static const char* Desc() { return "a pair where the first <= the second"; }
};
class Ge2Matcher : public PairMatchBase<Ge2Matcher, AnyGe> {
public:
static const char* Desc() { return "a pair where the first >= the second"; }
};
// Implements the Not(...) matcher for a particular argument type T.
// We do not nest it inside the NotMatcher class template, as that
// will prevent different instantiations of NotMatcher from sharing
// the same NotMatcherImpl<T> class.
template <typename T>
class NotMatcherImpl : public MatcherInterface<const T&> {
public:
explicit NotMatcherImpl(const Matcher<T>& matcher)
: matcher_(matcher) {}
bool MatchAndExplain(const T& x,
MatchResultListener* listener) const override {
return !matcher_.MatchAndExplain(x, listener);
}
void DescribeTo(::std::ostream* os) const override {
matcher_.DescribeNegationTo(os);
}
void DescribeNegationTo(::std::ostream* os) const override {
matcher_.DescribeTo(os);
}
private:
const Matcher<T> matcher_;
};
// Implements the Not(m) matcher, which matches a value that doesn't
// match matcher m.
template <typename InnerMatcher>
class NotMatcher {
public:
explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {}
// This template type conversion operator allows Not(m) to be used
// to match any type m can match.
template <typename T>
operator Matcher<T>() const {
return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_)));
}
private:
InnerMatcher matcher_;
};
// Implements the AllOf(m1, m2) matcher for a particular argument type
// T. We do not nest it inside the BothOfMatcher class template, as
// that will prevent different instantiations of BothOfMatcher from
// sharing the same BothOfMatcherImpl<T> class.
template <typename T>
class AllOfMatcherImpl : public MatcherInterface<const T&> {
public:
explicit AllOfMatcherImpl(std::vector<Matcher<T> > matchers)
: matchers_(std::move(matchers)) {}
void DescribeTo(::std::ostream* os) const override {
*os << "(";
for (size_t i = 0; i < matchers_.size(); ++i) {
if (i != 0) *os << ") and (";
matchers_[i].DescribeTo(os);
}
*os << ")";
}
void DescribeNegationTo(::std::ostream* os) const override {
*os << "(";
for (size_t i = 0; i < matchers_.size(); ++i) {
if (i != 0) *os << ") or (";
matchers_[i].DescribeNegationTo(os);
}
*os << ")";
}
bool MatchAndExplain(const T& x,
MatchResultListener* listener) const override {
// If either matcher1_ or matcher2_ doesn't match x, we only need
// to explain why one of them fails.
std::string all_match_result;
for (size_t i = 0; i < matchers_.size(); ++i) {
StringMatchResultListener slistener;
if (matchers_[i].MatchAndExplain(x, &slistener)) {
if (all_match_result.empty()) {
all_match_result = slistener.str();
} else {
std::string result = slistener.str();
if (!result.empty()) {
all_match_result += ", and ";
all_match_result += result;
}
}
} else {
*listener << slistener.str();
return false;
}
}
// Otherwise we need to explain why *both* of them match.
*listener << all_match_result;
return true;
}
private:
const std::vector<Matcher<T> > matchers_;
};
// VariadicMatcher is used for the variadic implementation of
// AllOf(m_1, m_2, ...) and AnyOf(m_1, m_2, ...).
// CombiningMatcher<T> is used to recursively combine the provided matchers
// (of type Args...).
template <template <typename T> class CombiningMatcher, typename... Args>
class VariadicMatcher {
public:
VariadicMatcher(const Args&... matchers) // NOLINT
: matchers_(matchers...) {
static_assert(sizeof...(Args) > 0, "Must have at least one matcher.");
}
VariadicMatcher(const VariadicMatcher&) = default;
VariadicMatcher& operator=(const VariadicMatcher&) = delete;
// This template type conversion operator allows an
// VariadicMatcher<Matcher1, Matcher2...> object to match any type that
// all of the provided matchers (Matcher1, Matcher2, ...) can match.
template <typename T>
operator Matcher<T>() const {
std::vector<Matcher<T> > values;
CreateVariadicMatcher<T>(&values, std::integral_constant<size_t, 0>());
return Matcher<T>(new CombiningMatcher<T>(std::move(values)));
}
private:
template <typename T, size_t I>
void CreateVariadicMatcher(std::vector<Matcher<T> >* values,
std::integral_constant<size_t, I>) const {
values->push_back(SafeMatcherCast<T>(std::get<I>(matchers_)));
CreateVariadicMatcher<T>(values, std::integral_constant<size_t, I + 1>());
}
template <typename T>
void CreateVariadicMatcher(
std::vector<Matcher<T> >*,
std::integral_constant<size_t, sizeof...(Args)>) const {}
std::tuple<Args...> matchers_;
};
template <typename... Args>
using AllOfMatcher = VariadicMatcher<AllOfMatcherImpl, Args...>;
// Implements the AnyOf(m1, m2) matcher for a particular argument type
// T. We do not nest it inside the AnyOfMatcher class template, as
// that will prevent different instantiations of AnyOfMatcher from
// sharing the same EitherOfMatcherImpl<T> class.
template <typename T>
class AnyOfMatcherImpl : public MatcherInterface<const T&> {
public:
explicit AnyOfMatcherImpl(std::vector<Matcher<T> > matchers)
: matchers_(std::move(matchers)) {}
void DescribeTo(::std::ostream* os) const override {
*os << "(";
for (size_t i = 0; i < matchers_.size(); ++i) {
if (i != 0) *os << ") or (";
matchers_[i].DescribeTo(os);
}
*os << ")";
}
void DescribeNegationTo(::std::ostream* os) const override {
*os << "(";
for (size_t i = 0; i < matchers_.size(); ++i) {
if (i != 0) *os << ") and (";
matchers_[i].DescribeNegationTo(os);
}
*os << ")";
}
bool MatchAndExplain(const T& x,
MatchResultListener* listener) const override {
std::string no_match_result;
// If either matcher1_ or matcher2_ matches x, we just need to
// explain why *one* of them matches.
for (size_t i = 0; i < matchers_.size(); ++i) {
StringMatchResultListener slistener;
if (matchers_[i].MatchAndExplain(x, &slistener)) {
*listener << slistener.str();
return true;
} else {
if (no_match_result.empty()) {
no_match_result = slistener.str();
} else {
std::string result = slistener.str();
if (!result.empty()) {
no_match_result += ", and ";
no_match_result += result;
}
}
}
}
// Otherwise we need to explain why *both* of them fail.
*listener << no_match_result;
return false;
}
private:
const std::vector<Matcher<T> > matchers_;
};
// AnyOfMatcher is used for the variadic implementation of AnyOf(m_1, m_2, ...).
template <typename... Args>
using AnyOfMatcher = VariadicMatcher<AnyOfMatcherImpl, Args...>;
// Wrapper for implementation of Any/AllOfArray().
template <template <class> class MatcherImpl, typename T>
class SomeOfArrayMatcher {
public:
// Constructs the matcher from a sequence of element values or
// element matchers.
template <typename Iter>
SomeOfArrayMatcher(Iter first, Iter last) : matchers_(first, last) {}
template <typename U>
operator Matcher<U>() const { // NOLINT
using RawU = typename std::decay<U>::type;
std::vector<Matcher<RawU>> matchers;
for (const auto& matcher : matchers_) {
matchers.push_back(MatcherCast<RawU>(matcher));
}
return Matcher<U>(new MatcherImpl<RawU>(std::move(matchers)));
}
private:
const ::std::vector<T> matchers_;
};
template <typename T>
using AllOfArrayMatcher = SomeOfArrayMatcher<AllOfMatcherImpl, T>;
template <typename T>
using AnyOfArrayMatcher = SomeOfArrayMatcher<AnyOfMatcherImpl, T>;
// Used for implementing Truly(pred), which turns a predicate into a
// matcher.
template <typename Predicate>
class TrulyMatcher {
public:
explicit TrulyMatcher(Predicate pred) : predicate_(pred) {}
// This method template allows Truly(pred) to be used as a matcher
// for type T where T is the argument type of predicate 'pred'. The
// argument is passed by reference as the predicate may be
// interested in the address of the argument.
template <typename T>
bool MatchAndExplain(T& x, // NOLINT
MatchResultListener* listener) const {
// Without the if-statement, MSVC sometimes warns about converting
// a value to bool (warning 4800).
//
// We cannot write 'return !!predicate_(x);' as that doesn't work
// when predicate_(x) returns a class convertible to bool but
// having no operator!().
if (predicate_(x))
return true;
*listener << "didn't satisfy the given predicate";
return false;
}
void DescribeTo(::std::ostream* os) const {
*os << "satisfies the given predicate";
}
void DescribeNegationTo(::std::ostream* os) const {
*os << "doesn't satisfy the given predicate";
}
private:
Predicate predicate_;
};
// Used for implementing Matches(matcher), which turns a matcher into
// a predicate.
template <typename M>
class MatcherAsPredicate {
public:
explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {}
// This template operator() allows Matches(m) to be used as a
// predicate on type T where m is a matcher on type T.
//
// The argument x is passed by reference instead of by value, as
// some matcher may be interested in its address (e.g. as in
// Matches(Ref(n))(x)).
template <typename T>
bool operator()(const T& x) const {
// We let matcher_ commit to a particular type here instead of
// when the MatcherAsPredicate object was constructed. This
// allows us to write Matches(m) where m is a polymorphic matcher
// (e.g. Eq(5)).
//
// If we write Matcher<T>(matcher_).Matches(x) here, it won't
// compile when matcher_ has type Matcher<const T&>; if we write
// Matcher<const T&>(matcher_).Matches(x) here, it won't compile
// when matcher_ has type Matcher<T>; if we just write
// matcher_.Matches(x), it won't compile when matcher_ is
// polymorphic, e.g. Eq(5).
//
// MatcherCast<const T&>() is necessary for making the code work
// in all of the above situations.
return MatcherCast<const T&>(matcher_).Matches(x);
}
private:
M matcher_;
};
// For implementing ASSERT_THAT() and EXPECT_THAT(). The template
// argument M must be a type that can be converted to a matcher.
template <typename M>
class PredicateFormatterFromMatcher {
public:
explicit PredicateFormatterFromMatcher(M m) : matcher_(std::move(m)) {}
// This template () operator allows a PredicateFormatterFromMatcher
// object to act as a predicate-formatter suitable for using with
// Google Test's EXPECT_PRED_FORMAT1() macro.
template <typename T>
AssertionResult operator()(const char* value_text, const T& x) const {
// We convert matcher_ to a Matcher<const T&> *now* instead of
// when the PredicateFormatterFromMatcher object was constructed,
// as matcher_ may be polymorphic (e.g. NotNull()) and we won't
// know which type to instantiate it to until we actually see the
// type of x here.
//
// We write SafeMatcherCast<const T&>(matcher_) instead of
// Matcher<const T&>(matcher_), as the latter won't compile when
// matcher_ has type Matcher<T> (e.g. An<int>()).
// We don't write MatcherCast<const T&> either, as that allows
// potentially unsafe downcasting of the matcher argument.
const Matcher<const T&> matcher = SafeMatcherCast<const T&>(matcher_);
// The expected path here is that the matcher should match (i.e. that most
// tests pass) so optimize for this case.
if (matcher.Matches(x)) {
return AssertionSuccess();
}
::std::stringstream ss;
ss << "Value of: " << value_text << "\n"
<< "Expected: ";
matcher.DescribeTo(&ss);
// Rerun the matcher to "PrintAndExplain" the failure.
StringMatchResultListener listener;
if (MatchPrintAndExplain(x, matcher, &listener)) {
ss << "\n The matcher failed on the initial attempt; but passed when "
"rerun to generate the explanation.";
}
ss << "\n Actual: " << listener.str();
return AssertionFailure() << ss.str();
}
private:
const M matcher_;
};
// A helper function for converting a matcher to a predicate-formatter
// without the user needing to explicitly write the type. This is
// used for implementing ASSERT_THAT() and EXPECT_THAT().
// Implementation detail: 'matcher' is received by-value to force decaying.
template <typename M>
inline PredicateFormatterFromMatcher<M>
MakePredicateFormatterFromMatcher(M matcher) {
return PredicateFormatterFromMatcher<M>(std::move(matcher));
}
// Implements the polymorphic IsNan() matcher, which matches any floating type
// value that is Nan.
class IsNanMatcher {
public:
template <typename FloatType>
bool MatchAndExplain(const FloatType& f,
MatchResultListener* /* listener */) const {
return (::std::isnan)(f);
}
void DescribeTo(::std::ostream* os) const { *os << "is NaN"; }
void DescribeNegationTo(::std::ostream* os) const {
*os << "isn't NaN";
}
};
// Implements the polymorphic floating point equality matcher, which matches
// two float values using ULP-based approximation or, optionally, a
// user-specified epsilon. The template is meant to be instantiated with
// FloatType being either float or double.
template <typename FloatType>
class FloatingEqMatcher {
public:
// Constructor for FloatingEqMatcher.
// The matcher's input will be compared with expected. The matcher treats two
// NANs as equal if nan_eq_nan is true. Otherwise, under IEEE standards,
// equality comparisons between NANs will always return false. We specify a
// negative max_abs_error_ term to indicate that ULP-based approximation will
// be used for comparison.
FloatingEqMatcher(FloatType expected, bool nan_eq_nan) :
expected_(expected), nan_eq_nan_(nan_eq_nan), max_abs_error_(-1) {
}
// Constructor that supports a user-specified max_abs_error that will be used
// for comparison instead of ULP-based approximation. The max absolute
// should be non-negative.
FloatingEqMatcher(FloatType expected, bool nan_eq_nan,
FloatType max_abs_error)
: expected_(expected),
nan_eq_nan_(nan_eq_nan),
max_abs_error_(max_abs_error) {
GTEST_CHECK_(max_abs_error >= 0)
<< ", where max_abs_error is" << max_abs_error;
}
// Implements floating point equality matcher as a Matcher<T>.
template <typename T>
class Impl : public MatcherInterface<T> {
public:
Impl(FloatType expected, bool nan_eq_nan, FloatType max_abs_error)
: expected_(expected),
nan_eq_nan_(nan_eq_nan),
max_abs_error_(max_abs_error) {}
bool MatchAndExplain(T value,
MatchResultListener* listener) const override {
const FloatingPoint<FloatType> actual(value), expected(expected_);
// Compares NaNs first, if nan_eq_nan_ is true.
if (actual.is_nan() || expected.is_nan()) {
if (actual.is_nan() && expected.is_nan()) {
return nan_eq_nan_;
}
// One is nan; the other is not nan.
return false;
}
if (HasMaxAbsError()) {
// We perform an equality check so that inf will match inf, regardless
// of error bounds. If the result of value - expected_ would result in
// overflow or if either value is inf, the default result is infinity,
// which should only match if max_abs_error_ is also infinity.
if (value == expected_) {
return true;
}
const FloatType diff = value - expected_;
if (::std::fabs(diff) <= max_abs_error_) {
return true;
}
if (listener->IsInterested()) {
*listener << "which is " << diff << " from " << expected_;
}
return false;
} else {
return actual.AlmostEquals(expected);
}
}
void DescribeTo(::std::ostream* os) const override {
// os->precision() returns the previously set precision, which we
// store to restore the ostream to its original configuration
// after outputting.
const ::std::streamsize old_precision = os->precision(
::std::numeric_limits<FloatType>::digits10 + 2);
if (FloatingPoint<FloatType>(expected_).is_nan()) {
if (nan_eq_nan_) {
*os << "is NaN";
} else {
*os << "never matches";
}
} else {
*os << "is approximately " << expected_;
if (HasMaxAbsError()) {
*os << " (absolute error <= " << max_abs_error_ << ")";
}
}
os->precision(old_precision);
}
void DescribeNegationTo(::std::ostream* os) const override {
// As before, get original precision.
const ::std::streamsize old_precision = os->precision(
::std::numeric_limits<FloatType>::digits10 + 2);
if (FloatingPoint<FloatType>(expected_).is_nan()) {
if (nan_eq_nan_) {
*os << "isn't NaN";
} else {
*os << "is anything";
}
} else {
*os << "isn't approximately " << expected_;
if (HasMaxAbsError()) {
*os << " (absolute error > " << max_abs_error_ << ")";
}
}
// Restore original precision.
os->precision(old_precision);
}
private:
bool HasMaxAbsError() const {
return max_abs_error_ >= 0;
}
const FloatType expected_;
const bool nan_eq_nan_;
// max_abs_error will be used for value comparison when >= 0.
const FloatType max_abs_error_;
};
// The following 3 type conversion operators allow FloatEq(expected) and
// NanSensitiveFloatEq(expected) to be used as a Matcher<float>, a
// Matcher<const float&>, or a Matcher<float&>, but nothing else.
operator Matcher<FloatType>() const {
return MakeMatcher(
new Impl<FloatType>(expected_, nan_eq_nan_, max_abs_error_));
}
operator Matcher<const FloatType&>() const {
return MakeMatcher(
new Impl<const FloatType&>(expected_, nan_eq_nan_, max_abs_error_));
}
operator Matcher<FloatType&>() const {
return MakeMatcher(
new Impl<FloatType&>(expected_, nan_eq_nan_, max_abs_error_));
}
private:
const FloatType expected_;
const bool nan_eq_nan_;
// max_abs_error will be used for value comparison when >= 0.
const FloatType max_abs_error_;
};
// A 2-tuple ("binary") wrapper around FloatingEqMatcher:
// FloatingEq2Matcher() matches (x, y) by matching FloatingEqMatcher(x, false)
// against y, and FloatingEq2Matcher(e) matches FloatingEqMatcher(x, false, e)
// against y. The former implements "Eq", the latter "Near". At present, there
// is no version that compares NaNs as equal.
template <typename FloatType>
class FloatingEq2Matcher {
public:
FloatingEq2Matcher() { Init(-1, false); }
explicit FloatingEq2Matcher(bool nan_eq_nan) { Init(-1, nan_eq_nan); }
explicit FloatingEq2Matcher(FloatType max_abs_error) {
Init(max_abs_error, false);
}
FloatingEq2Matcher(FloatType max_abs_error, bool nan_eq_nan) {
Init(max_abs_error, nan_eq_nan);
}
template <typename T1, typename T2>
operator Matcher<::std::tuple<T1, T2>>() const {
return MakeMatcher(
new Impl<::std::tuple<T1, T2>>(max_abs_error_, nan_eq_nan_));
}
template <typename T1, typename T2>
operator Matcher<const ::std::tuple<T1, T2>&>() const {
return MakeMatcher(
new Impl<const ::std::tuple<T1, T2>&>(max_abs_error_, nan_eq_nan_));
}
private:
static ::std::ostream& GetDesc(::std::ostream& os) { // NOLINT
return os << "an almost-equal pair";
}
template <typename Tuple>
class Impl : public MatcherInterface<Tuple> {
public:
Impl(FloatType max_abs_error, bool nan_eq_nan) :
max_abs_error_(max_abs_error),
nan_eq_nan_(nan_eq_nan) {}
bool MatchAndExplain(Tuple args,
MatchResultListener* listener) const override {
if (max_abs_error_ == -1) {
FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_);
return static_cast<Matcher<FloatType>>(fm).MatchAndExplain(
::std::get<1>(args), listener);
} else {
FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_,
max_abs_error_);
return static_cast<Matcher<FloatType>>(fm).MatchAndExplain(
::std::get<1>(args), listener);
}
}
void DescribeTo(::std::ostream* os) const override {
*os << "are " << GetDesc;
}
void DescribeNegationTo(::std::ostream* os) const override {
*os << "aren't " << GetDesc;
}
private:
FloatType max_abs_error_;
const bool nan_eq_nan_;
};
void Init(FloatType max_abs_error_val, bool nan_eq_nan_val) {
max_abs_error_ = max_abs_error_val;
nan_eq_nan_ = nan_eq_nan_val;
}
FloatType max_abs_error_;
bool nan_eq_nan_;
};
// Implements the Pointee(m) matcher for matching a pointer whose
// pointee matches matcher m. The pointer can be either raw or smart.
template <typename InnerMatcher>
class PointeeMatcher {
public:
explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}
// This type conversion operator template allows Pointee(m) to be
// used as a matcher for any pointer type whose pointee type is
// compatible with the inner matcher, where type Pointer can be
// either a raw pointer or a smart pointer.
//
// The reason we do this instead of relying on
// MakePolymorphicMatcher() is that the latter is not flexible
// enough for implementing the DescribeTo() method of Pointee().
template <typename Pointer>
operator Matcher<Pointer>() const {
return Matcher<Pointer>(new Impl<const Pointer&>(matcher_));
}
private:
// The monomorphic implementation that works for a particular pointer type.
template <typename Pointer>
class Impl : public MatcherInterface<Pointer> {
public:
using Pointee =
typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_(
Pointer)>::element_type;
explicit Impl(const InnerMatcher& matcher)
: matcher_(MatcherCast<const Pointee&>(matcher)) {}
void DescribeTo(::std::ostream* os) const override {
*os << "points to a value that ";
matcher_.DescribeTo(os);
}
void DescribeNegationTo(::std::ostream* os) const override {
*os << "does not point to a value that ";
matcher_.DescribeTo(os);
}
bool MatchAndExplain(Pointer pointer,
MatchResultListener* listener) const override {
if (GetRawPointer(pointer) == nullptr) return false;
*listener << "which points to ";
return MatchPrintAndExplain(*pointer, matcher_, listener);
}
private:
const Matcher<const Pointee&> matcher_;
};
const InnerMatcher matcher_;
};
// Implements the Pointer(m) matcher
// Implements the Pointer(m) matcher for matching a pointer that matches matcher
// m. The pointer can be either raw or smart, and will match `m` against the
// raw pointer.
template <typename InnerMatcher>
class PointerMatcher {
public:
explicit PointerMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}
// This type conversion operator template allows Pointer(m) to be
// used as a matcher for any pointer type whose pointer type is
// compatible with the inner matcher, where type PointerType can be
// either a raw pointer or a smart pointer.
//
// The reason we do this instead of relying on
// MakePolymorphicMatcher() is that the latter is not flexible
// enough for implementing the DescribeTo() method of Pointer().
template <typename PointerType>
operator Matcher<PointerType>() const { // NOLINT
return Matcher<PointerType>(new Impl<const PointerType&>(matcher_));
}
private:
// The monomorphic implementation that works for a particular pointer type.
template <typename PointerType>
class Impl : public MatcherInterface<PointerType> {
public:
using Pointer =
const typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_(
PointerType)>::element_type*;
explicit Impl(const InnerMatcher& matcher)
: matcher_(MatcherCast<Pointer>(matcher)) {}
void DescribeTo(::std::ostream* os) const override {
*os << "is a pointer that ";
matcher_.DescribeTo(os);
}
void DescribeNegationTo(::std::ostream* os) const override {
*os << "is not a pointer that ";
matcher_.DescribeTo(os);
}
bool MatchAndExplain(PointerType pointer,
MatchResultListener* listener) const override {
*listener << "which is a pointer that ";
Pointer p = GetRawPointer(pointer);
return MatchPrintAndExplain(p, matcher_, listener);
}
private:
Matcher<Pointer> matcher_;
};
const InnerMatcher matcher_;
};
#if GTEST_HAS_RTTI
// Implements the WhenDynamicCastTo<T>(m) matcher that matches a pointer or
// reference that matches inner_matcher when dynamic_cast<T> is applied.
// The result of dynamic_cast<To> is forwarded to the inner matcher.
// If To is a pointer and the cast fails, the inner matcher will receive NULL.
// If To is a reference and the cast fails, this matcher returns false
// immediately.
template <typename To>
class WhenDynamicCastToMatcherBase {
public:
explicit WhenDynamicCastToMatcherBase(const Matcher<To>& matcher)
: matcher_(matcher) {}
void DescribeTo(::std::ostream* os) const {
GetCastTypeDescription(os);
matcher_.DescribeTo(os);
}
void DescribeNegationTo(::std::ostream* os) const {
GetCastTypeDescription(os);
matcher_.DescribeNegationTo(os);
}
protected:
const Matcher<To> matcher_;
static std::string GetToName() {
return GetTypeName<To>();
}
private:
static void GetCastTypeDescription(::std::ostream* os) {
*os << "when dynamic_cast to " << GetToName() << ", ";
}
};
// Primary template.
// To is a pointer. Cast and forward the result.
template <typename To>
class WhenDynamicCastToMatcher : public WhenDynamicCastToMatcherBase<To> {
public:
explicit WhenDynamicCastToMatcher(const Matcher<To>& matcher)
: WhenDynamicCastToMatcherBase<To>(matcher) {}
template <typename From>
bool MatchAndExplain(From from, MatchResultListener* listener) const {
To to = dynamic_cast<To>(from);
return MatchPrintAndExplain(to, this->matcher_, listener);
}
};
// Specialize for references.
// In this case we return false if the dynamic_cast fails.
template <typename To>
class WhenDynamicCastToMatcher<To&> : public WhenDynamicCastToMatcherBase<To&> {
public:
explicit WhenDynamicCastToMatcher(const Matcher<To&>& matcher)
: WhenDynamicCastToMatcherBase<To&>(matcher) {}
template <typename From>
bool MatchAndExplain(From& from, MatchResultListener* listener) const {
// We don't want an std::bad_cast here, so do the cast with pointers.
To* to = dynamic_cast<To*>(&from);
if (to == nullptr) {
*listener << "which cannot be dynamic_cast to " << this->GetToName();
return false;
}
return MatchPrintAndExplain(*to, this->matcher_, listener);
}
};
#endif // GTEST_HAS_RTTI
// Implements the Field() matcher for matching a field (i.e. member
// variable) of an object.
template <typename Class, typename FieldType>
class FieldMatcher {
public:
FieldMatcher(FieldType Class::*field,
const Matcher<const FieldType&>& matcher)
: field_(field), matcher_(matcher), whose_field_("whose given field ") {}
FieldMatcher(const std::string& field_name, FieldType Class::*field,
const Matcher<const FieldType&>& matcher)
: field_(field),
matcher_(matcher),
whose_field_("whose field `" + field_name + "` ") {}
void DescribeTo(::std::ostream* os) const {
*os << "is an object " << whose_field_;
matcher_.DescribeTo(os);
}
void DescribeNegationTo(::std::ostream* os) const {
*os << "is an object " << whose_field_;
matcher_.DescribeNegationTo(os);
}
template <typename T>
bool MatchAndExplain(const T& value, MatchResultListener* listener) const {
// FIXME: The dispatch on std::is_pointer was introduced as a workaround for
// a compiler bug, and can now be removed.
return MatchAndExplainImpl(
typename std::is_pointer<typename std::remove_const<T>::type>::type(),
value, listener);
}
private:
bool MatchAndExplainImpl(std::false_type /* is_not_pointer */,
const Class& obj,
MatchResultListener* listener) const {
*listener << whose_field_ << "is ";
return MatchPrintAndExplain(obj.*field_, matcher_, listener);
}
bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p,
MatchResultListener* listener) const {
if (p == nullptr) return false;
*listener << "which points to an object ";
// Since *p has a field, it must be a class/struct/union type and
// thus cannot be a pointer. Therefore we pass false_type() as
// the first argument.
return MatchAndExplainImpl(std::false_type(), *p, listener);
}
const FieldType Class::*field_;
const Matcher<const FieldType&> matcher_;
// Contains either "whose given field " if the name of the field is unknown
// or "whose field `name_of_field` " if the name is known.
const std::string whose_field_;
};
// Implements the Property() matcher for matching a property
// (i.e. return value of a getter method) of an object.
//
// Property is a const-qualified member function of Class returning
// PropertyType.
template <typename Class, typename PropertyType, typename Property>
class PropertyMatcher {
public:
typedef const PropertyType& RefToConstProperty;
PropertyMatcher(Property property, const Matcher<RefToConstProperty>& matcher)
: property_(property),
matcher_(matcher),
whose_property_("whose given property ") {}
PropertyMatcher(const std::string& property_name, Property property,
const Matcher<RefToConstProperty>& matcher)
: property_(property),
matcher_(matcher),
whose_property_("whose property `" + property_name + "` ") {}
void DescribeTo(::std::ostream* os) const {
*os << "is an object " << whose_property_;
matcher_.DescribeTo(os);
}
void DescribeNegationTo(::std::ostream* os) const {
*os << "is an object " << whose_property_;
matcher_.DescribeNegationTo(os);
}
template <typename T>
bool MatchAndExplain(const T&value, MatchResultListener* listener) const {
return MatchAndExplainImpl(
typename std::is_pointer<typename std::remove_const<T>::type>::type(),
value, listener);
}
private:
bool MatchAndExplainImpl(std::false_type /* is_not_pointer */,
const Class& obj,
MatchResultListener* listener) const {
*listener << whose_property_ << "is ";
// Cannot pass the return value (for example, int) to MatchPrintAndExplain,
// which takes a non-const reference as argument.
RefToConstProperty result = (obj.*property_)();
return MatchPrintAndExplain(result, matcher_, listener);
}
bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p,
MatchResultListener* listener) const {
if (p == nullptr) return false;
*listener << "which points to an object ";
// Since *p has a property method, it must be a class/struct/union
// type and thus cannot be a pointer. Therefore we pass
// false_type() as the first argument.
return MatchAndExplainImpl(std::false_type(), *p, listener);
}
Property property_;
const Matcher<RefToConstProperty> matcher_;
// Contains either "whose given property " if the name of the property is
// unknown or "whose property `name_of_property` " if the name is known.
const std::string whose_property_;
};
// Type traits specifying various features of different functors for ResultOf.
// The default template specifies features for functor objects.
template <typename Functor>
struct CallableTraits {
typedef Functor StorageType;
static void CheckIsValid(Functor /* functor */) {}
template <typename T>
static auto Invoke(Functor f, const T& arg) -> decltype(f(arg)) {
return f(arg);
}
};
// Specialization for function pointers.
template <typename ArgType, typename ResType>
struct CallableTraits<ResType(*)(ArgType)> {
typedef ResType ResultType;
typedef ResType(*StorageType)(ArgType);
static void CheckIsValid(ResType(*f)(ArgType)) {
GTEST_CHECK_(f != nullptr)
<< "NULL function pointer is passed into ResultOf().";
}
template <typename T>
static ResType Invoke(ResType(*f)(ArgType), T arg) {
return (*f)(arg);
}
};
// Implements the ResultOf() matcher for matching a return value of a
// unary function of an object.
template <typename Callable, typename InnerMatcher>
class ResultOfMatcher {
public:
ResultOfMatcher(Callable callable, InnerMatcher matcher)
: callable_(std::move(callable)), matcher_(std::move(matcher)) {
CallableTraits<Callable>::CheckIsValid(callable_);
}
template <typename T>
operator Matcher<T>() const {
return Matcher<T>(new Impl<const T&>(callable_, matcher_));
}
private:
typedef typename CallableTraits<Callable>::StorageType CallableStorageType;
template <typename T>
class Impl : public MatcherInterface<T> {
using ResultType = decltype(CallableTraits<Callable>::template Invoke<T>(
std::declval<CallableStorageType>(), std::declval<T>()));
public:
template <typename M>
Impl(const CallableStorageType& callable, const M& matcher)
: callable_(callable), matcher_(MatcherCast<ResultType>(matcher)) {}
void DescribeTo(::std::ostream* os) const override {
*os << "is mapped by the given callable to a value that ";
matcher_.DescribeTo(os);
}
void DescribeNegationTo(::std::ostream* os) const override {
*os << "is mapped by the given callable to a value that ";
matcher_.DescribeNegationTo(os);
}
bool MatchAndExplain(T obj, MatchResultListener* listener) const override {
*listener << "which is mapped by the given callable to ";
// Cannot pass the return value directly to MatchPrintAndExplain, which
// takes a non-const reference as argument.
// Also, specifying template argument explicitly is needed because T could
// be a non-const reference (e.g. Matcher<Uncopyable&>).
ResultType result =
CallableTraits<Callable>::template Invoke<T>(callable_, obj);
return MatchPrintAndExplain(result, matcher_, listener);
}
private:
// Functors often define operator() as non-const method even though
// they are actually stateless. But we need to use them even when
// 'this' is a const pointer. It's the user's responsibility not to
// use stateful callables with ResultOf(), which doesn't guarantee
// how many times the callable will be invoked.
mutable CallableStorageType callable_;
const Matcher<ResultType> matcher_;
}; // class Impl
const CallableStorageType callable_;
const InnerMatcher matcher_;
};
// Implements a matcher that checks the size of an STL-style container.
template <typename SizeMatcher>
class SizeIsMatcher {
public:
explicit SizeIsMatcher(const SizeMatcher& size_matcher)
: size_matcher_(size_matcher) {
}
template <typename Container>
operator Matcher<Container>() const {
return Matcher<Container>(new Impl<const Container&>(size_matcher_));
}
template <typename Container>
class Impl : public MatcherInterface<Container> {
public:
using SizeType = decltype(std::declval<Container>().size());
explicit Impl(const SizeMatcher& size_matcher)
: size_matcher_(MatcherCast<SizeType>(size_matcher)) {}
void DescribeTo(::std::ostream* os) const override {
*os << "size ";
size_matcher_.DescribeTo(os);
}
void DescribeNegationTo(::std::ostream* os) const override {
*os << "size ";
size_matcher_.DescribeNegationTo(os);
}
bool MatchAndExplain(Container container,
MatchResultListener* listener) const override {
SizeType size = container.size();
StringMatchResultListener size_listener;
const bool result = size_matcher_.MatchAndExplain(size, &size_listener);
*listener
<< "whose size " << size << (result ? " matches" : " doesn't match");
PrintIfNotEmpty(size_listener.str(), listener->stream());
return result;
}
private:
const Matcher<SizeType> size_matcher_;
};
private:
const SizeMatcher size_matcher_;
};
// Implements a matcher that checks the begin()..end() distance of an STL-style
// container.
template <typename DistanceMatcher>
class BeginEndDistanceIsMatcher {
public:
explicit BeginEndDistanceIsMatcher(const DistanceMatcher& distance_matcher)
: distance_matcher_(distance_matcher) {}
template <typename Container>
operator Matcher<Container>() const {
return Matcher<Container>(new Impl<const Container&>(distance_matcher_));
}
template <typename Container>
class Impl : public MatcherInterface<Container> {
public:
typedef internal::StlContainerView<
GTEST_REMOVE_REFERENCE_AND_CONST_(Container)> ContainerView;
typedef typename std::iterator_traits<
typename ContainerView::type::const_iterator>::difference_type
DistanceType;
explicit Impl(const DistanceMatcher& distance_matcher)
: distance_matcher_(MatcherCast<DistanceType>(distance_matcher)) {}
void DescribeTo(::std::ostream* os) const override {
*os << "distance between begin() and end() ";
distance_matcher_.DescribeTo(os);
}
void DescribeNegationTo(::std::ostream* os) const override {
*os << "distance between begin() and end() ";
distance_matcher_.DescribeNegationTo(os);
}
bool MatchAndExplain(Container container,
MatchResultListener* listener) const override {
using std::begin;
using std::end;
DistanceType distance = std::distance(begin(container), end(container));
StringMatchResultListener distance_listener;
const bool result =
distance_matcher_.MatchAndExplain(distance, &distance_listener);
*listener << "whose distance between begin() and end() " << distance
<< (result ? " matches" : " doesn't match");
PrintIfNotEmpty(distance_listener.str(), listener->stream());
return result;
}
private:
const Matcher<DistanceType> distance_matcher_;
};
private:
const DistanceMatcher distance_matcher_;
};
// Implements an equality matcher for any STL-style container whose elements
// support ==. This matcher is like Eq(), but its failure explanations provide
// more detailed information that is useful when the container is used as a set.
// The failure message reports elements that are in one of the operands but not
// the other. The failure messages do not report duplicate or out-of-order
// elements in the containers (which don't properly matter to sets, but can
// occur if the containers are vectors or lists, for example).
//
// Uses the container's const_iterator, value_type, operator ==,
// begin(), and end().
template <typename Container>
class ContainerEqMatcher {
public:
typedef internal::StlContainerView<Container> View;
typedef typename View::type StlContainer;
typedef typename View::const_reference StlContainerReference;
static_assert(!std::is_const<Container>::value,
"Container type must not be const");
static_assert(!std::is_reference<Container>::value,
"Container type must not be a reference");
// We make a copy of expected in case the elements in it are modified
// after this matcher is created.
explicit ContainerEqMatcher(const Container& expected)
: expected_(View::Copy(expected)) {}
void DescribeTo(::std::ostream* os) const {
*os << "equals ";
UniversalPrint(expected_, os);
}
void DescribeNegationTo(::std::ostream* os) const {
*os << "does not equal ";
UniversalPrint(expected_, os);
}
template <typename LhsContainer>
bool MatchAndExplain(const LhsContainer& lhs,
MatchResultListener* listener) const {
typedef internal::StlContainerView<
typename std::remove_const<LhsContainer>::type>
LhsView;
typedef typename LhsView::type LhsStlContainer;
StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
if (lhs_stl_container == expected_)
return true;
::std::ostream* const os = listener->stream();
if (os != nullptr) {
// Something is different. Check for extra values first.
bool printed_header = false;
for (typename LhsStlContainer::const_iterator it =
lhs_stl_container.begin();
it != lhs_stl_container.end(); ++it) {
if (internal::ArrayAwareFind(expected_.begin(), expected_.end(), *it) ==
expected_.end()) {
if (printed_header) {
*os << ", ";
} else {
*os << "which has these unexpected elements: ";
printed_header = true;
}
UniversalPrint(*it, os);
}
}
// Now check for missing values.
bool printed_header2 = false;
for (typename StlContainer::const_iterator it = expected_.begin();
it != expected_.end(); ++it) {
if (internal::ArrayAwareFind(
lhs_stl_container.begin(), lhs_stl_container.end(), *it) ==
lhs_stl_container.end()) {
if (printed_header2) {
*os << ", ";
} else {
*os << (printed_header ? ",\nand" : "which")
<< " doesn't have these expected elements: ";
printed_header2 = true;
}
UniversalPrint(*it, os);
}
}
}
return false;
}
private:
const StlContainer expected_;
};
// A comparator functor that uses the < operator to compare two values.
struct LessComparator {
template <typename T, typename U>
bool operator()(const T& lhs, const U& rhs) const { return lhs < rhs; }
};
// Implements WhenSortedBy(comparator, container_matcher).
template <typename Comparator, typename ContainerMatcher>
class WhenSortedByMatcher {
public:
WhenSortedByMatcher(const Comparator& comparator,
const ContainerMatcher& matcher)
: comparator_(comparator), matcher_(matcher) {}
template <typename LhsContainer>
operator Matcher<LhsContainer>() const {
return MakeMatcher(new Impl<LhsContainer>(comparator_, matcher_));
}
template <typename LhsContainer>
class Impl : public MatcherInterface<LhsContainer> {
public:
typedef internal::StlContainerView<
GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView;
typedef typename LhsView::type LhsStlContainer;
typedef typename LhsView::const_reference LhsStlContainerReference;
// Transforms std::pair<const Key, Value> into std::pair<Key, Value>
// so that we can match associative containers.
typedef typename RemoveConstFromKey<
typename LhsStlContainer::value_type>::type LhsValue;
Impl(const Comparator& comparator, const ContainerMatcher& matcher)
: comparator_(comparator), matcher_(matcher) {}
void DescribeTo(::std::ostream* os) const override {
*os << "(when sorted) ";
matcher_.DescribeTo(os);
}
void DescribeNegationTo(::std::ostream* os) const override {
*os << "(when sorted) ";
matcher_.DescribeNegationTo(os);
}
bool MatchAndExplain(LhsContainer lhs,
MatchResultListener* listener) const override {
LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
::std::vector<LhsValue> sorted_container(lhs_stl_container.begin(),
lhs_stl_container.end());
::std::sort(
sorted_container.begin(), sorted_container.end(), comparator_);
if (!listener->IsInterested()) {
// If the listener is not interested, we do not need to
// construct the inner explanation.
return matcher_.Matches(sorted_container);
}
*listener << "which is ";
UniversalPrint(sorted_container, listener->stream());
*listener << " when sorted";
StringMatchResultListener inner_listener;
const bool match = matcher_.MatchAndExplain(sorted_container,
&inner_listener);
PrintIfNotEmpty(inner_listener.str(), listener->stream());
return match;
}
private:
const Comparator comparator_;
const Matcher<const ::std::vector<LhsValue>&> matcher_;
GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl);
};
private:
const Comparator comparator_;
const ContainerMatcher matcher_;
};
// Implements Pointwise(tuple_matcher, rhs_container). tuple_matcher
// must be able to be safely cast to Matcher<std::tuple<const T1&, const
// T2&> >, where T1 and T2 are the types of elements in the LHS
// container and the RHS container respectively.
template <typename TupleMatcher, typename RhsContainer>
class PointwiseMatcher {
GTEST_COMPILE_ASSERT_(
!IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>::value,
use_UnorderedPointwise_with_hash_tables);
public:
typedef internal::StlContainerView<RhsContainer> RhsView;
typedef typename RhsView::type RhsStlContainer;
typedef typename RhsStlContainer::value_type RhsValue;
static_assert(!std::is_const<RhsContainer>::value,
"RhsContainer type must not be const");
static_assert(!std::is_reference<RhsContainer>::value,
"RhsContainer type must not be a reference");
// Like ContainerEq, we make a copy of rhs in case the elements in
// it are modified after this matcher is created.
PointwiseMatcher(const TupleMatcher& tuple_matcher, const RhsContainer& rhs)
: tuple_matcher_(tuple_matcher), rhs_(RhsView::Copy(rhs)) {}
template <typename LhsContainer>
operator Matcher<LhsContainer>() const {
GTEST_COMPILE_ASSERT_(
!IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)>::value,
use_UnorderedPointwise_with_hash_tables);
return Matcher<LhsContainer>(
new Impl<const LhsContainer&>(tuple_matcher_, rhs_));
}
template <typename LhsContainer>
class Impl : public MatcherInterface<LhsContainer> {
public:
typedef internal::StlContainerView<
GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView;
typedef typename LhsView::type LhsStlContainer;
typedef typename LhsView::const_reference LhsStlContainerReference;
typedef typename LhsStlContainer::value_type LhsValue;
// We pass the LHS value and the RHS value to the inner matcher by
// reference, as they may be expensive to copy. We must use tuple
// instead of pair here, as a pair cannot hold references (C++ 98,
// 20.2.2 [lib.pairs]).
typedef ::std::tuple<const LhsValue&, const RhsValue&> InnerMatcherArg;
Impl(const TupleMatcher& tuple_matcher, const RhsStlContainer& rhs)
// mono_tuple_matcher_ holds a monomorphic version of the tuple matcher.
: mono_tuple_matcher_(SafeMatcherCast<InnerMatcherArg>(tuple_matcher)),
rhs_(rhs) {}
void DescribeTo(::std::ostream* os) const override {
*os << "contains " << rhs_.size()
<< " values, where each value and its corresponding value in ";
UniversalPrinter<RhsStlContainer>::Print(rhs_, os);
*os << " ";
mono_tuple_matcher_.DescribeTo(os);
}
void DescribeNegationTo(::std::ostream* os) const override {
*os << "doesn't contain exactly " << rhs_.size()
<< " values, or contains a value x at some index i"
<< " where x and the i-th value of ";
UniversalPrint(rhs_, os);
*os << " ";
mono_tuple_matcher_.DescribeNegationTo(os);
}
bool MatchAndExplain(LhsContainer lhs,
MatchResultListener* listener) const override {
LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
const size_t actual_size = lhs_stl_container.size();
if (actual_size != rhs_.size()) {
*listener << "which contains " << actual_size << " values";
return false;
}
typename LhsStlContainer::const_iterator left = lhs_stl_container.begin();
typename RhsStlContainer::const_iterator right = rhs_.begin();
for (size_t i = 0; i != actual_size; ++i, ++left, ++right) {
if (listener->IsInterested()) {
StringMatchResultListener inner_listener;
// Create InnerMatcherArg as a temporarily object to avoid it outlives
// *left and *right. Dereference or the conversion to `const T&` may
// return temp objects, e.g for vector<bool>.
if (!mono_tuple_matcher_.MatchAndExplain(
InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left),
ImplicitCast_<const RhsValue&>(*right)),
&inner_listener)) {
*listener << "where the value pair (";
UniversalPrint(*left, listener->stream());
*listener << ", ";
UniversalPrint(*right, listener->stream());
*listener << ") at index #" << i << " don't match";
PrintIfNotEmpty(inner_listener.str(), listener->stream());
return false;
}
} else {
if (!mono_tuple_matcher_.Matches(
InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left),
ImplicitCast_<const RhsValue&>(*right))))
return false;
}
}
return true;
}
private:
const Matcher<InnerMatcherArg> mono_tuple_matcher_;
const RhsStlContainer rhs_;
};
private:
const TupleMatcher tuple_matcher_;
const RhsStlContainer rhs_;
};
// Holds the logic common to ContainsMatcherImpl and EachMatcherImpl.
template <typename Container>
class QuantifierMatcherImpl : public MatcherInterface<Container> {
public:
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
typedef StlContainerView<RawContainer> View;
typedef typename View::type StlContainer;
typedef typename View::const_reference StlContainerReference;
typedef typename StlContainer::value_type Element;
template <typename InnerMatcher>
explicit QuantifierMatcherImpl(InnerMatcher inner_matcher)
: inner_matcher_(
testing::SafeMatcherCast<const Element&>(inner_matcher)) {}
// Checks whether:
// * All elements in the container match, if all_elements_should_match.
// * Any element in the container matches, if !all_elements_should_match.
bool MatchAndExplainImpl(bool all_elements_should_match,
Container container,
MatchResultListener* listener) const {
StlContainerReference stl_container = View::ConstReference(container);
size_t i = 0;
for (typename StlContainer::const_iterator it = stl_container.begin();
it != stl_container.end(); ++it, ++i) {
StringMatchResultListener inner_listener;
const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener);
if (matches != all_elements_should_match) {
*listener << "whose element #" << i
<< (matches ? " matches" : " doesn't match");
PrintIfNotEmpty(inner_listener.str(), listener->stream());
return !all_elements_should_match;
}
}
return all_elements_should_match;
}
protected:
const Matcher<const Element&> inner_matcher_;
};
// Implements Contains(element_matcher) for the given argument type Container.
// Symmetric to EachMatcherImpl.
template <typename Container>
class ContainsMatcherImpl : public QuantifierMatcherImpl<Container> {
public:
template <typename InnerMatcher>
explicit ContainsMatcherImpl(InnerMatcher inner_matcher)
: QuantifierMatcherImpl<Container>(inner_matcher) {}
// Describes what this matcher does.
void DescribeTo(::std::ostream* os) const override {
*os << "contains at least one element that ";
this->inner_matcher_.DescribeTo(os);
}
void DescribeNegationTo(::std::ostream* os) const override {
*os << "doesn't contain any element that ";
this->inner_matcher_.DescribeTo(os);
}
bool MatchAndExplain(Container container,
MatchResultListener* listener) const override {
return this->MatchAndExplainImpl(false, container, listener);
}
};
// Implements Each(element_matcher) for the given argument type Container.
// Symmetric to ContainsMatcherImpl.
template <typename Container>
class EachMatcherImpl : public QuantifierMatcherImpl<Container> {
public:
template <typename InnerMatcher>
explicit EachMatcherImpl(InnerMatcher inner_matcher)
: QuantifierMatcherImpl<Container>(inner_matcher) {}
// Describes what this matcher does.
void DescribeTo(::std::ostream* os) const override {
*os << "only contains elements that ";
this->inner_matcher_.DescribeTo(os);
}
void DescribeNegationTo(::std::ostream* os) const override {
*os << "contains some element that ";
this->inner_matcher_.DescribeNegationTo(os);
}
bool MatchAndExplain(Container container,
MatchResultListener* listener) const override {
return this->MatchAndExplainImpl(true, container, listener);
}
};
// Implements polymorphic Contains(element_matcher).
template <typename M>
class ContainsMatcher {
public:
explicit ContainsMatcher(M m) : inner_matcher_(m) {}
template <typename Container>
operator Matcher<Container>() const {
return Matcher<Container>(
new ContainsMatcherImpl<const Container&>(inner_matcher_));
}
private:
const M inner_matcher_;
};
// Implements polymorphic Each(element_matcher).
template <typename M>
class EachMatcher {
public:
explicit EachMatcher(M m) : inner_matcher_(m) {}
template <typename Container>
operator Matcher<Container>() const {
return Matcher<Container>(
new EachMatcherImpl<const Container&>(inner_matcher_));
}
private:
const M inner_matcher_;
};
struct Rank1 {};
struct Rank0 : Rank1 {};
namespace pair_getters {
using std::get;
template <typename T>
auto First(T& x, Rank1) -> decltype(get<0>(x)) { // NOLINT
return get<0>(x);
}
template <typename T>
auto First(T& x, Rank0) -> decltype((x.first)) { // NOLINT
return x.first;
}
template <typename T>
auto Second(T& x, Rank1) -> decltype(get<1>(x)) { // NOLINT
return get<1>(x);
}
template <typename T>
auto Second(T& x, Rank0) -> decltype((x.second)) { // NOLINT
return x.second;
}
} // namespace pair_getters
// Implements Key(inner_matcher) for the given argument pair type.
// Key(inner_matcher) matches an std::pair whose 'first' field matches
// inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an
// std::map that contains at least one element whose key is >= 5.
template <typename PairType>
class KeyMatcherImpl : public MatcherInterface<PairType> {
public:
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType;
typedef typename RawPairType::first_type KeyType;
template <typename InnerMatcher>
explicit KeyMatcherImpl(InnerMatcher inner_matcher)
: inner_matcher_(
testing::SafeMatcherCast<const KeyType&>(inner_matcher)) {
}
// Returns true if and only if 'key_value.first' (the key) matches the inner
// matcher.
bool MatchAndExplain(PairType key_value,
MatchResultListener* listener) const override {
StringMatchResultListener inner_listener;
const bool match = inner_matcher_.MatchAndExplain(
pair_getters::First(key_value, Rank0()), &inner_listener);
const std::string explanation = inner_listener.str();
if (explanation != "") {
*listener << "whose first field is a value " << explanation;
}
return match;
}
// Describes what this matcher does.
void DescribeTo(::std::ostream* os) const override {
*os << "has a key that ";
inner_matcher_.DescribeTo(os);
}
// Describes what the negation of this matcher does.
void DescribeNegationTo(::std::ostream* os) const override {
*os << "doesn't have a key that ";
inner_matcher_.DescribeTo(os);
}
private:
const Matcher<const KeyType&> inner_matcher_;
};
// Implements polymorphic Key(matcher_for_key).
template <typename M>
class KeyMatcher {
public:
explicit KeyMatcher(M m) : matcher_for_key_(m) {}
template <typename PairType>
operator Matcher<PairType>() const {
return Matcher<PairType>(
new KeyMatcherImpl<const PairType&>(matcher_for_key_));
}
private:
const M matcher_for_key_;
};
// Implements polymorphic Address(matcher_for_address).
template <typename InnerMatcher>
class AddressMatcher {
public:
explicit AddressMatcher(InnerMatcher m) : matcher_(m) {}
template <typename Type>
operator Matcher<Type>() const { // NOLINT
return Matcher<Type>(new Impl<const Type&>(matcher_));
}
private:
// The monomorphic implementation that works for a particular object type.
template <typename Type>
class Impl : public MatcherInterface<Type> {
public:
using Address = const GTEST_REMOVE_REFERENCE_AND_CONST_(Type) *;
explicit Impl(const InnerMatcher& matcher)
: matcher_(MatcherCast<Address>(matcher)) {}
void DescribeTo(::std::ostream* os) const override {
*os << "has address that ";
matcher_.DescribeTo(os);
}
void DescribeNegationTo(::std::ostream* os) const override {
*os << "does not have address that ";
matcher_.DescribeTo(os);
}
bool MatchAndExplain(Type object,
MatchResultListener* listener) const override {
*listener << "which has address ";
Address address = std::addressof(object);
return MatchPrintAndExplain(address, matcher_, listener);
}
private:
const Matcher<Address> matcher_;
};
const InnerMatcher matcher_;
};
// Implements Pair(first_matcher, second_matcher) for the given argument pair
// type with its two matchers. See Pair() function below.
template <typename PairType>
class PairMatcherImpl : public MatcherInterface<PairType> {
public:
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType;
typedef typename RawPairType::first_type FirstType;
typedef typename RawPairType::second_type SecondType;
template <typename FirstMatcher, typename SecondMatcher>
PairMatcherImpl(FirstMatcher first_matcher, SecondMatcher second_matcher)
: first_matcher_(
testing::SafeMatcherCast<const FirstType&>(first_matcher)),
second_matcher_(
testing::SafeMatcherCast<const SecondType&>(second_matcher)) {
}
// Describes what this matcher does.
void DescribeTo(::std::ostream* os) const override {
*os << "has a first field that ";
first_matcher_.DescribeTo(os);
*os << ", and has a second field that ";
second_matcher_.DescribeTo(os);
}
// Describes what the negation of this matcher does.
void DescribeNegationTo(::std::ostream* os) const override {
*os << "has a first field that ";
first_matcher_.DescribeNegationTo(os);
*os << ", or has a second field that ";
second_matcher_.DescribeNegationTo(os);
}
// Returns true if and only if 'a_pair.first' matches first_matcher and
// 'a_pair.second' matches second_matcher.
bool MatchAndExplain(PairType a_pair,
MatchResultListener* listener) const override {
if (!listener->IsInterested()) {
// If the listener is not interested, we don't need to construct the
// explanation.
return first_matcher_.Matches(pair_getters::First(a_pair, Rank0())) &&
second_matcher_.Matches(pair_getters::Second(a_pair, Rank0()));
}
StringMatchResultListener first_inner_listener;
if (!first_matcher_.MatchAndExplain(pair_getters::First(a_pair, Rank0()),
&first_inner_listener)) {
*listener << "whose first field does not match";
PrintIfNotEmpty(first_inner_listener.str(), listener->stream());
return false;
}
StringMatchResultListener second_inner_listener;
if (!second_matcher_.MatchAndExplain(pair_getters::Second(a_pair, Rank0()),
&second_inner_listener)) {
*listener << "whose second field does not match";
PrintIfNotEmpty(second_inner_listener.str(), listener->stream());
return false;
}
ExplainSuccess(first_inner_listener.str(), second_inner_listener.str(),
listener);
return true;
}
private:
void ExplainSuccess(const std::string& first_explanation,
const std::string& second_explanation,
MatchResultListener* listener) const {
*listener << "whose both fields match";
if (first_explanation != "") {
*listener << ", where the first field is a value " << first_explanation;
}
if (second_explanation != "") {
*listener << ", ";
if (first_explanation != "") {
*listener << "and ";
} else {
*listener << "where ";
}
*listener << "the second field is a value " << second_explanation;
}
}
const Matcher<const FirstType&> first_matcher_;
const Matcher<const SecondType&> second_matcher_;
};
// Implements polymorphic Pair(first_matcher, second_matcher).
template <typename FirstMatcher, typename SecondMatcher>
class PairMatcher {
public:
PairMatcher(FirstMatcher first_matcher, SecondMatcher second_matcher)
: first_matcher_(first_matcher), second_matcher_(second_matcher) {}
template <typename PairType>
operator Matcher<PairType> () const {
return Matcher<PairType>(
new PairMatcherImpl<const PairType&>(first_matcher_, second_matcher_));
}
private:
const FirstMatcher first_matcher_;
const SecondMatcher second_matcher_;
};
template <typename T, size_t... I>
auto UnpackStructImpl(const T& t, IndexSequence<I...>, int)
-> decltype(std::tie(get<I>(t)...)) {
static_assert(std::tuple_size<T>::value == sizeof...(I),
"Number of arguments doesn't match the number of fields.");
return std::tie(get<I>(t)...);
}
#if defined(__cpp_structured_bindings) && __cpp_structured_bindings >= 201606
template <typename T>
auto UnpackStructImpl(const T& t, MakeIndexSequence<1>, char) {
const auto& [a] = t;
return std::tie(a);
}
template <typename T>
auto UnpackStructImpl(const T& t, MakeIndexSequence<2>, char) {
const auto& [a, b] = t;
return std::tie(a, b);
}
template <typename T>
auto UnpackStructImpl(const T& t, MakeIndexSequence<3>, char) {
const auto& [a, b, c] = t;
return std::tie(a, b, c);
}
template <typename T>
auto UnpackStructImpl(const T& t, MakeIndexSequence<4>, char) {
const auto& [a, b, c, d] = t;
return std::tie(a, b, c, d);
}
template <typename T>
auto UnpackStructImpl(const T& t, MakeIndexSequence<5>, char) {
const auto& [a, b, c, d, e] = t;
return std::tie(a, b, c, d, e);
}
template <typename T>
auto UnpackStructImpl(const T& t, MakeIndexSequence<6>, char) {
const auto& [a, b, c, d, e, f] = t;
return std::tie(a, b, c, d, e, f);
}
template <typename T>
auto UnpackStructImpl(const T& t, MakeIndexSequence<7>, char) {
const auto& [a, b, c, d, e, f, g] = t;
return std::tie(a, b, c, d, e, f, g);
}
template <typename T>
auto UnpackStructImpl(const T& t, MakeIndexSequence<8>, char) {
const auto& [a, b, c, d, e, f, g, h] = t;
return std::tie(a, b, c, d, e, f, g, h);
}
template <typename T>
auto UnpackStructImpl(const T& t, MakeIndexSequence<9>, char) {
const auto& [a, b, c, d, e, f, g, h, i] = t;
return std::tie(a, b, c, d, e, f, g, h, i);
}
template <typename T>
auto UnpackStructImpl(const T& t, MakeIndexSequence<10>, char) {
const auto& [a, b, c, d, e, f, g, h, i, j] = t;
return std::tie(a, b, c, d, e, f, g, h, i, j);
}
template <typename T>
auto UnpackStructImpl(const T& t, MakeIndexSequence<11>, char) {
const auto& [a, b, c, d, e, f, g, h, i, j, k] = t;
return std::tie(a, b, c, d, e, f, g, h, i, j, k);
}
template <typename T>
auto UnpackStructImpl(const T& t, MakeIndexSequence<12>, char) {
const auto& [a, b, c, d, e, f, g, h, i, j, k, l] = t;
return std::tie(a, b, c, d, e, f, g, h, i, j, k, l);
}
template <typename T>
auto UnpackStructImpl(const T& t, MakeIndexSequence<13>, char) {
const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m] = t;
return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m);
}
template <typename T>
auto UnpackStructImpl(const T& t, MakeIndexSequence<14>, char) {
const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n] = t;
return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n);
}
template <typename T>
auto UnpackStructImpl(const T& t, MakeIndexSequence<15>, char) {
const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o] = t;
return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o);
}
template <typename T>
auto UnpackStructImpl(const T& t, MakeIndexSequence<16>, char) {
const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p] = t;
return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p);
}
#endif // defined(__cpp_structured_bindings)
template <size_t I, typename T>
auto UnpackStruct(const T& t)
-> decltype((UnpackStructImpl)(t, MakeIndexSequence<I>{}, 0)) {
return (UnpackStructImpl)(t, MakeIndexSequence<I>{}, 0);
}
// Helper function to do comma folding in C++11.
// The array ensures left-to-right order of evaluation.
// Usage: VariadicExpand({expr...});
template <typename T, size_t N>
void VariadicExpand(const T (&)[N]) {}
template <typename Struct, typename StructSize>
class FieldsAreMatcherImpl;
template <typename Struct, size_t... I>
class FieldsAreMatcherImpl<Struct, IndexSequence<I...>>
: public MatcherInterface<Struct> {
using UnpackedType =
decltype(UnpackStruct<sizeof...(I)>(std::declval<const Struct&>()));
using MatchersType = std::tuple<
Matcher<const typename std::tuple_element<I, UnpackedType>::type&>...>;
public:
template <typename Inner>
explicit FieldsAreMatcherImpl(const Inner& matchers)
: matchers_(testing::SafeMatcherCast<
const typename std::tuple_element<I, UnpackedType>::type&>(
std::get<I>(matchers))...) {}
void DescribeTo(::std::ostream* os) const override {
const char* separator = "";
VariadicExpand(
{(*os << separator << "has field #" << I << " that ",
std::get<I>(matchers_).DescribeTo(os), separator = ", and ")...});
}
void DescribeNegationTo(::std::ostream* os) const override {
const char* separator = "";
VariadicExpand({(*os << separator << "has field #" << I << " that ",
std::get<I>(matchers_).DescribeNegationTo(os),
separator = ", or ")...});
}
bool MatchAndExplain(Struct t, MatchResultListener* listener) const override {
return MatchInternal((UnpackStruct<sizeof...(I)>)(t), listener);
}
private:
bool MatchInternal(UnpackedType tuple, MatchResultListener* listener) const {
if (!listener->IsInterested()) {
// If the listener is not interested, we don't need to construct the
// explanation.
bool good = true;
VariadicExpand({good = good && std::get<I>(matchers_).Matches(
std::get<I>(tuple))...});
return good;
}
size_t failed_pos = ~size_t{};
std::vector<StringMatchResultListener> inner_listener(sizeof...(I));
VariadicExpand(
{failed_pos == ~size_t{} && !std::get<I>(matchers_).MatchAndExplain(
std::get<I>(tuple), &inner_listener[I])
? failed_pos = I
: 0 ...});
if (failed_pos != ~size_t{}) {
*listener << "whose field #" << failed_pos << " does not match";
PrintIfNotEmpty(inner_listener[failed_pos].str(), listener->stream());
return false;
}
*listener << "whose all elements match";
const char* separator = ", where";
for (size_t index = 0; index < sizeof...(I); ++index) {
const std::string str = inner_listener[index].str();
if (!str.empty()) {
*listener << separator << " field #" << index << " is a value " << str;
separator = ", and";
}
}
return true;
}
MatchersType matchers_;
};
template <typename... Inner>
class FieldsAreMatcher {
public:
explicit FieldsAreMatcher(Inner... inner) : matchers_(std::move(inner)...) {}
template <typename Struct>
operator Matcher<Struct>() const { // NOLINT
return Matcher<Struct>(
new FieldsAreMatcherImpl<const Struct&, IndexSequenceFor<Inner...>>(
matchers_));
}
private:
std::tuple<Inner...> matchers_;
};
// Implements ElementsAre() and ElementsAreArray().
template <typename Container>
class ElementsAreMatcherImpl : public MatcherInterface<Container> {
public:
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
typedef internal::StlContainerView<RawContainer> View;
typedef typename View::type StlContainer;
typedef typename View::const_reference StlContainerReference;
typedef typename StlContainer::value_type Element;
// Constructs the matcher from a sequence of element values or
// element matchers.
template <typename InputIter>
ElementsAreMatcherImpl(InputIter first, InputIter last) {
while (first != last) {
matchers_.push_back(MatcherCast<const Element&>(*first++));
}
}
// Describes what this matcher does.
void DescribeTo(::std::ostream* os) const override {
if (count() == 0) {
*os << "is empty";
} else if (count() == 1) {
*os << "has 1 element that ";
matchers_[0].DescribeTo(os);
} else {
*os << "has " << Elements(count()) << " where\n";
for (size_t i = 0; i != count(); ++i) {
*os << "element #" << i << " ";
matchers_[i].DescribeTo(os);
if (i + 1 < count()) {
*os << ",\n";
}
}
}
}
// Describes what the negation of this matcher does.
void DescribeNegationTo(::std::ostream* os) const override {
if (count() == 0) {
*os << "isn't empty";
return;
}
*os << "doesn't have " << Elements(count()) << ", or\n";
for (size_t i = 0; i != count(); ++i) {
*os << "element #" << i << " ";
matchers_[i].DescribeNegationTo(os);
if (i + 1 < count()) {
*os << ", or\n";
}
}
}
bool MatchAndExplain(Container container,
MatchResultListener* listener) const override {
// To work with stream-like "containers", we must only walk
// through the elements in one pass.
const bool listener_interested = listener->IsInterested();
// explanations[i] is the explanation of the element at index i.
::std::vector<std::string> explanations(count());
StlContainerReference stl_container = View::ConstReference(container);
typename StlContainer::const_iterator it = stl_container.begin();
size_t exam_pos = 0;
bool mismatch_found = false; // Have we found a mismatched element yet?
// Go through the elements and matchers in pairs, until we reach
// the end of either the elements or the matchers, or until we find a
// mismatch.
for (; it != stl_container.end() && exam_pos != count(); ++it, ++exam_pos) {
bool match; // Does the current element match the current matcher?
if (listener_interested) {
StringMatchResultListener s;
match = matchers_[exam_pos].MatchAndExplain(*it, &s);
explanations[exam_pos] = s.str();
} else {
match = matchers_[exam_pos].Matches(*it);
}
if (!match) {
mismatch_found = true;
break;
}
}
// If mismatch_found is true, 'exam_pos' is the index of the mismatch.
// Find how many elements the actual container has. We avoid
// calling size() s.t. this code works for stream-like "containers"
// that don't define size().
size_t actual_count = exam_pos;
for (; it != stl_container.end(); ++it) {
++actual_count;
}
if (actual_count != count()) {
// The element count doesn't match. If the container is empty,
// there's no need to explain anything as Google Mock already
// prints the empty container. Otherwise we just need to show
// how many elements there actually are.
if (listener_interested && (actual_count != 0)) {
*listener << "which has " << Elements(actual_count);
}
return false;
}
if (mismatch_found) {
// The element count matches, but the exam_pos-th element doesn't match.
if (listener_interested) {
*listener << "whose element #" << exam_pos << " doesn't match";
PrintIfNotEmpty(explanations[exam_pos], listener->stream());
}
return false;
}
// Every element matches its expectation. We need to explain why
// (the obvious ones can be skipped).
if (listener_interested) {
bool reason_printed = false;
for (size_t i = 0; i != count(); ++i) {
const std::string& s = explanations[i];
if (!s.empty()) {
if (reason_printed) {
*listener << ",\nand ";
}
*listener << "whose element #" << i << " matches, " << s;
reason_printed = true;
}
}
}
return true;
}
private:
static Message Elements(size_t count) {
return Message() << count << (count == 1 ? " element" : " elements");
}
size_t count() const { return matchers_.size(); }
::std::vector<Matcher<const Element&> > matchers_;
};
// Connectivity matrix of (elements X matchers), in element-major order.
// Initially, there are no edges.
// Use NextGraph() to iterate over all possible edge configurations.
// Use Randomize() to generate a random edge configuration.
class GTEST_API_ MatchMatrix {
public:
MatchMatrix(size_t num_elements, size_t num_matchers)
: num_elements_(num_elements),
num_matchers_(num_matchers),
matched_(num_elements_* num_matchers_, 0) {
}
size_t LhsSize() const { return num_elements_; }
size_t RhsSize() const { return num_matchers_; }
bool HasEdge(size_t ilhs, size_t irhs) const {
return matched_[SpaceIndex(ilhs, irhs)] == 1;
}
void SetEdge(size_t ilhs, size_t irhs, bool b) {
matched_[SpaceIndex(ilhs, irhs)] = b ? 1 : 0;
}
// Treating the connectivity matrix as a (LhsSize()*RhsSize())-bit number,
// adds 1 to that number; returns false if incrementing the graph left it
// empty.
bool NextGraph();
void Randomize();
std::string DebugString() const;
private:
size_t SpaceIndex(size_t ilhs, size_t irhs) const {
return ilhs * num_matchers_ + irhs;
}
size_t num_elements_;
size_t num_matchers_;
// Each element is a char interpreted as bool. They are stored as a
// flattened array in lhs-major order, use 'SpaceIndex()' to translate
// a (ilhs, irhs) matrix coordinate into an offset.
::std::vector<char> matched_;
};
typedef ::std::pair<size_t, size_t> ElementMatcherPair;
typedef ::std::vector<ElementMatcherPair> ElementMatcherPairs;
// Returns a maximum bipartite matching for the specified graph 'g'.
// The matching is represented as a vector of {element, matcher} pairs.
GTEST_API_ ElementMatcherPairs
FindMaxBipartiteMatching(const MatchMatrix& g);
struct UnorderedMatcherRequire {
enum Flags {
Superset = 1 << 0,
Subset = 1 << 1,
ExactMatch = Superset | Subset,
};
};
// Untyped base class for implementing UnorderedElementsAre. By
// putting logic that's not specific to the element type here, we
// reduce binary bloat and increase compilation speed.
class GTEST_API_ UnorderedElementsAreMatcherImplBase {
protected:
explicit UnorderedElementsAreMatcherImplBase(
UnorderedMatcherRequire::Flags matcher_flags)
: match_flags_(matcher_flags) {}
// A vector of matcher describers, one for each element matcher.
// Does not own the describers (and thus can be used only when the
// element matchers are alive).
typedef ::std::vector<const MatcherDescriberInterface*> MatcherDescriberVec;
// Describes this UnorderedElementsAre matcher.
void DescribeToImpl(::std::ostream* os) const;
// Describes the negation of this UnorderedElementsAre matcher.
void DescribeNegationToImpl(::std::ostream* os) const;
bool VerifyMatchMatrix(const ::std::vector<std::string>& element_printouts,
const MatchMatrix& matrix,
MatchResultListener* listener) const;
bool FindPairing(const MatchMatrix& matrix,
MatchResultListener* listener) const;
MatcherDescriberVec& matcher_describers() {
return matcher_describers_;
}
static Message Elements(size_t n) {
return Message() << n << " element" << (n == 1 ? "" : "s");
}
UnorderedMatcherRequire::Flags match_flags() const { return match_flags_; }
private:
UnorderedMatcherRequire::Flags match_flags_;
MatcherDescriberVec matcher_describers_;
};
// Implements UnorderedElementsAre, UnorderedElementsAreArray, IsSubsetOf, and
// IsSupersetOf.
template <typename Container>
class UnorderedElementsAreMatcherImpl
: public MatcherInterface<Container>,
public UnorderedElementsAreMatcherImplBase {
public:
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
typedef internal::StlContainerView<RawContainer> View;
typedef typename View::type StlContainer;
typedef typename View::const_reference StlContainerReference;
typedef typename StlContainer::const_iterator StlContainerConstIterator;
typedef typename StlContainer::value_type Element;
template <typename InputIter>
UnorderedElementsAreMatcherImpl(UnorderedMatcherRequire::Flags matcher_flags,
InputIter first, InputIter last)
: UnorderedElementsAreMatcherImplBase(matcher_flags) {
for (; first != last; ++first) {
matchers_.push_back(MatcherCast<const Element&>(*first));
}
for (const auto& m : matchers_) {
matcher_describers().push_back(m.GetDescriber());
}
}
// Describes what this matcher does.
void DescribeTo(::std::ostream* os) const override {
return UnorderedElementsAreMatcherImplBase::DescribeToImpl(os);
}
// Describes what the negation of this matcher does.
void DescribeNegationTo(::std::ostream* os) const override {
return UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(os);
}
bool MatchAndExplain(Container container,
MatchResultListener* listener) const override {
StlContainerReference stl_container = View::ConstReference(container);
::std::vector<std::string> element_printouts;
MatchMatrix matrix =
AnalyzeElements(stl_container.begin(), stl_container.end(),
&element_printouts, listener);
if (matrix.LhsSize() == 0 && matrix.RhsSize() == 0) {
return true;
}
if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
if (matrix.LhsSize() != matrix.RhsSize()) {
// The element count doesn't match. If the container is empty,
// there's no need to explain anything as Google Mock already
// prints the empty container. Otherwise we just need to show
// how many elements there actually are.
if (matrix.LhsSize() != 0 && listener->IsInterested()) {
*listener << "which has " << Elements(matrix.LhsSize());
}
return false;
}
}
return VerifyMatchMatrix(element_printouts, matrix, listener) &&
FindPairing(matrix, listener);
}
private:
template <typename ElementIter>
MatchMatrix AnalyzeElements(ElementIter elem_first, ElementIter elem_last,
::std::vector<std::string>* element_printouts,
MatchResultListener* listener) const {
element_printouts->clear();
::std::vector<char> did_match;
size_t num_elements = 0;
DummyMatchResultListener dummy;
for (; elem_first != elem_last; ++num_elements, ++elem_first) {
if (listener->IsInterested()) {
element_printouts->push_back(PrintToString(*elem_first));
}
for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) {
did_match.push_back(
matchers_[irhs].MatchAndExplain(*elem_first, &dummy));
}
}
MatchMatrix matrix(num_elements, matchers_.size());
::std::vector<char>::const_iterator did_match_iter = did_match.begin();
for (size_t ilhs = 0; ilhs != num_elements; ++ilhs) {
for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) {
matrix.SetEdge(ilhs, irhs, *did_match_iter++ != 0);
}
}
return matrix;
}
::std::vector<Matcher<const Element&> > matchers_;
};
// Functor for use in TransformTuple.
// Performs MatcherCast<Target> on an input argument of any type.
template <typename Target>
struct CastAndAppendTransform {
template <typename Arg>
Matcher<Target> operator()(const Arg& a) const {
return MatcherCast<Target>(a);
}
};
// Implements UnorderedElementsAre.
template <typename MatcherTuple>
class UnorderedElementsAreMatcher {
public:
explicit UnorderedElementsAreMatcher(const MatcherTuple& args)
: matchers_(args) {}
template <typename Container>
operator Matcher<Container>() const {
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
typedef typename internal::StlContainerView<RawContainer>::type View;
typedef typename View::value_type Element;
typedef ::std::vector<Matcher<const Element&> > MatcherVec;
MatcherVec matchers;
matchers.reserve(::std::tuple_size<MatcherTuple>::value);
TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_,
::std::back_inserter(matchers));
return Matcher<Container>(
new UnorderedElementsAreMatcherImpl<const Container&>(
UnorderedMatcherRequire::ExactMatch, matchers.begin(),
matchers.end()));
}
private:
const MatcherTuple matchers_;
};
// Implements ElementsAre.
template <typename MatcherTuple>
class ElementsAreMatcher {
public:
explicit ElementsAreMatcher(const MatcherTuple& args) : matchers_(args) {}
template <typename Container>
operator Matcher<Container>() const {
GTEST_COMPILE_ASSERT_(
!IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value ||
::std::tuple_size<MatcherTuple>::value < 2,
use_UnorderedElementsAre_with_hash_tables);
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
typedef typename internal::StlContainerView<RawContainer>::type View;
typedef typename View::value_type Element;
typedef ::std::vector<Matcher<const Element&> > MatcherVec;
MatcherVec matchers;
matchers.reserve(::std::tuple_size<MatcherTuple>::value);
TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_,
::std::back_inserter(matchers));
return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>(
matchers.begin(), matchers.end()));
}
private:
const MatcherTuple matchers_;
};
// Implements UnorderedElementsAreArray(), IsSubsetOf(), and IsSupersetOf().
template <typename T>
class UnorderedElementsAreArrayMatcher {
public:
template <typename Iter>
UnorderedElementsAreArrayMatcher(UnorderedMatcherRequire::Flags match_flags,
Iter first, Iter last)
: match_flags_(match_flags), matchers_(first, last) {}
template <typename Container>
operator Matcher<Container>() const {
return Matcher<Container>(
new UnorderedElementsAreMatcherImpl<const Container&>(
match_flags_, matchers_.begin(), matchers_.end()));
}
private:
UnorderedMatcherRequire::Flags match_flags_;
::std::vector<T> matchers_;
};
// Implements ElementsAreArray().
template <typename T>
class ElementsAreArrayMatcher {
public:
template <typename Iter>
ElementsAreArrayMatcher(Iter first, Iter last) : matchers_(first, last) {}
template <typename Container>
operator Matcher<Container>() const {
GTEST_COMPILE_ASSERT_(
!IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value,
use_UnorderedElementsAreArray_with_hash_tables);
return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>(
matchers_.begin(), matchers_.end()));
}
private:
const ::std::vector<T> matchers_;
};
// Given a 2-tuple matcher tm of type Tuple2Matcher and a value second
// of type Second, BoundSecondMatcher<Tuple2Matcher, Second>(tm,
// second) is a polymorphic matcher that matches a value x if and only if
// tm matches tuple (x, second). Useful for implementing
// UnorderedPointwise() in terms of UnorderedElementsAreArray().
//
// BoundSecondMatcher is copyable and assignable, as we need to put
// instances of this class in a vector when implementing
// UnorderedPointwise().
template <typename Tuple2Matcher, typename Second>
class BoundSecondMatcher {
public:
BoundSecondMatcher(const Tuple2Matcher& tm, const Second& second)
: tuple2_matcher_(tm), second_value_(second) {}
BoundSecondMatcher(const BoundSecondMatcher& other) = default;
template <typename T>
operator Matcher<T>() const {
return MakeMatcher(new Impl<T>(tuple2_matcher_, second_value_));
}
// We have to define this for UnorderedPointwise() to compile in
// C++98 mode, as it puts BoundSecondMatcher instances in a vector,
// which requires the elements to be assignable in C++98. The
// compiler cannot generate the operator= for us, as Tuple2Matcher
// and Second may not be assignable.
//
// However, this should never be called, so the implementation just
// need to assert.
void operator=(const BoundSecondMatcher& /*rhs*/) {
GTEST_LOG_(FATAL) << "BoundSecondMatcher should never be assigned.";
}
private:
template <typename T>
class Impl : public MatcherInterface<T> {
public:
typedef ::std::tuple<T, Second> ArgTuple;
Impl(const Tuple2Matcher& tm, const Second& second)
: mono_tuple2_matcher_(SafeMatcherCast<const ArgTuple&>(tm)),
second_value_(second) {}
void DescribeTo(::std::ostream* os) const override {
*os << "and ";
UniversalPrint(second_value_, os);
*os << " ";
mono_tuple2_matcher_.DescribeTo(os);
}
bool MatchAndExplain(T x, MatchResultListener* listener) const override {
return mono_tuple2_matcher_.MatchAndExplain(ArgTuple(x, second_value_),
listener);
}
private:
const Matcher<const ArgTuple&> mono_tuple2_matcher_;
const Second second_value_;
};
const Tuple2Matcher tuple2_matcher_;
const Second second_value_;
};
// Given a 2-tuple matcher tm and a value second,
// MatcherBindSecond(tm, second) returns a matcher that matches a
// value x if and only if tm matches tuple (x, second). Useful for
// implementing UnorderedPointwise() in terms of UnorderedElementsAreArray().
template <typename Tuple2Matcher, typename Second>
BoundSecondMatcher<Tuple2Matcher, Second> MatcherBindSecond(
const Tuple2Matcher& tm, const Second& second) {
return BoundSecondMatcher<Tuple2Matcher, Second>(tm, second);
}
// Returns the description for a matcher defined using the MATCHER*()
// macro where the user-supplied description string is "", if
// 'negation' is false; otherwise returns the description of the
// negation of the matcher. 'param_values' contains a list of strings
// that are the print-out of the matcher's parameters.
GTEST_API_ std::string FormatMatcherDescription(bool negation,
const char* matcher_name,
const Strings& param_values);
// Implements a matcher that checks the value of a optional<> type variable.
template <typename ValueMatcher>
class OptionalMatcher {
public:
explicit OptionalMatcher(const ValueMatcher& value_matcher)
: value_matcher_(value_matcher) {}
template <typename Optional>
operator Matcher<Optional>() const {
return Matcher<Optional>(new Impl<const Optional&>(value_matcher_));
}
template <typename Optional>
class Impl : public MatcherInterface<Optional> {
public:
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Optional) OptionalView;
typedef typename OptionalView::value_type ValueType;
explicit Impl(const ValueMatcher& value_matcher)
: value_matcher_(MatcherCast<ValueType>(value_matcher)) {}
void DescribeTo(::std::ostream* os) const override {
*os << "value ";
value_matcher_.DescribeTo(os);
}
void DescribeNegationTo(::std::ostream* os) const override {
*os << "value ";
value_matcher_.DescribeNegationTo(os);
}
bool MatchAndExplain(Optional optional,
MatchResultListener* listener) const override {
if (!optional) {
*listener << "which is not engaged";
return false;
}
const ValueType& value = *optional;
StringMatchResultListener value_listener;
const bool match = value_matcher_.MatchAndExplain(value, &value_listener);
*listener << "whose value " << PrintToString(value)
<< (match ? " matches" : " doesn't match");
PrintIfNotEmpty(value_listener.str(), listener->stream());
return match;
}
private:
const Matcher<ValueType> value_matcher_;
};
private:
const ValueMatcher value_matcher_;
};
namespace variant_matcher {
// Overloads to allow VariantMatcher to do proper ADL lookup.
template <typename T>
void holds_alternative() {}
template <typename T>
void get() {}
// Implements a matcher that checks the value of a variant<> type variable.
template <typename T>
class VariantMatcher {
public:
explicit VariantMatcher(::testing::Matcher<const T&> matcher)
: matcher_(std::move(matcher)) {}
template <typename Variant>
bool MatchAndExplain(const Variant& value,
::testing::MatchResultListener* listener) const {
using std::get;
if (!listener->IsInterested()) {
return holds_alternative<T>(value) && matcher_.Matches(get<T>(value));
}
if (!holds_alternative<T>(value)) {
*listener << "whose value is not of type '" << GetTypeName() << "'";
return false;
}
const T& elem = get<T>(value);
StringMatchResultListener elem_listener;
const bool match = matcher_.MatchAndExplain(elem, &elem_listener);
*listener << "whose value " << PrintToString(elem)
<< (match ? " matches" : " doesn't match");
PrintIfNotEmpty(elem_listener.str(), listener->stream());
return match;
}
void DescribeTo(std::ostream* os) const {
*os << "is a variant<> with value of type '" << GetTypeName()
<< "' and the value ";
matcher_.DescribeTo(os);
}
void DescribeNegationTo(std::ostream* os) const {
*os << "is a variant<> with value of type other than '" << GetTypeName()
<< "' or the value ";
matcher_.DescribeNegationTo(os);
}
private:
static std::string GetTypeName() {
#if GTEST_HAS_RTTI
GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(
return internal::GetTypeName<T>());
#endif
return "the element type";
}
const ::testing::Matcher<const T&> matcher_;
};
} // namespace variant_matcher
namespace any_cast_matcher {
// Overloads to allow AnyCastMatcher to do proper ADL lookup.
template <typename T>
void any_cast() {}
// Implements a matcher that any_casts the value.
template <typename T>
class AnyCastMatcher {
public:
explicit AnyCastMatcher(const ::testing::Matcher<const T&>& matcher)
: matcher_(matcher) {}
template <typename AnyType>
bool MatchAndExplain(const AnyType& value,
::testing::MatchResultListener* listener) const {
if (!listener->IsInterested()) {
const T* ptr = any_cast<T>(&value);
return ptr != nullptr && matcher_.Matches(*ptr);
}
const T* elem = any_cast<T>(&value);
if (elem == nullptr) {
*listener << "whose value is not of type '" << GetTypeName() << "'";
return false;
}
StringMatchResultListener elem_listener;
const bool match = matcher_.MatchAndExplain(*elem, &elem_listener);
*listener << "whose value " << PrintToString(*elem)
<< (match ? " matches" : " doesn't match");
PrintIfNotEmpty(elem_listener.str(), listener->stream());
return match;
}
void DescribeTo(std::ostream* os) const {
*os << "is an 'any' type with value of type '" << GetTypeName()
<< "' and the value ";
matcher_.DescribeTo(os);
}
void DescribeNegationTo(std::ostream* os) const {
*os << "is an 'any' type with value of type other than '" << GetTypeName()
<< "' or the value ";
matcher_.DescribeNegationTo(os);
}
private:
static std::string GetTypeName() {
#if GTEST_HAS_RTTI
GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(
return internal::GetTypeName<T>());
#endif
return "the element type";
}
const ::testing::Matcher<const T&> matcher_;
};
} // namespace any_cast_matcher
// Implements the Args() matcher.
template <class ArgsTuple, size_t... k>
class ArgsMatcherImpl : public MatcherInterface<ArgsTuple> {
public:
using RawArgsTuple = typename std::decay<ArgsTuple>::type;
using SelectedArgs =
std::tuple<typename std::tuple_element<k, RawArgsTuple>::type...>;
using MonomorphicInnerMatcher = Matcher<const SelectedArgs&>;
template <typename InnerMatcher>
explicit ArgsMatcherImpl(const InnerMatcher& inner_matcher)
: inner_matcher_(SafeMatcherCast<const SelectedArgs&>(inner_matcher)) {}
bool MatchAndExplain(ArgsTuple args,
MatchResultListener* listener) const override {
// Workaround spurious C4100 on MSVC<=15.7 when k is empty.
(void)args;
const SelectedArgs& selected_args =
std::forward_as_tuple(std::get<k>(args)...);
if (!listener->IsInterested()) return inner_matcher_.Matches(selected_args);
PrintIndices(listener->stream());
*listener << "are " << PrintToString(selected_args);
StringMatchResultListener inner_listener;
const bool match =
inner_matcher_.MatchAndExplain(selected_args, &inner_listener);
PrintIfNotEmpty(inner_listener.str(), listener->stream());
return match;
}
void DescribeTo(::std::ostream* os) const override {
*os << "are a tuple ";
PrintIndices(os);
inner_matcher_.DescribeTo(os);
}
void DescribeNegationTo(::std::ostream* os) const override {
*os << "are a tuple ";
PrintIndices(os);
inner_matcher_.DescribeNegationTo(os);
}
private:
// Prints the indices of the selected fields.
static void PrintIndices(::std::ostream* os) {
*os << "whose fields (";
const char* sep = "";
// Workaround spurious C4189 on MSVC<=15.7 when k is empty.
(void)sep;
const char* dummy[] = {"", (*os << sep << "#" << k, sep = ", ")...};
(void)dummy;
*os << ") ";
}
MonomorphicInnerMatcher inner_matcher_;
};
template <class InnerMatcher, size_t... k>
class ArgsMatcher {
public:
explicit ArgsMatcher(InnerMatcher inner_matcher)
: inner_matcher_(std::move(inner_matcher)) {}
template <typename ArgsTuple>
operator Matcher<ArgsTuple>() const { // NOLINT
return MakeMatcher(new ArgsMatcherImpl<ArgsTuple, k...>(inner_matcher_));
}
private:
InnerMatcher inner_matcher_;
};
} // namespace internal
// ElementsAreArray(iterator_first, iterator_last)
// ElementsAreArray(pointer, count)
// ElementsAreArray(array)
// ElementsAreArray(container)
// ElementsAreArray({ e1, e2, ..., en })
//
// The ElementsAreArray() functions are like ElementsAre(...), except
// that they are given a homogeneous sequence rather than taking each
// element as a function argument. The sequence can be specified as an
// array, a pointer and count, a vector, an initializer list, or an
// STL iterator range. In each of these cases, the underlying sequence
// can be either a sequence of values or a sequence of matchers.
//
// All forms of ElementsAreArray() make a copy of the input matcher sequence.
template <typename Iter>
inline internal::ElementsAreArrayMatcher<
typename ::std::iterator_traits<Iter>::value_type>
ElementsAreArray(Iter first, Iter last) {
typedef typename ::std::iterator_traits<Iter>::value_type T;
return internal::ElementsAreArrayMatcher<T>(first, last);
}
template <typename T>
inline internal::ElementsAreArrayMatcher<T> ElementsAreArray(
const T* pointer, size_t count) {
return ElementsAreArray(pointer, pointer + count);
}
template <typename T, size_t N>
inline internal::ElementsAreArrayMatcher<T> ElementsAreArray(
const T (&array)[N]) {
return ElementsAreArray(array, N);
}
template <typename Container>
inline internal::ElementsAreArrayMatcher<typename Container::value_type>
ElementsAreArray(const Container& container) {
return ElementsAreArray(container.begin(), container.end());
}
template <typename T>
inline internal::ElementsAreArrayMatcher<T>
ElementsAreArray(::std::initializer_list<T> xs) {
return ElementsAreArray(xs.begin(), xs.end());
}
// UnorderedElementsAreArray(iterator_first, iterator_last)
// UnorderedElementsAreArray(pointer, count)
// UnorderedElementsAreArray(array)
// UnorderedElementsAreArray(container)
// UnorderedElementsAreArray({ e1, e2, ..., en })
//
// UnorderedElementsAreArray() verifies that a bijective mapping onto a
// collection of matchers exists.
//
// The matchers can be specified as an array, a pointer and count, a container,
// an initializer list, or an STL iterator range. In each of these cases, the
// underlying matchers can be either values or matchers.
template <typename Iter>
inline internal::UnorderedElementsAreArrayMatcher<
typename ::std::iterator_traits<Iter>::value_type>
UnorderedElementsAreArray(Iter first, Iter last) {
typedef typename ::std::iterator_traits<Iter>::value_type T;
return internal::UnorderedElementsAreArrayMatcher<T>(
internal::UnorderedMatcherRequire::ExactMatch, first, last);
}
template <typename T>
inline internal::UnorderedElementsAreArrayMatcher<T>
UnorderedElementsAreArray(const T* pointer, size_t count) {
return UnorderedElementsAreArray(pointer, pointer + count);
}
template <typename T, size_t N>
inline internal::UnorderedElementsAreArrayMatcher<T>
UnorderedElementsAreArray(const T (&array)[N]) {
return UnorderedElementsAreArray(array, N);
}
template <typename Container>
inline internal::UnorderedElementsAreArrayMatcher<
typename Container::value_type>
UnorderedElementsAreArray(const Container& container) {
return UnorderedElementsAreArray(container.begin(), container.end());
}
template <typename T>
inline internal::UnorderedElementsAreArrayMatcher<T>
UnorderedElementsAreArray(::std::initializer_list<T> xs) {
return UnorderedElementsAreArray(xs.begin(), xs.end());
}
// _ is a matcher that matches anything of any type.
//
// This definition is fine as:
//
// 1. The C++ standard permits using the name _ in a namespace that
// is not the global namespace or ::std.
// 2. The AnythingMatcher class has no data member or constructor,
// so it's OK to create global variables of this type.
// 3. c-style has approved of using _ in this case.
const internal::AnythingMatcher _ = {};
// Creates a matcher that matches any value of the given type T.
template <typename T>
inline Matcher<T> A() {
return _;
}
// Creates a matcher that matches any value of the given type T.
template <typename T>
inline Matcher<T> An() {
return _;
}
template <typename T, typename M>
Matcher<T> internal::MatcherCastImpl<T, M>::CastImpl(
const M& value, std::false_type /* convertible_to_matcher */,
std::false_type /* convertible_to_T */) {
return Eq(value);
}
// Creates a polymorphic matcher that matches any NULL pointer.
inline PolymorphicMatcher<internal::IsNullMatcher > IsNull() {
return MakePolymorphicMatcher(internal::IsNullMatcher());
}
// Creates a polymorphic matcher that matches any non-NULL pointer.
// This is convenient as Not(NULL) doesn't compile (the compiler
// thinks that that expression is comparing a pointer with an integer).
inline PolymorphicMatcher<internal::NotNullMatcher > NotNull() {
return MakePolymorphicMatcher(internal::NotNullMatcher());
}
// Creates a polymorphic matcher that matches any argument that
// references variable x.
template <typename T>
inline internal::RefMatcher<T&> Ref(T& x) { // NOLINT
return internal::RefMatcher<T&>(x);
}
// Creates a polymorphic matcher that matches any NaN floating point.
inline PolymorphicMatcher<internal::IsNanMatcher> IsNan() {
return MakePolymorphicMatcher(internal::IsNanMatcher());
}
// Creates a matcher that matches any double argument approximately
// equal to rhs, where two NANs are considered unequal.
inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) {
return internal::FloatingEqMatcher<double>(rhs, false);
}
// Creates a matcher that matches any double argument approximately
// equal to rhs, including NaN values when rhs is NaN.
inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) {
return internal::FloatingEqMatcher<double>(rhs, true);
}
// Creates a matcher that matches any double argument approximately equal to
// rhs, up to the specified max absolute error bound, where two NANs are
// considered unequal. The max absolute error bound must be non-negative.
inline internal::FloatingEqMatcher<double> DoubleNear(
double rhs, double max_abs_error) {
return internal::FloatingEqMatcher<double>(rhs, false, max_abs_error);
}
// Creates a matcher that matches any double argument approximately equal to
// rhs, up to the specified max absolute error bound, including NaN values when
// rhs is NaN. The max absolute error bound must be non-negative.
inline internal::FloatingEqMatcher<double> NanSensitiveDoubleNear(
double rhs, double max_abs_error) {
return internal::FloatingEqMatcher<double>(rhs, true, max_abs_error);
}
// Creates a matcher that matches any float argument approximately
// equal to rhs, where two NANs are considered unequal.
inline internal::FloatingEqMatcher<float> FloatEq(float rhs) {
return internal::FloatingEqMatcher<float>(rhs, false);
}
// Creates a matcher that matches any float argument approximately
// equal to rhs, including NaN values when rhs is NaN.
inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) {
return internal::FloatingEqMatcher<float>(rhs, true);
}
// Creates a matcher that matches any float argument approximately equal to
// rhs, up to the specified max absolute error bound, where two NANs are
// considered unequal. The max absolute error bound must be non-negative.
inline internal::FloatingEqMatcher<float> FloatNear(
float rhs, float max_abs_error) {
return internal::FloatingEqMatcher<float>(rhs, false, max_abs_error);
}
// Creates a matcher that matches any float argument approximately equal to
// rhs, up to the specified max absolute error bound, including NaN values when
// rhs is NaN. The max absolute error bound must be non-negative.
inline internal::FloatingEqMatcher<float> NanSensitiveFloatNear(
float rhs, float max_abs_error) {
return internal::FloatingEqMatcher<float>(rhs, true, max_abs_error);
}
// Creates a matcher that matches a pointer (raw or smart) that points
// to a value that matches inner_matcher.
template <typename InnerMatcher>
inline internal::PointeeMatcher<InnerMatcher> Pointee(
const InnerMatcher& inner_matcher) {
return internal::PointeeMatcher<InnerMatcher>(inner_matcher);
}
#if GTEST_HAS_RTTI
// Creates a matcher that matches a pointer or reference that matches
// inner_matcher when dynamic_cast<To> is applied.
// The result of dynamic_cast<To> is forwarded to the inner matcher.
// If To is a pointer and the cast fails, the inner matcher will receive NULL.
// If To is a reference and the cast fails, this matcher returns false
// immediately.
template <typename To>
inline PolymorphicMatcher<internal::WhenDynamicCastToMatcher<To> >
WhenDynamicCastTo(const Matcher<To>& inner_matcher) {
return MakePolymorphicMatcher(
internal::WhenDynamicCastToMatcher<To>(inner_matcher));
}
#endif // GTEST_HAS_RTTI
// Creates a matcher that matches an object whose given field matches
// 'matcher'. For example,
// Field(&Foo::number, Ge(5))
// matches a Foo object x if and only if x.number >= 5.
template <typename Class, typename FieldType, typename FieldMatcher>
inline PolymorphicMatcher<
internal::FieldMatcher<Class, FieldType> > Field(
FieldType Class::*field, const FieldMatcher& matcher) {
return MakePolymorphicMatcher(
internal::FieldMatcher<Class, FieldType>(
field, MatcherCast<const FieldType&>(matcher)));
// The call to MatcherCast() is required for supporting inner
// matchers of compatible types. For example, it allows
// Field(&Foo::bar, m)
// to compile where bar is an int32 and m is a matcher for int64.
}
// Same as Field() but also takes the name of the field to provide better error
// messages.
template <typename Class, typename FieldType, typename FieldMatcher>
inline PolymorphicMatcher<internal::FieldMatcher<Class, FieldType> > Field(
const std::string& field_name, FieldType Class::*field,
const FieldMatcher& matcher) {
return MakePolymorphicMatcher(internal::FieldMatcher<Class, FieldType>(
field_name, field, MatcherCast<const FieldType&>(matcher)));
}
// Creates a matcher that matches an object whose given property
// matches 'matcher'. For example,
// Property(&Foo::str, StartsWith("hi"))
// matches a Foo object x if and only if x.str() starts with "hi".
template <typename Class, typename PropertyType, typename PropertyMatcher>
inline PolymorphicMatcher<internal::PropertyMatcher<
Class, PropertyType, PropertyType (Class::*)() const> >
Property(PropertyType (Class::*property)() const,
const PropertyMatcher& matcher) {
return MakePolymorphicMatcher(
internal::PropertyMatcher<Class, PropertyType,
PropertyType (Class::*)() const>(
property, MatcherCast<const PropertyType&>(matcher)));
// The call to MatcherCast() is required for supporting inner
// matchers of compatible types. For example, it allows
// Property(&Foo::bar, m)
// to compile where bar() returns an int32 and m is a matcher for int64.
}
// Same as Property() above, but also takes the name of the property to provide
// better error messages.
template <typename Class, typename PropertyType, typename PropertyMatcher>
inline PolymorphicMatcher<internal::PropertyMatcher<
Class, PropertyType, PropertyType (Class::*)() const> >
Property(const std::string& property_name,
PropertyType (Class::*property)() const,
const PropertyMatcher& matcher) {
return MakePolymorphicMatcher(
internal::PropertyMatcher<Class, PropertyType,
PropertyType (Class::*)() const>(
property_name, property, MatcherCast<const PropertyType&>(matcher)));
}
// The same as above but for reference-qualified member functions.
template <typename Class, typename PropertyType, typename PropertyMatcher>
inline PolymorphicMatcher<internal::PropertyMatcher<
Class, PropertyType, PropertyType (Class::*)() const &> >
Property(PropertyType (Class::*property)() const &,
const PropertyMatcher& matcher) {
return MakePolymorphicMatcher(
internal::PropertyMatcher<Class, PropertyType,
PropertyType (Class::*)() const&>(
property, MatcherCast<const PropertyType&>(matcher)));
}
// Three-argument form for reference-qualified member functions.
template <typename Class, typename PropertyType, typename PropertyMatcher>
inline PolymorphicMatcher<internal::PropertyMatcher<
Class, PropertyType, PropertyType (Class::*)() const &> >
Property(const std::string& property_name,
PropertyType (Class::*property)() const &,
const PropertyMatcher& matcher) {
return MakePolymorphicMatcher(
internal::PropertyMatcher<Class, PropertyType,
PropertyType (Class::*)() const&>(
property_name, property, MatcherCast<const PropertyType&>(matcher)));
}
// Creates a matcher that matches an object if and only if the result of
// applying a callable to x matches 'matcher'. For example,
// ResultOf(f, StartsWith("hi"))
// matches a Foo object x if and only if f(x) starts with "hi".
// `callable` parameter can be a function, function pointer, or a functor. It is
// required to keep no state affecting the results of the calls on it and make
// no assumptions about how many calls will be made. Any state it keeps must be
// protected from the concurrent access.
template <typename Callable, typename InnerMatcher>
internal::ResultOfMatcher<Callable, InnerMatcher> ResultOf(
Callable callable, InnerMatcher matcher) {
return internal::ResultOfMatcher<Callable, InnerMatcher>(
std::move(callable), std::move(matcher));
}
// String matchers.
// Matches a string equal to str.
template <typename T = std::string>
PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrEq(
const internal::StringLike<T>& str) {
return MakePolymorphicMatcher(
internal::StrEqualityMatcher<std::string>(std::string(str), true, true));
}
// Matches a string not equal to str.
template <typename T = std::string>
PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrNe(
const internal::StringLike<T>& str) {
return MakePolymorphicMatcher(
internal::StrEqualityMatcher<std::string>(std::string(str), false, true));
}
// Matches a string equal to str, ignoring case.
template <typename T = std::string>
PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrCaseEq(
const internal::StringLike<T>& str) {
return MakePolymorphicMatcher(
internal::StrEqualityMatcher<std::string>(std::string(str), true, false));
}
// Matches a string not equal to str, ignoring case.
template <typename T = std::string>
PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrCaseNe(
const internal::StringLike<T>& str) {
return MakePolymorphicMatcher(internal::StrEqualityMatcher<std::string>(
std::string(str), false, false));
}
// Creates a matcher that matches any string, std::string, or C string
// that contains the given substring.
template <typename T = std::string>
PolymorphicMatcher<internal::HasSubstrMatcher<std::string> > HasSubstr(
const internal::StringLike<T>& substring) {
return MakePolymorphicMatcher(
internal::HasSubstrMatcher<std::string>(std::string(substring)));
}
// Matches a string that starts with 'prefix' (case-sensitive).
template <typename T = std::string>
PolymorphicMatcher<internal::StartsWithMatcher<std::string> > StartsWith(
const internal::StringLike<T>& prefix) {
return MakePolymorphicMatcher(
internal::StartsWithMatcher<std::string>(std::string(prefix)));
}
// Matches a string that ends with 'suffix' (case-sensitive).
template <typename T = std::string>
PolymorphicMatcher<internal::EndsWithMatcher<std::string> > EndsWith(
const internal::StringLike<T>& suffix) {
return MakePolymorphicMatcher(
internal::EndsWithMatcher<std::string>(std::string(suffix)));
}
#if GTEST_HAS_STD_WSTRING
// Wide string matchers.
// Matches a string equal to str.
inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrEq(
const std::wstring& str) {
return MakePolymorphicMatcher(
internal::StrEqualityMatcher<std::wstring>(str, true, true));
}
// Matches a string not equal to str.
inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrNe(
const std::wstring& str) {
return MakePolymorphicMatcher(
internal::StrEqualityMatcher<std::wstring>(str, false, true));
}
// Matches a string equal to str, ignoring case.
inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> >
StrCaseEq(const std::wstring& str) {
return MakePolymorphicMatcher(
internal::StrEqualityMatcher<std::wstring>(str, true, false));
}
// Matches a string not equal to str, ignoring case.
inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> >
StrCaseNe(const std::wstring& str) {
return MakePolymorphicMatcher(
internal::StrEqualityMatcher<std::wstring>(str, false, false));
}
// Creates a matcher that matches any ::wstring, std::wstring, or C wide string
// that contains the given substring.
inline PolymorphicMatcher<internal::HasSubstrMatcher<std::wstring> > HasSubstr(
const std::wstring& substring) {
return MakePolymorphicMatcher(
internal::HasSubstrMatcher<std::wstring>(substring));
}
// Matches a string that starts with 'prefix' (case-sensitive).
inline PolymorphicMatcher<internal::StartsWithMatcher<std::wstring> >
StartsWith(const std::wstring& prefix) {
return MakePolymorphicMatcher(
internal::StartsWithMatcher<std::wstring>(prefix));
}
// Matches a string that ends with 'suffix' (case-sensitive).
inline PolymorphicMatcher<internal::EndsWithMatcher<std::wstring> > EndsWith(
const std::wstring& suffix) {
return MakePolymorphicMatcher(
internal::EndsWithMatcher<std::wstring>(suffix));
}
#endif // GTEST_HAS_STD_WSTRING
// Creates a polymorphic matcher that matches a 2-tuple where the
// first field == the second field.
inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); }
// Creates a polymorphic matcher that matches a 2-tuple where the
// first field >= the second field.
inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); }
// Creates a polymorphic matcher that matches a 2-tuple where the
// first field > the second field.
inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); }
// Creates a polymorphic matcher that matches a 2-tuple where the
// first field <= the second field.
inline internal::Le2Matcher Le() { return internal::Le2Matcher(); }
// Creates a polymorphic matcher that matches a 2-tuple where the
// first field < the second field.
inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); }
// Creates a polymorphic matcher that matches a 2-tuple where the
// first field != the second field.
inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); }
// Creates a polymorphic matcher that matches a 2-tuple where
// FloatEq(first field) matches the second field.
inline internal::FloatingEq2Matcher<float> FloatEq() {
return internal::FloatingEq2Matcher<float>();
}
// Creates a polymorphic matcher that matches a 2-tuple where
// DoubleEq(first field) matches the second field.
inline internal::FloatingEq2Matcher<double> DoubleEq() {
return internal::FloatingEq2Matcher<double>();
}
// Creates a polymorphic matcher that matches a 2-tuple where
// FloatEq(first field) matches the second field with NaN equality.
inline internal::FloatingEq2Matcher<float> NanSensitiveFloatEq() {
return internal::FloatingEq2Matcher<float>(true);
}
// Creates a polymorphic matcher that matches a 2-tuple where
// DoubleEq(first field) matches the second field with NaN equality.
inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleEq() {
return internal::FloatingEq2Matcher<double>(true);
}
// Creates a polymorphic matcher that matches a 2-tuple where
// FloatNear(first field, max_abs_error) matches the second field.
inline internal::FloatingEq2Matcher<float> FloatNear(float max_abs_error) {
return internal::FloatingEq2Matcher<float>(max_abs_error);
}
// Creates a polymorphic matcher that matches a 2-tuple where
// DoubleNear(first field, max_abs_error) matches the second field.
inline internal::FloatingEq2Matcher<double> DoubleNear(double max_abs_error) {
return internal::FloatingEq2Matcher<double>(max_abs_error);
}
// Creates a polymorphic matcher that matches a 2-tuple where
// FloatNear(first field, max_abs_error) matches the second field with NaN
// equality.
inline internal::FloatingEq2Matcher<float> NanSensitiveFloatNear(
float max_abs_error) {
return internal::FloatingEq2Matcher<float>(max_abs_error, true);
}
// Creates a polymorphic matcher that matches a 2-tuple where
// DoubleNear(first field, max_abs_error) matches the second field with NaN
// equality.
inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleNear(
double max_abs_error) {
return internal::FloatingEq2Matcher<double>(max_abs_error, true);
}
// Creates a matcher that matches any value of type T that m doesn't
// match.
template <typename InnerMatcher>
inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) {
return internal::NotMatcher<InnerMatcher>(m);
}
// Returns a matcher that matches anything that satisfies the given
// predicate. The predicate can be any unary function or functor
// whose return type can be implicitly converted to bool.
template <typename Predicate>
inline PolymorphicMatcher<internal::TrulyMatcher<Predicate> >
Truly(Predicate pred) {
return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred));
}
// Returns a matcher that matches the container size. The container must
// support both size() and size_type which all STL-like containers provide.
// Note that the parameter 'size' can be a value of type size_type as well as
// matcher. For instance:
// EXPECT_THAT(container, SizeIs(2)); // Checks container has 2 elements.
// EXPECT_THAT(container, SizeIs(Le(2)); // Checks container has at most 2.
template <typename SizeMatcher>
inline internal::SizeIsMatcher<SizeMatcher>
SizeIs(const SizeMatcher& size_matcher) {
return internal::SizeIsMatcher<SizeMatcher>(size_matcher);
}
// Returns a matcher that matches the distance between the container's begin()
// iterator and its end() iterator, i.e. the size of the container. This matcher
// can be used instead of SizeIs with containers such as std::forward_list which
// do not implement size(). The container must provide const_iterator (with
// valid iterator_traits), begin() and end().
template <typename DistanceMatcher>
inline internal::BeginEndDistanceIsMatcher<DistanceMatcher>
BeginEndDistanceIs(const DistanceMatcher& distance_matcher) {
return internal::BeginEndDistanceIsMatcher<DistanceMatcher>(distance_matcher);
}
// Returns a matcher that matches an equal container.
// This matcher behaves like Eq(), but in the event of mismatch lists the
// values that are included in one container but not the other. (Duplicate
// values and order differences are not explained.)
template <typename Container>
inline PolymorphicMatcher<internal::ContainerEqMatcher<
typename std::remove_const<Container>::type>>
ContainerEq(const Container& rhs) {
return MakePolymorphicMatcher(internal::ContainerEqMatcher<Container>(rhs));
}
// Returns a matcher that matches a container that, when sorted using
// the given comparator, matches container_matcher.
template <typename Comparator, typename ContainerMatcher>
inline internal::WhenSortedByMatcher<Comparator, ContainerMatcher>
WhenSortedBy(const Comparator& comparator,
const ContainerMatcher& container_matcher) {
return internal::WhenSortedByMatcher<Comparator, ContainerMatcher>(
comparator, container_matcher);
}
// Returns a matcher that matches a container that, when sorted using
// the < operator, matches container_matcher.
template <typename ContainerMatcher>
inline internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>
WhenSorted(const ContainerMatcher& container_matcher) {
return
internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>(
internal::LessComparator(), container_matcher);
}
// Matches an STL-style container or a native array that contains the
// same number of elements as in rhs, where its i-th element and rhs's
// i-th element (as a pair) satisfy the given pair matcher, for all i.
// TupleMatcher must be able to be safely cast to Matcher<std::tuple<const
// T1&, const T2&> >, where T1 and T2 are the types of elements in the
// LHS container and the RHS container respectively.
template <typename TupleMatcher, typename Container>
inline internal::PointwiseMatcher<TupleMatcher,
typename std::remove_const<Container>::type>
Pointwise(const TupleMatcher& tuple_matcher, const Container& rhs) {
return internal::PointwiseMatcher<TupleMatcher, Container>(tuple_matcher,
rhs);
}
// Supports the Pointwise(m, {a, b, c}) syntax.
template <typename TupleMatcher, typename T>
inline internal::PointwiseMatcher<TupleMatcher, std::vector<T> > Pointwise(
const TupleMatcher& tuple_matcher, std::initializer_list<T> rhs) {
return Pointwise(tuple_matcher, std::vector<T>(rhs));
}
// UnorderedPointwise(pair_matcher, rhs) matches an STL-style
// container or a native array that contains the same number of
// elements as in rhs, where in some permutation of the container, its
// i-th element and rhs's i-th element (as a pair) satisfy the given
// pair matcher, for all i. Tuple2Matcher must be able to be safely
// cast to Matcher<std::tuple<const T1&, const T2&> >, where T1 and T2 are
// the types of elements in the LHS container and the RHS container
// respectively.
//
// This is like Pointwise(pair_matcher, rhs), except that the element
// order doesn't matter.
template <typename Tuple2Matcher, typename RhsContainer>
inline internal::UnorderedElementsAreArrayMatcher<
typename internal::BoundSecondMatcher<
Tuple2Matcher,
typename internal::StlContainerView<
typename std::remove_const<RhsContainer>::type>::type::value_type>>
UnorderedPointwise(const Tuple2Matcher& tuple2_matcher,
const RhsContainer& rhs_container) {
// RhsView allows the same code to handle RhsContainer being a
// STL-style container and it being a native C-style array.
typedef typename internal::StlContainerView<RhsContainer> RhsView;
typedef typename RhsView::type RhsStlContainer;
typedef typename RhsStlContainer::value_type Second;
const RhsStlContainer& rhs_stl_container =
RhsView::ConstReference(rhs_container);
// Create a matcher for each element in rhs_container.
::std::vector<internal::BoundSecondMatcher<Tuple2Matcher, Second> > matchers;
for (typename RhsStlContainer::const_iterator it = rhs_stl_container.begin();
it != rhs_stl_container.end(); ++it) {
matchers.push_back(
internal::MatcherBindSecond(tuple2_matcher, *it));
}
// Delegate the work to UnorderedElementsAreArray().
return UnorderedElementsAreArray(matchers);
}
// Supports the UnorderedPointwise(m, {a, b, c}) syntax.
template <typename Tuple2Matcher, typename T>
inline internal::UnorderedElementsAreArrayMatcher<
typename internal::BoundSecondMatcher<Tuple2Matcher, T> >
UnorderedPointwise(const Tuple2Matcher& tuple2_matcher,
std::initializer_list<T> rhs) {
return UnorderedPointwise(tuple2_matcher, std::vector<T>(rhs));
}
// Matches an STL-style container or a native array that contains at
// least one element matching the given value or matcher.
//
// Examples:
// ::std::set<int> page_ids;
// page_ids.insert(3);
// page_ids.insert(1);
// EXPECT_THAT(page_ids, Contains(1));
// EXPECT_THAT(page_ids, Contains(Gt(2)));
// EXPECT_THAT(page_ids, Not(Contains(4)));
//
// ::std::map<int, size_t> page_lengths;
// page_lengths[1] = 100;
// EXPECT_THAT(page_lengths,
// Contains(::std::pair<const int, size_t>(1, 100)));
//
// const char* user_ids[] = { "joe", "mike", "tom" };
// EXPECT_THAT(user_ids, Contains(Eq(::std::string("tom"))));
template <typename M>
inline internal::ContainsMatcher<M> Contains(M matcher) {
return internal::ContainsMatcher<M>(matcher);
}
// IsSupersetOf(iterator_first, iterator_last)
// IsSupersetOf(pointer, count)
// IsSupersetOf(array)
// IsSupersetOf(container)
// IsSupersetOf({e1, e2, ..., en})
//
// IsSupersetOf() verifies that a surjective partial mapping onto a collection
// of matchers exists. In other words, a container matches
// IsSupersetOf({e1, ..., en}) if and only if there is a permutation
// {y1, ..., yn} of some of the container's elements where y1 matches e1,
// ..., and yn matches en. Obviously, the size of the container must be >= n
// in order to have a match. Examples:
//
// - {1, 2, 3} matches IsSupersetOf({Ge(3), Ne(0)}), as 3 matches Ge(3) and
// 1 matches Ne(0).
// - {1, 2} doesn't match IsSupersetOf({Eq(1), Lt(2)}), even though 1 matches
// both Eq(1) and Lt(2). The reason is that different matchers must be used
// for elements in different slots of the container.
// - {1, 1, 2} matches IsSupersetOf({Eq(1), Lt(2)}), as (the first) 1 matches
// Eq(1) and (the second) 1 matches Lt(2).
// - {1, 2, 3} matches IsSupersetOf(Gt(1), Gt(1)), as 2 matches (the first)
// Gt(1) and 3 matches (the second) Gt(1).
//
// The matchers can be specified as an array, a pointer and count, a container,
// an initializer list, or an STL iterator range. In each of these cases, the
// underlying matchers can be either values or matchers.
template <typename Iter>
inline internal::UnorderedElementsAreArrayMatcher<
typename ::std::iterator_traits<Iter>::value_type>
IsSupersetOf(Iter first, Iter last) {
typedef typename ::std::iterator_traits<Iter>::value_type T;
return internal::UnorderedElementsAreArrayMatcher<T>(
internal::UnorderedMatcherRequire::Superset, first, last);
}
template <typename T>
inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
const T* pointer, size_t count) {
return IsSupersetOf(pointer, pointer + count);
}
template <typename T, size_t N>
inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
const T (&array)[N]) {
return IsSupersetOf(array, N);
}
template <typename Container>
inline internal::UnorderedElementsAreArrayMatcher<
typename Container::value_type>
IsSupersetOf(const Container& container) {
return IsSupersetOf(container.begin(), container.end());
}
template <typename T>
inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
::std::initializer_list<T> xs) {
return IsSupersetOf(xs.begin(), xs.end());
}
// IsSubsetOf(iterator_first, iterator_last)
// IsSubsetOf(pointer, count)
// IsSubsetOf(array)
// IsSubsetOf(container)
// IsSubsetOf({e1, e2, ..., en})
//
// IsSubsetOf() verifies that an injective mapping onto a collection of matchers
// exists. In other words, a container matches IsSubsetOf({e1, ..., en}) if and
// only if there is a subset of matchers {m1, ..., mk} which would match the
// container using UnorderedElementsAre. Obviously, the size of the container
// must be <= n in order to have a match. Examples:
//
// - {1} matches IsSubsetOf({Gt(0), Lt(0)}), as 1 matches Gt(0).
// - {1, -1} matches IsSubsetOf({Lt(0), Gt(0)}), as 1 matches Gt(0) and -1
// matches Lt(0).
// - {1, 2} doesn't matches IsSubsetOf({Gt(0), Lt(0)}), even though 1 and 2 both
// match Gt(0). The reason is that different matchers must be used for
// elements in different slots of the container.
//
// The matchers can be specified as an array, a pointer and count, a container,
// an initializer list, or an STL iterator range. In each of these cases, the
// underlying matchers can be either values or matchers.
template <typename Iter>
inline internal::UnorderedElementsAreArrayMatcher<
typename ::std::iterator_traits<Iter>::value_type>
IsSubsetOf(Iter first, Iter last) {
typedef typename ::std::iterator_traits<Iter>::value_type T;
return internal::UnorderedElementsAreArrayMatcher<T>(
internal::UnorderedMatcherRequire::Subset, first, last);
}
template <typename T>
inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
const T* pointer, size_t count) {
return IsSubsetOf(pointer, pointer + count);
}
template <typename T, size_t N>
inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
const T (&array)[N]) {
return IsSubsetOf(array, N);
}
template <typename Container>
inline internal::UnorderedElementsAreArrayMatcher<
typename Container::value_type>
IsSubsetOf(const Container& container) {
return IsSubsetOf(container.begin(), container.end());
}
template <typename T>
inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
::std::initializer_list<T> xs) {
return IsSubsetOf(xs.begin(), xs.end());
}
// Matches an STL-style container or a native array that contains only
// elements matching the given value or matcher.
//
// Each(m) is semantically equivalent to Not(Contains(Not(m))). Only
// the messages are different.
//
// Examples:
// ::std::set<int> page_ids;
// // Each(m) matches an empty container, regardless of what m is.
// EXPECT_THAT(page_ids, Each(Eq(1)));
// EXPECT_THAT(page_ids, Each(Eq(77)));
//
// page_ids.insert(3);
// EXPECT_THAT(page_ids, Each(Gt(0)));
// EXPECT_THAT(page_ids, Not(Each(Gt(4))));
// page_ids.insert(1);
// EXPECT_THAT(page_ids, Not(Each(Lt(2))));
//
// ::std::map<int, size_t> page_lengths;
// page_lengths[1] = 100;
// page_lengths[2] = 200;
// page_lengths[3] = 300;
// EXPECT_THAT(page_lengths, Not(Each(Pair(1, 100))));
// EXPECT_THAT(page_lengths, Each(Key(Le(3))));
//
// const char* user_ids[] = { "joe", "mike", "tom" };
// EXPECT_THAT(user_ids, Not(Each(Eq(::std::string("tom")))));
template <typename M>
inline internal::EachMatcher<M> Each(M matcher) {
return internal::EachMatcher<M>(matcher);
}
// Key(inner_matcher) matches an std::pair whose 'first' field matches
// inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an
// std::map that contains at least one element whose key is >= 5.
template <typename M>
inline internal::KeyMatcher<M> Key(M inner_matcher) {
return internal::KeyMatcher<M>(inner_matcher);
}
// Pair(first_matcher, second_matcher) matches a std::pair whose 'first' field
// matches first_matcher and whose 'second' field matches second_matcher. For
// example, EXPECT_THAT(map_type, ElementsAre(Pair(Ge(5), "foo"))) can be used
// to match a std::map<int, string> that contains exactly one element whose key
// is >= 5 and whose value equals "foo".
template <typename FirstMatcher, typename SecondMatcher>
inline internal::PairMatcher<FirstMatcher, SecondMatcher>
Pair(FirstMatcher first_matcher, SecondMatcher second_matcher) {
return internal::PairMatcher<FirstMatcher, SecondMatcher>(
first_matcher, second_matcher);
}
namespace no_adl {
// FieldsAre(matchers...) matches piecewise the fields of compatible structs.
// These include those that support `get<I>(obj)`, and when structured bindings
// are enabled any class that supports them.
// In particular, `std::tuple`, `std::pair`, `std::array` and aggregate types.
template <typename... M>
internal::FieldsAreMatcher<typename std::decay<M>::type...> FieldsAre(
M&&... matchers) {
return internal::FieldsAreMatcher<typename std::decay<M>::type...>(
std::forward<M>(matchers)...);
}
// Creates a matcher that matches a pointer (raw or smart) that matches
// inner_matcher.
template <typename InnerMatcher>
inline internal::PointerMatcher<InnerMatcher> Pointer(
const InnerMatcher& inner_matcher) {
return internal::PointerMatcher<InnerMatcher>(inner_matcher);
}
// Creates a matcher that matches an object that has an address that matches
// inner_matcher.
template <typename InnerMatcher>
inline internal::AddressMatcher<InnerMatcher> Address(
const InnerMatcher& inner_matcher) {
return internal::AddressMatcher<InnerMatcher>(inner_matcher);
}
} // namespace no_adl
// Returns a predicate that is satisfied by anything that matches the
// given matcher.
template <typename M>
inline internal::MatcherAsPredicate<M> Matches(M matcher) {
return internal::MatcherAsPredicate<M>(matcher);
}
// Returns true if and only if the value matches the matcher.
template <typename T, typename M>
inline bool Value(const T& value, M matcher) {
return testing::Matches(matcher)(value);
}
// Matches the value against the given matcher and explains the match
// result to listener.
template <typename T, typename M>
inline bool ExplainMatchResult(
M matcher, const T& value, MatchResultListener* listener) {
return SafeMatcherCast<const T&>(matcher).MatchAndExplain(value, listener);
}
// Returns a string representation of the given matcher. Useful for description
// strings of matchers defined using MATCHER_P* macros that accept matchers as
// their arguments. For example:
//
// MATCHER_P(XAndYThat, matcher,
// "X that " + DescribeMatcher<int>(matcher, negation) +
// " and Y that " + DescribeMatcher<double>(matcher, negation)) {
// return ExplainMatchResult(matcher, arg.x(), result_listener) &&
// ExplainMatchResult(matcher, arg.y(), result_listener);
// }
template <typename T, typename M>
std::string DescribeMatcher(const M& matcher, bool negation = false) {
::std::stringstream ss;
Matcher<T> monomorphic_matcher = SafeMatcherCast<T>(matcher);
if (negation) {
monomorphic_matcher.DescribeNegationTo(&ss);
} else {
monomorphic_matcher.DescribeTo(&ss);
}
return ss.str();
}
template <typename... Args>
internal::ElementsAreMatcher<
std::tuple<typename std::decay<const Args&>::type...>>
ElementsAre(const Args&... matchers) {
return internal::ElementsAreMatcher<
std::tuple<typename std::decay<const Args&>::type...>>(
std::make_tuple(matchers...));
}
template <typename... Args>
internal::UnorderedElementsAreMatcher<
std::tuple<typename std::decay<const Args&>::type...>>
UnorderedElementsAre(const Args&... matchers) {
return internal::UnorderedElementsAreMatcher<
std::tuple<typename std::decay<const Args&>::type...>>(
std::make_tuple(matchers...));
}
// Define variadic matcher versions.
template <typename... Args>
internal::AllOfMatcher<typename std::decay<const Args&>::type...> AllOf(
const Args&... matchers) {
return internal::AllOfMatcher<typename std::decay<const Args&>::type...>(
matchers...);
}
template <typename... Args>
internal::AnyOfMatcher<typename std::decay<const Args&>::type...> AnyOf(
const Args&... matchers) {
return internal::AnyOfMatcher<typename std::decay<const Args&>::type...>(
matchers...);
}
// AnyOfArray(array)
// AnyOfArray(pointer, count)
// AnyOfArray(container)
// AnyOfArray({ e1, e2, ..., en })
// AnyOfArray(iterator_first, iterator_last)
//
// AnyOfArray() verifies whether a given value matches any member of a
// collection of matchers.
//
// AllOfArray(array)
// AllOfArray(pointer, count)
// AllOfArray(container)
// AllOfArray({ e1, e2, ..., en })
// AllOfArray(iterator_first, iterator_last)
//
// AllOfArray() verifies whether a given value matches all members of a
// collection of matchers.
//
// The matchers can be specified as an array, a pointer and count, a container,
// an initializer list, or an STL iterator range. In each of these cases, the
// underlying matchers can be either values or matchers.
template <typename Iter>
inline internal::AnyOfArrayMatcher<
typename ::std::iterator_traits<Iter>::value_type>
AnyOfArray(Iter first, Iter last) {
return internal::AnyOfArrayMatcher<
typename ::std::iterator_traits<Iter>::value_type>(first, last);
}
template <typename Iter>
inline internal::AllOfArrayMatcher<
typename ::std::iterator_traits<Iter>::value_type>
AllOfArray(Iter first, Iter last) {
return internal::AllOfArrayMatcher<
typename ::std::iterator_traits<Iter>::value_type>(first, last);
}
template <typename T>
inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T* ptr, size_t count) {
return AnyOfArray(ptr, ptr + count);
}
template <typename T>
inline internal::AllOfArrayMatcher<T> AllOfArray(const T* ptr, size_t count) {
return AllOfArray(ptr, ptr + count);
}
template <typename T, size_t N>
inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T (&array)[N]) {
return AnyOfArray(array, N);
}
template <typename T, size_t N>
inline internal::AllOfArrayMatcher<T> AllOfArray(const T (&array)[N]) {
return AllOfArray(array, N);
}
template <typename Container>
inline internal::AnyOfArrayMatcher<typename Container::value_type> AnyOfArray(
const Container& container) {
return AnyOfArray(container.begin(), container.end());
}
template <typename Container>
inline internal::AllOfArrayMatcher<typename Container::value_type> AllOfArray(
const Container& container) {
return AllOfArray(container.begin(), container.end());
}
template <typename T>
inline internal::AnyOfArrayMatcher<T> AnyOfArray(
::std::initializer_list<T> xs) {
return AnyOfArray(xs.begin(), xs.end());
}
template <typename T>
inline internal::AllOfArrayMatcher<T> AllOfArray(
::std::initializer_list<T> xs) {
return AllOfArray(xs.begin(), xs.end());
}
// Args<N1, N2, ..., Nk>(a_matcher) matches a tuple if the selected
// fields of it matches a_matcher. C++ doesn't support default
// arguments for function templates, so we have to overload it.
template <size_t... k, typename InnerMatcher>
internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...> Args(
InnerMatcher&& matcher) {
return internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...>(
std::forward<InnerMatcher>(matcher));
}
// AllArgs(m) is a synonym of m. This is useful in
//
// EXPECT_CALL(foo, Bar(_, _)).With(AllArgs(Eq()));
//
// which is easier to read than
//
// EXPECT_CALL(foo, Bar(_, _)).With(Eq());
template <typename InnerMatcher>
inline InnerMatcher AllArgs(const InnerMatcher& matcher) { return matcher; }
// Returns a matcher that matches the value of an optional<> type variable.
// The matcher implementation only uses '!arg' and requires that the optional<>
// type has a 'value_type' member type and that '*arg' is of type 'value_type'
// and is printable using 'PrintToString'. It is compatible with
// std::optional/std::experimental::optional.
// Note that to compare an optional type variable against nullopt you should
// use Eq(nullopt) and not Eq(Optional(nullopt)). The latter implies that the
// optional value contains an optional itself.
template <typename ValueMatcher>
inline internal::OptionalMatcher<ValueMatcher> Optional(
const ValueMatcher& value_matcher) {
return internal::OptionalMatcher<ValueMatcher>(value_matcher);
}
// Returns a matcher that matches the value of a absl::any type variable.
template <typename T>
PolymorphicMatcher<internal::any_cast_matcher::AnyCastMatcher<T> > AnyWith(
const Matcher<const T&>& matcher) {
return MakePolymorphicMatcher(
internal::any_cast_matcher::AnyCastMatcher<T>(matcher));
}
// Returns a matcher that matches the value of a variant<> type variable.
// The matcher implementation uses ADL to find the holds_alternative and get
// functions.
// It is compatible with std::variant.
template <typename T>
PolymorphicMatcher<internal::variant_matcher::VariantMatcher<T> > VariantWith(
const Matcher<const T&>& matcher) {
return MakePolymorphicMatcher(
internal::variant_matcher::VariantMatcher<T>(matcher));
}
#if GTEST_HAS_EXCEPTIONS
// Anything inside the `internal` namespace is internal to the implementation
// and must not be used in user code!
namespace internal {
class WithWhatMatcherImpl {
public:
WithWhatMatcherImpl(Matcher<std::string> matcher)
: matcher_(std::move(matcher)) {}
void DescribeTo(std::ostream* os) const {
*os << "contains .what() that ";
matcher_.DescribeTo(os);
}
void DescribeNegationTo(std::ostream* os) const {
*os << "contains .what() that does not ";
matcher_.DescribeTo(os);
}
template <typename Err>
bool MatchAndExplain(const Err& err, MatchResultListener* listener) const {
*listener << "which contains .what() that ";
return matcher_.MatchAndExplain(err.what(), listener);
}
private:
const Matcher<std::string> matcher_;
};
inline PolymorphicMatcher<WithWhatMatcherImpl> WithWhat(
Matcher<std::string> m) {
return MakePolymorphicMatcher(WithWhatMatcherImpl(std::move(m)));
}
template <typename Err>
class ExceptionMatcherImpl {
class NeverThrown {
public:
const char* what() const noexcept {
return "this exception should never be thrown";
}
};
// If the matchee raises an exception of a wrong type, we'd like to
// catch it and print its message and type. To do that, we add an additional
// catch clause:
//
// try { ... }
// catch (const Err&) { /* an expected exception */ }
// catch (const std::exception&) { /* exception of a wrong type */ }
//
// However, if the `Err` itself is `std::exception`, we'd end up with two
// identical `catch` clauses:
//
// try { ... }
// catch (const std::exception&) { /* an expected exception */ }
// catch (const std::exception&) { /* exception of a wrong type */ }
//
// This can cause a warning or an error in some compilers. To resolve
// the issue, we use a fake error type whenever `Err` is `std::exception`:
//
// try { ... }
// catch (const std::exception&) { /* an expected exception */ }
// catch (const NeverThrown&) { /* exception of a wrong type */ }
using DefaultExceptionType = typename std::conditional<
std::is_same<typename std::remove_cv<
typename std::remove_reference<Err>::type>::type,
std::exception>::value,
const NeverThrown&, const std::exception&>::type;
public:
ExceptionMatcherImpl(Matcher<const Err&> matcher)
: matcher_(std::move(matcher)) {}
void DescribeTo(std::ostream* os) const {
*os << "throws an exception which is a " << GetTypeName<Err>();
*os << " which ";
matcher_.DescribeTo(os);
}
void DescribeNegationTo(std::ostream* os) const {
*os << "throws an exception which is not a " << GetTypeName<Err>();
*os << " which ";
matcher_.DescribeNegationTo(os);
}
template <typename T>
bool MatchAndExplain(T&& x, MatchResultListener* listener) const {
try {
(void)(std::forward<T>(x)());
} catch (const Err& err) {
*listener << "throws an exception which is a " << GetTypeName<Err>();
*listener << " ";
return matcher_.MatchAndExplain(err, listener);
} catch (DefaultExceptionType err) {
#if GTEST_HAS_RTTI
*listener << "throws an exception of type " << GetTypeName(typeid(err));
*listener << " ";
#else
*listener << "throws an std::exception-derived type ";
#endif
*listener << "with description \"" << err.what() << "\"";
return false;
} catch (...) {
*listener << "throws an exception of an unknown type";
return false;
}
*listener << "does not throw any exception";
return false;
}
private:
const Matcher<const Err&> matcher_;
};
} // namespace internal
// Throws()
// Throws(exceptionMatcher)
// ThrowsMessage(messageMatcher)
//
// This matcher accepts a callable and verifies that when invoked, it throws
// an exception with the given type and properties.
//
// Examples:
//
// EXPECT_THAT(
// []() { throw std::runtime_error("message"); },
// Throws<std::runtime_error>());
//
// EXPECT_THAT(
// []() { throw std::runtime_error("message"); },
// ThrowsMessage<std::runtime_error>(HasSubstr("message")));
//
// EXPECT_THAT(
// []() { throw std::runtime_error("message"); },
// Throws<std::runtime_error>(
// Property(&std::runtime_error::what, HasSubstr("message"))));
template <typename Err>
PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws() {
return MakePolymorphicMatcher(
internal::ExceptionMatcherImpl<Err>(A<const Err&>()));
}
template <typename Err, typename ExceptionMatcher>
PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws(
const ExceptionMatcher& exception_matcher) {
// Using matcher cast allows users to pass a matcher of a more broad type.
// For example user may want to pass Matcher<std::exception>
// to Throws<std::runtime_error>, or Matcher<int64> to Throws<int32>.
return MakePolymorphicMatcher(internal::ExceptionMatcherImpl<Err>(
SafeMatcherCast<const Err&>(exception_matcher)));
}
template <typename Err, typename MessageMatcher>
PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> ThrowsMessage(
MessageMatcher&& message_matcher) {
static_assert(std::is_base_of<std::exception, Err>::value,
"expected an std::exception-derived type");
return Throws<Err>(internal::WithWhat(
MatcherCast<std::string>(std::forward<MessageMatcher>(message_matcher))));
}
#endif // GTEST_HAS_EXCEPTIONS
// These macros allow using matchers to check values in Google Test
// tests. ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher)
// succeed if and only if the value matches the matcher. If the assertion
// fails, the value and the description of the matcher will be printed.
#define ASSERT_THAT(value, matcher) ASSERT_PRED_FORMAT1(\
::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
#define EXPECT_THAT(value, matcher) EXPECT_PRED_FORMAT1(\
::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
// MATCHER* macroses itself are listed below.
#define MATCHER(name, description) \
class name##Matcher \
: public ::testing::internal::MatcherBaseImpl<name##Matcher> { \
public: \
template <typename arg_type> \
class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> { \
public: \
gmock_Impl() {} \
bool MatchAndExplain( \
const arg_type& arg, \
::testing::MatchResultListener* result_listener) const override; \
void DescribeTo(::std::ostream* gmock_os) const override { \
*gmock_os << FormatDescription(false); \
} \
void DescribeNegationTo(::std::ostream* gmock_os) const override { \
*gmock_os << FormatDescription(true); \
} \
\
private: \
::std::string FormatDescription(bool negation) const { \
::std::string gmock_description = (description); \
if (!gmock_description.empty()) { \
return gmock_description; \
} \
return ::testing::internal::FormatMatcherDescription(negation, #name, \
{}); \
} \
}; \
}; \
GTEST_ATTRIBUTE_UNUSED_ inline name##Matcher name() { return {}; } \
template <typename arg_type> \
bool name##Matcher::gmock_Impl<arg_type>::MatchAndExplain( \
const arg_type& arg, \
::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_) \
const
#define MATCHER_P(name, p0, description) \
GMOCK_INTERNAL_MATCHER(name, name##MatcherP, description, (p0))
#define MATCHER_P2(name, p0, p1, description) \
GMOCK_INTERNAL_MATCHER(name, name##MatcherP2, description, (p0, p1))
#define MATCHER_P3(name, p0, p1, p2, description) \
GMOCK_INTERNAL_MATCHER(name, name##MatcherP3, description, (p0, p1, p2))
#define MATCHER_P4(name, p0, p1, p2, p3, description) \
GMOCK_INTERNAL_MATCHER(name, name##MatcherP4, description, (p0, p1, p2, p3))
#define MATCHER_P5(name, p0, p1, p2, p3, p4, description) \
GMOCK_INTERNAL_MATCHER(name, name##MatcherP5, description, \
(p0, p1, p2, p3, p4))
#define MATCHER_P6(name, p0, p1, p2, p3, p4, p5, description) \
GMOCK_INTERNAL_MATCHER(name, name##MatcherP6, description, \
(p0, p1, p2, p3, p4, p5))
#define MATCHER_P7(name, p0, p1, p2, p3, p4, p5, p6, description) \
GMOCK_INTERNAL_MATCHER(name, name##MatcherP7, description, \
(p0, p1, p2, p3, p4, p5, p6))
#define MATCHER_P8(name, p0, p1, p2, p3, p4, p5, p6, p7, description) \
GMOCK_INTERNAL_MATCHER(name, name##MatcherP8, description, \
(p0, p1, p2, p3, p4, p5, p6, p7))
#define MATCHER_P9(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, description) \
GMOCK_INTERNAL_MATCHER(name, name##MatcherP9, description, \
(p0, p1, p2, p3, p4, p5, p6, p7, p8))
#define MATCHER_P10(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, description) \
GMOCK_INTERNAL_MATCHER(name, name##MatcherP10, description, \
(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9))
#define GMOCK_INTERNAL_MATCHER(name, full_name, description, args) \
template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \
class full_name : public ::testing::internal::MatcherBaseImpl< \
full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>> { \
public: \
using full_name::MatcherBaseImpl::MatcherBaseImpl; \
template <typename arg_type> \
class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> { \
public: \
explicit gmock_Impl(GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args)) \
: GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) {} \
bool MatchAndExplain( \
const arg_type& arg, \
::testing::MatchResultListener* result_listener) const override; \
void DescribeTo(::std::ostream* gmock_os) const override { \
*gmock_os << FormatDescription(false); \
} \
void DescribeNegationTo(::std::ostream* gmock_os) const override { \
*gmock_os << FormatDescription(true); \
} \
GMOCK_INTERNAL_MATCHER_MEMBERS(args) \
\
private: \
::std::string FormatDescription(bool negation) const { \
::std::string gmock_description = (description); \
if (!gmock_description.empty()) { \
return gmock_description; \
} \
return ::testing::internal::FormatMatcherDescription( \
negation, #name, \
::testing::internal::UniversalTersePrintTupleFieldsToStrings( \
::std::tuple<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>( \
GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args)))); \
} \
}; \
}; \
template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \
inline full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)> name( \
GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args)) { \
return full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>( \
GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args)); \
} \
template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \
template <typename arg_type> \
bool full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>::gmock_Impl< \
arg_type>::MatchAndExplain(const arg_type& arg, \
::testing::MatchResultListener* \
result_listener GTEST_ATTRIBUTE_UNUSED_) \
const
#define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args) \
GMOCK_PP_TAIL( \
GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM, , args))
#define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM(i_unused, data_unused, arg) \
, typename arg##_type
#define GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args) \
GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TYPE_PARAM, , args))
#define GMOCK_INTERNAL_MATCHER_TYPE_PARAM(i_unused, data_unused, arg) \
, arg##_type
#define GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args) \
GMOCK_PP_TAIL(dummy_first GMOCK_PP_FOR_EACH( \
GMOCK_INTERNAL_MATCHER_FUNCTION_ARG, , args))
#define GMOCK_INTERNAL_MATCHER_FUNCTION_ARG(i, data_unused, arg) \
, arg##_type gmock_p##i
#define GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) \
GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_FORWARD_ARG, , args))
#define GMOCK_INTERNAL_MATCHER_FORWARD_ARG(i, data_unused, arg) \
, arg(::std::forward<arg##_type>(gmock_p##i))
#define GMOCK_INTERNAL_MATCHER_MEMBERS(args) \
GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER, , args)
#define GMOCK_INTERNAL_MATCHER_MEMBER(i_unused, data_unused, arg) \
const arg##_type arg;
#define GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args) \
GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER_USAGE, , args))
#define GMOCK_INTERNAL_MATCHER_MEMBER_USAGE(i_unused, data_unused, arg) , arg
#define GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args) \
GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_ARG_USAGE, , args))
#define GMOCK_INTERNAL_MATCHER_ARG_USAGE(i, data_unused, arg_unused) \
, gmock_p##i
// To prevent ADL on certain functions we put them on a separate namespace.
using namespace no_adl; // NOLINT
} // namespace testing
GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251 5046
// Include any custom callback matchers added by the local installation.
// We must include this header at the end to make sure it can use the
// declarations from this file.
// Copyright 2015, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Injection point for custom user configurations. See README for details
//
// GOOGLETEST_CM0002 DO NOT DELETE
#ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_MATCHERS_H_
#define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_MATCHERS_H_
#endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_MATCHERS_H_
#endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
#if GTEST_HAS_EXCEPTIONS
# include <stdexcept> // NOLINT
#endif
GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \
/* class A needs to have dll-interface to be used by clients of class B */)
namespace testing {
// An abstract handle of an expectation.
class Expectation;
// A set of expectation handles.
class ExpectationSet;
// Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
// and MUST NOT BE USED IN USER CODE!!!
namespace internal {
// Implements a mock function.
template <typename F> class FunctionMocker;
// Base class for expectations.
class ExpectationBase;
// Implements an expectation.
template <typename F> class TypedExpectation;
// Helper class for testing the Expectation class template.
class ExpectationTester;
// Helper classes for implementing NiceMock, StrictMock, and NaggyMock.
template <typename MockClass>
class NiceMockImpl;
template <typename MockClass>
class StrictMockImpl;
template <typename MockClass>
class NaggyMockImpl;
// Protects the mock object registry (in class Mock), all function
// mockers, and all expectations.
//
// The reason we don't use more fine-grained protection is: when a
// mock function Foo() is called, it needs to consult its expectations
// to see which one should be picked. If another thread is allowed to
// call a mock function (either Foo() or a different one) at the same
// time, it could affect the "retired" attributes of Foo()'s
// expectations when InSequence() is used, and thus affect which
// expectation gets picked. Therefore, we sequence all mock function
// calls to ensure the integrity of the mock objects' states.
GTEST_API_ GTEST_DECLARE_STATIC_MUTEX_(g_gmock_mutex);
// Untyped base class for ActionResultHolder<R>.
class UntypedActionResultHolderBase;
// Abstract base class of FunctionMocker. This is the
// type-agnostic part of the function mocker interface. Its pure
// virtual methods are implemented by FunctionMocker.
class GTEST_API_ UntypedFunctionMockerBase {
public:
UntypedFunctionMockerBase();
virtual ~UntypedFunctionMockerBase();
// Verifies that all expectations on this mock function have been
// satisfied. Reports one or more Google Test non-fatal failures
// and returns false if not.
bool VerifyAndClearExpectationsLocked()
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex);
// Clears the ON_CALL()s set on this mock function.
virtual void ClearDefaultActionsLocked()
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) = 0;
// In all of the following Untyped* functions, it's the caller's
// responsibility to guarantee the correctness of the arguments'
// types.
// Performs the default action with the given arguments and returns
// the action's result. The call description string will be used in
// the error message to describe the call in the case the default
// action fails.
// L = *
virtual UntypedActionResultHolderBase* UntypedPerformDefaultAction(
void* untyped_args, const std::string& call_description) const = 0;
// Performs the given action with the given arguments and returns
// the action's result.
// L = *
virtual UntypedActionResultHolderBase* UntypedPerformAction(
const void* untyped_action, void* untyped_args) const = 0;
// Writes a message that the call is uninteresting (i.e. neither
// explicitly expected nor explicitly unexpected) to the given
// ostream.
virtual void UntypedDescribeUninterestingCall(
const void* untyped_args,
::std::ostream* os) const
GTEST_LOCK_EXCLUDED_(g_gmock_mutex) = 0;
// Returns the expectation that matches the given function arguments
// (or NULL is there's no match); when a match is found,
// untyped_action is set to point to the action that should be
// performed (or NULL if the action is "do default"), and
// is_excessive is modified to indicate whether the call exceeds the
// expected number.
virtual const ExpectationBase* UntypedFindMatchingExpectation(
const void* untyped_args,
const void** untyped_action, bool* is_excessive,
::std::ostream* what, ::std::ostream* why)
GTEST_LOCK_EXCLUDED_(g_gmock_mutex) = 0;
// Prints the given function arguments to the ostream.
virtual void UntypedPrintArgs(const void* untyped_args,
::std::ostream* os) const = 0;
// Sets the mock object this mock method belongs to, and registers
// this information in the global mock registry. Will be called
// whenever an EXPECT_CALL() or ON_CALL() is executed on this mock
// method.
void RegisterOwner(const void* mock_obj)
GTEST_LOCK_EXCLUDED_(g_gmock_mutex);
// Sets the mock object this mock method belongs to, and sets the
// name of the mock function. Will be called upon each invocation
// of this mock function.
void SetOwnerAndName(const void* mock_obj, const char* name)
GTEST_LOCK_EXCLUDED_(g_gmock_mutex);
// Returns the mock object this mock method belongs to. Must be
// called after RegisterOwner() or SetOwnerAndName() has been
// called.
const void* MockObject() const
GTEST_LOCK_EXCLUDED_(g_gmock_mutex);
// Returns the name of this mock method. Must be called after
// SetOwnerAndName() has been called.
const char* Name() const
GTEST_LOCK_EXCLUDED_(g_gmock_mutex);
// Returns the result of invoking this mock function with the given
// arguments. This function can be safely called from multiple
// threads concurrently. The caller is responsible for deleting the
// result.
UntypedActionResultHolderBase* UntypedInvokeWith(void* untyped_args)
GTEST_LOCK_EXCLUDED_(g_gmock_mutex);
protected:
typedef std::vector<const void*> UntypedOnCallSpecs;
using UntypedExpectations = std::vector<std::shared_ptr<ExpectationBase>>;
// Returns an Expectation object that references and co-owns exp,
// which must be an expectation on this mock function.
Expectation GetHandleOf(ExpectationBase* exp);
// Address of the mock object this mock method belongs to. Only
// valid after this mock method has been called or
// ON_CALL/EXPECT_CALL has been invoked on it.
const void* mock_obj_; // Protected by g_gmock_mutex.
// Name of the function being mocked. Only valid after this mock
// method has been called.
const char* name_; // Protected by g_gmock_mutex.
// All default action specs for this function mocker.
UntypedOnCallSpecs untyped_on_call_specs_;
// All expectations for this function mocker.
//
// It's undefined behavior to interleave expectations (EXPECT_CALLs
// or ON_CALLs) and mock function calls. Also, the order of
// expectations is important. Therefore it's a logic race condition
// to read/write untyped_expectations_ concurrently. In order for
// tools like tsan to catch concurrent read/write accesses to
// untyped_expectations, we deliberately leave accesses to it
// unprotected.
UntypedExpectations untyped_expectations_;
}; // class UntypedFunctionMockerBase
// Untyped base class for OnCallSpec<F>.
class UntypedOnCallSpecBase {
public:
// The arguments are the location of the ON_CALL() statement.
UntypedOnCallSpecBase(const char* a_file, int a_line)
: file_(a_file), line_(a_line), last_clause_(kNone) {}
// Where in the source file was the default action spec defined?
const char* file() const { return file_; }
int line() const { return line_; }
protected:
// Gives each clause in the ON_CALL() statement a name.
enum Clause {
// Do not change the order of the enum members! The run-time
// syntax checking relies on it.
kNone,
kWith,
kWillByDefault
};
// Asserts that the ON_CALL() statement has a certain property.
void AssertSpecProperty(bool property,
const std::string& failure_message) const {
Assert(property, file_, line_, failure_message);
}
// Expects that the ON_CALL() statement has a certain property.
void ExpectSpecProperty(bool property,
const std::string& failure_message) const {
Expect(property, file_, line_, failure_message);
}
const char* file_;
int line_;
// The last clause in the ON_CALL() statement as seen so far.
// Initially kNone and changes as the statement is parsed.
Clause last_clause_;
}; // class UntypedOnCallSpecBase
// This template class implements an ON_CALL spec.
template <typename F>
class OnCallSpec : public UntypedOnCallSpecBase {
public:
typedef typename Function<F>::ArgumentTuple ArgumentTuple;
typedef typename Function<F>::ArgumentMatcherTuple ArgumentMatcherTuple;
// Constructs an OnCallSpec object from the information inside
// the parenthesis of an ON_CALL() statement.
OnCallSpec(const char* a_file, int a_line,
const ArgumentMatcherTuple& matchers)
: UntypedOnCallSpecBase(a_file, a_line),
matchers_(matchers),
// By default, extra_matcher_ should match anything. However,
// we cannot initialize it with _ as that causes ambiguity between
// Matcher's copy and move constructor for some argument types.
extra_matcher_(A<const ArgumentTuple&>()) {}
// Implements the .With() clause.
OnCallSpec& With(const Matcher<const ArgumentTuple&>& m) {
// Makes sure this is called at most once.
ExpectSpecProperty(last_clause_ < kWith,
".With() cannot appear "
"more than once in an ON_CALL().");
last_clause_ = kWith;
extra_matcher_ = m;
return *this;
}
// Implements the .WillByDefault() clause.
OnCallSpec& WillByDefault(const Action<F>& action) {
ExpectSpecProperty(last_clause_ < kWillByDefault,
".WillByDefault() must appear "
"exactly once in an ON_CALL().");
last_clause_ = kWillByDefault;
ExpectSpecProperty(!action.IsDoDefault(),
"DoDefault() cannot be used in ON_CALL().");
action_ = action;
return *this;
}
// Returns true if and only if the given arguments match the matchers.
bool Matches(const ArgumentTuple& args) const {
return TupleMatches(matchers_, args) && extra_matcher_.Matches(args);
}
// Returns the action specified by the user.
const Action<F>& GetAction() const {
AssertSpecProperty(last_clause_ == kWillByDefault,
".WillByDefault() must appear exactly "
"once in an ON_CALL().");
return action_;
}
private:
// The information in statement
//
// ON_CALL(mock_object, Method(matchers))
// .With(multi-argument-matcher)
// .WillByDefault(action);
//
// is recorded in the data members like this:
//
// source file that contains the statement => file_
// line number of the statement => line_
// matchers => matchers_
// multi-argument-matcher => extra_matcher_
// action => action_
ArgumentMatcherTuple matchers_;
Matcher<const ArgumentTuple&> extra_matcher_;
Action<F> action_;
}; // class OnCallSpec
// Possible reactions on uninteresting calls.
enum CallReaction {
kAllow,
kWarn,
kFail,
};
} // namespace internal
// Utilities for manipulating mock objects.
class GTEST_API_ Mock {
public:
// The following public methods can be called concurrently.
// Tells Google Mock to ignore mock_obj when checking for leaked
// mock objects.
static void AllowLeak(const void* mock_obj)
GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
// Verifies and clears all expectations on the given mock object.
// If the expectations aren't satisfied, generates one or more
// Google Test non-fatal failures and returns false.
static bool VerifyAndClearExpectations(void* mock_obj)
GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
// Verifies all expectations on the given mock object and clears its
// default actions and expectations. Returns true if and only if the
// verification was successful.
static bool VerifyAndClear(void* mock_obj)
GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
// Returns whether the mock was created as a naggy mock (default)
static bool IsNaggy(void* mock_obj)
GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
// Returns whether the mock was created as a nice mock
static bool IsNice(void* mock_obj)
GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
// Returns whether the mock was created as a strict mock
static bool IsStrict(void* mock_obj)
GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
private:
friend class internal::UntypedFunctionMockerBase;
// Needed for a function mocker to register itself (so that we know
// how to clear a mock object).
template <typename F>
friend class internal::FunctionMocker;
template <typename MockClass>
friend class internal::NiceMockImpl;
template <typename MockClass>
friend class internal::NaggyMockImpl;
template <typename MockClass>
friend class internal::StrictMockImpl;
// Tells Google Mock to allow uninteresting calls on the given mock
// object.
static void AllowUninterestingCalls(const void* mock_obj)
GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
// Tells Google Mock to warn the user about uninteresting calls on
// the given mock object.
static void WarnUninterestingCalls(const void* mock_obj)
GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
// Tells Google Mock to fail uninteresting calls on the given mock
// object.
static void FailUninterestingCalls(const void* mock_obj)
GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
// Tells Google Mock the given mock object is being destroyed and
// its entry in the call-reaction table should be removed.
static void UnregisterCallReaction(const void* mock_obj)
GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
// Returns the reaction Google Mock will have on uninteresting calls
// made on the given mock object.
static internal::CallReaction GetReactionOnUninterestingCalls(
const void* mock_obj)
GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
// Verifies that all expectations on the given mock object have been
// satisfied. Reports one or more Google Test non-fatal failures
// and returns false if not.
static bool VerifyAndClearExpectationsLocked(void* mock_obj)
GTEST_EXCLUSIVE_LOCK_REQUIRED_(internal::g_gmock_mutex);
// Clears all ON_CALL()s set on the given mock object.
static void ClearDefaultActionsLocked(void* mock_obj)
GTEST_EXCLUSIVE_LOCK_REQUIRED_(internal::g_gmock_mutex);
// Registers a mock object and a mock method it owns.
static void Register(
const void* mock_obj,
internal::UntypedFunctionMockerBase* mocker)
GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
// Tells Google Mock where in the source code mock_obj is used in an
// ON_CALL or EXPECT_CALL. In case mock_obj is leaked, this
// information helps the user identify which object it is.
static void RegisterUseByOnCallOrExpectCall(
const void* mock_obj, const char* file, int line)
GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
// Unregisters a mock method; removes the owning mock object from
// the registry when the last mock method associated with it has
// been unregistered. This is called only in the destructor of
// FunctionMocker.
static void UnregisterLocked(internal::UntypedFunctionMockerBase* mocker)
GTEST_EXCLUSIVE_LOCK_REQUIRED_(internal::g_gmock_mutex);
}; // class Mock
// An abstract handle of an expectation. Useful in the .After()
// clause of EXPECT_CALL() for setting the (partial) order of
// expectations. The syntax:
//
// Expectation e1 = EXPECT_CALL(...)...;
// EXPECT_CALL(...).After(e1)...;
//
// sets two expectations where the latter can only be matched after
// the former has been satisfied.
//
// Notes:
// - This class is copyable and has value semantics.
// - Constness is shallow: a const Expectation object itself cannot
// be modified, but the mutable methods of the ExpectationBase
// object it references can be called via expectation_base().
class GTEST_API_ Expectation {
public:
// Constructs a null object that doesn't reference any expectation.
Expectation();
Expectation(Expectation&&) = default;
Expectation(const Expectation&) = default;
Expectation& operator=(Expectation&&) = default;
Expectation& operator=(const Expectation&) = default;
~Expectation();
// This single-argument ctor must not be explicit, in order to support the
// Expectation e = EXPECT_CALL(...);
// syntax.
//
// A TypedExpectation object stores its pre-requisites as
// Expectation objects, and needs to call the non-const Retire()
// method on the ExpectationBase objects they reference. Therefore
// Expectation must receive a *non-const* reference to the
// ExpectationBase object.
Expectation(internal::ExpectationBase& exp); // NOLINT
// The compiler-generated copy ctor and operator= work exactly as
// intended, so we don't need to define our own.
// Returns true if and only if rhs references the same expectation as this
// object does.
bool operator==(const Expectation& rhs) const {
return expectation_base_ == rhs.expectation_base_;
}
bool operator!=(const Expectation& rhs) const { return !(*this == rhs); }
private:
friend class ExpectationSet;
friend class Sequence;
friend class ::testing::internal::ExpectationBase;
friend class ::testing::internal::UntypedFunctionMockerBase;
template <typename F>
friend class ::testing::internal::FunctionMocker;
template <typename F>
friend class ::testing::internal::TypedExpectation;
// This comparator is needed for putting Expectation objects into a set.
class Less {
public:
bool operator()(const Expectation& lhs, const Expectation& rhs) const {
return lhs.expectation_base_.get() < rhs.expectation_base_.get();
}
};
typedef ::std::set<Expectation, Less> Set;
Expectation(
const std::shared_ptr<internal::ExpectationBase>& expectation_base);
// Returns the expectation this object references.
const std::shared_ptr<internal::ExpectationBase>& expectation_base() const {
return expectation_base_;
}
// A shared_ptr that co-owns the expectation this handle references.
std::shared_ptr<internal::ExpectationBase> expectation_base_;
};
// A set of expectation handles. Useful in the .After() clause of
// EXPECT_CALL() for setting the (partial) order of expectations. The
// syntax:
//
// ExpectationSet es;
// es += EXPECT_CALL(...)...;
// es += EXPECT_CALL(...)...;
// EXPECT_CALL(...).After(es)...;
//
// sets three expectations where the last one can only be matched
// after the first two have both been satisfied.
//
// This class is copyable and has value semantics.
class ExpectationSet {
public:
// A bidirectional iterator that can read a const element in the set.
typedef Expectation::Set::const_iterator const_iterator;
// An object stored in the set. This is an alias of Expectation.
typedef Expectation::Set::value_type value_type;
// Constructs an empty set.
ExpectationSet() {}
// This single-argument ctor must not be explicit, in order to support the
// ExpectationSet es = EXPECT_CALL(...);
// syntax.
ExpectationSet(internal::ExpectationBase& exp) { // NOLINT
*this += Expectation(exp);
}
// This single-argument ctor implements implicit conversion from
// Expectation and thus must not be explicit. This allows either an
// Expectation or an ExpectationSet to be used in .After().
ExpectationSet(const Expectation& e) { // NOLINT
*this += e;
}
// The compiler-generator ctor and operator= works exactly as
// intended, so we don't need to define our own.
// Returns true if and only if rhs contains the same set of Expectation
// objects as this does.
bool operator==(const ExpectationSet& rhs) const {
return expectations_ == rhs.expectations_;
}
bool operator!=(const ExpectationSet& rhs) const { return !(*this == rhs); }
// Implements the syntax
// expectation_set += EXPECT_CALL(...);
ExpectationSet& operator+=(const Expectation& e) {
expectations_.insert(e);
return *this;
}
int size() const { return static_cast<int>(expectations_.size()); }
const_iterator begin() const { return expectations_.begin(); }
const_iterator end() const { return expectations_.end(); }
private:
Expectation::Set expectations_;
};
// Sequence objects are used by a user to specify the relative order
// in which the expectations should match. They are copyable (we rely
// on the compiler-defined copy constructor and assignment operator).
class GTEST_API_ Sequence {
public:
// Constructs an empty sequence.
Sequence() : last_expectation_(new Expectation) {}
// Adds an expectation to this sequence. The caller must ensure
// that no other thread is accessing this Sequence object.
void AddExpectation(const Expectation& expectation) const;
private:
// The last expectation in this sequence.
std::shared_ptr<Expectation> last_expectation_;
}; // class Sequence
// An object of this type causes all EXPECT_CALL() statements
// encountered in its scope to be put in an anonymous sequence. The
// work is done in the constructor and destructor. You should only
// create an InSequence object on the stack.
//
// The sole purpose for this class is to support easy definition of
// sequential expectations, e.g.
//
// {
// InSequence dummy; // The name of the object doesn't matter.
//
// // The following expectations must match in the order they appear.
// EXPECT_CALL(a, Bar())...;
// EXPECT_CALL(a, Baz())...;
// ...
// EXPECT_CALL(b, Xyz())...;
// }
//
// You can create InSequence objects in multiple threads, as long as
// they are used to affect different mock objects. The idea is that
// each thread can create and set up its own mocks as if it's the only
// thread. However, for clarity of your tests we recommend you to set
// up mocks in the main thread unless you have a good reason not to do
// so.
class GTEST_API_ InSequence {
public:
InSequence();
~InSequence();
private:
bool sequence_created_;
GTEST_DISALLOW_COPY_AND_ASSIGN_(InSequence); // NOLINT
} GTEST_ATTRIBUTE_UNUSED_;
namespace internal {
// Points to the implicit sequence introduced by a living InSequence
// object (if any) in the current thread or NULL.
GTEST_API_ extern ThreadLocal<Sequence*> g_gmock_implicit_sequence;
// Base class for implementing expectations.
//
// There are two reasons for having a type-agnostic base class for
// Expectation:
//
// 1. We need to store collections of expectations of different
// types (e.g. all pre-requisites of a particular expectation, all
// expectations in a sequence). Therefore these expectation objects
// must share a common base class.
//
// 2. We can avoid binary code bloat by moving methods not depending
// on the template argument of Expectation to the base class.
//
// This class is internal and mustn't be used by user code directly.
class GTEST_API_ ExpectationBase {
public:
// source_text is the EXPECT_CALL(...) source that created this Expectation.
ExpectationBase(const char* file, int line, const std::string& source_text);
virtual ~ExpectationBase();
// Where in the source file was the expectation spec defined?
const char* file() const { return file_; }
int line() const { return line_; }
const char* source_text() const { return source_text_.c_str(); }
// Returns the cardinality specified in the expectation spec.
const Cardinality& cardinality() const { return cardinality_; }
// Describes the source file location of this expectation.
void DescribeLocationTo(::std::ostream* os) const {
*os << FormatFileLocation(file(), line()) << " ";
}
// Describes how many times a function call matching this
// expectation has occurred.
void DescribeCallCountTo(::std::ostream* os) const
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex);
// If this mock method has an extra matcher (i.e. .With(matcher)),
// describes it to the ostream.
virtual void MaybeDescribeExtraMatcherTo(::std::ostream* os) = 0;
protected:
friend class ::testing::Expectation;
friend class UntypedFunctionMockerBase;
enum Clause {
// Don't change the order of the enum members!
kNone,
kWith,
kTimes,
kInSequence,
kAfter,
kWillOnce,
kWillRepeatedly,
kRetiresOnSaturation
};
typedef std::vector<const void*> UntypedActions;
// Returns an Expectation object that references and co-owns this
// expectation.
virtual Expectation GetHandle() = 0;
// Asserts that the EXPECT_CALL() statement has the given property.
void AssertSpecProperty(bool property,
const std::string& failure_message) const {
Assert(property, file_, line_, failure_message);
}
// Expects that the EXPECT_CALL() statement has the given property.
void ExpectSpecProperty(bool property,
const std::string& failure_message) const {
Expect(property, file_, line_, failure_message);
}
// Explicitly specifies the cardinality of this expectation. Used
// by the subclasses to implement the .Times() clause.
void SpecifyCardinality(const Cardinality& cardinality);
// Returns true if and only if the user specified the cardinality
// explicitly using a .Times().
bool cardinality_specified() const { return cardinality_specified_; }
// Sets the cardinality of this expectation spec.
void set_cardinality(const Cardinality& a_cardinality) {
cardinality_ = a_cardinality;
}
// The following group of methods should only be called after the
// EXPECT_CALL() statement, and only when g_gmock_mutex is held by
// the current thread.
// Retires all pre-requisites of this expectation.
void RetireAllPreRequisites()
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex);
// Returns true if and only if this expectation is retired.
bool is_retired() const
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
g_gmock_mutex.AssertHeld();
return retired_;
}
// Retires this expectation.
void Retire()
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
g_gmock_mutex.AssertHeld();
retired_ = true;
}
// Returns true if and only if this expectation is satisfied.
bool IsSatisfied() const
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
g_gmock_mutex.AssertHeld();
return cardinality().IsSatisfiedByCallCount(call_count_);
}
// Returns true if and only if this expectation is saturated.
bool IsSaturated() const
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
g_gmock_mutex.AssertHeld();
return cardinality().IsSaturatedByCallCount(call_count_);
}
// Returns true if and only if this expectation is over-saturated.
bool IsOverSaturated() const
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
g_gmock_mutex.AssertHeld();
return cardinality().IsOverSaturatedByCallCount(call_count_);
}
// Returns true if and only if all pre-requisites of this expectation are
// satisfied.
bool AllPrerequisitesAreSatisfied() const
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex);
// Adds unsatisfied pre-requisites of this expectation to 'result'.
void FindUnsatisfiedPrerequisites(ExpectationSet* result) const
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex);
// Returns the number this expectation has been invoked.
int call_count() const
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
g_gmock_mutex.AssertHeld();
return call_count_;
}
// Increments the number this expectation has been invoked.
void IncrementCallCount()
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
g_gmock_mutex.AssertHeld();
call_count_++;
}
// Checks the action count (i.e. the number of WillOnce() and
// WillRepeatedly() clauses) against the cardinality if this hasn't
// been done before. Prints a warning if there are too many or too
// few actions.
void CheckActionCountIfNotDone() const
GTEST_LOCK_EXCLUDED_(mutex_);
friend class ::testing::Sequence;
friend class ::testing::internal::ExpectationTester;
template <typename Function>
friend class TypedExpectation;
// Implements the .Times() clause.
void UntypedTimes(const Cardinality& a_cardinality);
// This group of fields are part of the spec and won't change after
// an EXPECT_CALL() statement finishes.
const char* file_; // The file that contains the expectation.
int line_; // The line number of the expectation.
const std::string source_text_; // The EXPECT_CALL(...) source text.
// True if and only if the cardinality is specified explicitly.
bool cardinality_specified_;
Cardinality cardinality_; // The cardinality of the expectation.
// The immediate pre-requisites (i.e. expectations that must be
// satisfied before this expectation can be matched) of this
// expectation. We use std::shared_ptr in the set because we want an
// Expectation object to be co-owned by its FunctionMocker and its
// successors. This allows multiple mock objects to be deleted at
// different times.
ExpectationSet immediate_prerequisites_;
// This group of fields are the current state of the expectation,
// and can change as the mock function is called.
int call_count_; // How many times this expectation has been invoked.
bool retired_; // True if and only if this expectation has retired.
UntypedActions untyped_actions_;
bool extra_matcher_specified_;
bool repeated_action_specified_; // True if a WillRepeatedly() was specified.
bool retires_on_saturation_;
Clause last_clause_;
mutable bool action_count_checked_; // Under mutex_.
mutable Mutex mutex_; // Protects action_count_checked_.
}; // class ExpectationBase
// Impements an expectation for the given function type.
template <typename F>
class TypedExpectation : public ExpectationBase {
public:
typedef typename Function<F>::ArgumentTuple ArgumentTuple;
typedef typename Function<F>::ArgumentMatcherTuple ArgumentMatcherTuple;
typedef typename Function<F>::Result Result;
TypedExpectation(FunctionMocker<F>* owner, const char* a_file, int a_line,
const std::string& a_source_text,
const ArgumentMatcherTuple& m)
: ExpectationBase(a_file, a_line, a_source_text),
owner_(owner),
matchers_(m),
// By default, extra_matcher_ should match anything. However,
// we cannot initialize it with _ as that causes ambiguity between
// Matcher's copy and move constructor for some argument types.
extra_matcher_(A<const ArgumentTuple&>()),
repeated_action_(DoDefault()) {}
~TypedExpectation() override {
// Check the validity of the action count if it hasn't been done
// yet (for example, if the expectation was never used).
CheckActionCountIfNotDone();
for (UntypedActions::const_iterator it = untyped_actions_.begin();
it != untyped_actions_.end(); ++it) {
delete static_cast<const Action<F>*>(*it);
}
}
// Implements the .With() clause.
TypedExpectation& With(const Matcher<const ArgumentTuple&>& m) {
if (last_clause_ == kWith) {
ExpectSpecProperty(false,
".With() cannot appear "
"more than once in an EXPECT_CALL().");
} else {
ExpectSpecProperty(last_clause_ < kWith,
".With() must be the first "
"clause in an EXPECT_CALL().");
}
last_clause_ = kWith;
extra_matcher_ = m;
extra_matcher_specified_ = true;
return *this;
}
// Implements the .Times() clause.
TypedExpectation& Times(const Cardinality& a_cardinality) {
ExpectationBase::UntypedTimes(a_cardinality);
return *this;
}
// Implements the .Times() clause.
TypedExpectation& Times(int n) {
return Times(Exactly(n));
}
// Implements the .InSequence() clause.
TypedExpectation& InSequence(const Sequence& s) {
ExpectSpecProperty(last_clause_ <= kInSequence,
".InSequence() cannot appear after .After(),"
" .WillOnce(), .WillRepeatedly(), or "
".RetiresOnSaturation().");
last_clause_ = kInSequence;
s.AddExpectation(GetHandle());
return *this;
}
TypedExpectation& InSequence(const Sequence& s1, const Sequence& s2) {
return InSequence(s1).InSequence(s2);
}
TypedExpectation& InSequence(const Sequence& s1, const Sequence& s2,
const Sequence& s3) {
return InSequence(s1, s2).InSequence(s3);
}
TypedExpectation& InSequence(const Sequence& s1, const Sequence& s2,
const Sequence& s3, const Sequence& s4) {
return InSequence(s1, s2, s3).InSequence(s4);
}
TypedExpectation& InSequence(const Sequence& s1, const Sequence& s2,
const Sequence& s3, const Sequence& s4,
const Sequence& s5) {
return InSequence(s1, s2, s3, s4).InSequence(s5);
}
// Implements that .After() clause.
TypedExpectation& After(const ExpectationSet& s) {
ExpectSpecProperty(last_clause_ <= kAfter,
".After() cannot appear after .WillOnce(),"
" .WillRepeatedly(), or "
".RetiresOnSaturation().");
last_clause_ = kAfter;
for (ExpectationSet::const_iterator it = s.begin(); it != s.end(); ++it) {
immediate_prerequisites_ += *it;
}
return *this;
}
TypedExpectation& After(const ExpectationSet& s1, const ExpectationSet& s2) {
return After(s1).After(s2);
}
TypedExpectation& After(const ExpectationSet& s1, const ExpectationSet& s2,
const ExpectationSet& s3) {
return After(s1, s2).After(s3);
}
TypedExpectation& After(const ExpectationSet& s1, const ExpectationSet& s2,
const ExpectationSet& s3, const ExpectationSet& s4) {
return After(s1, s2, s3).After(s4);
}
TypedExpectation& After(const ExpectationSet& s1, const ExpectationSet& s2,
const ExpectationSet& s3, const ExpectationSet& s4,
const ExpectationSet& s5) {
return After(s1, s2, s3, s4).After(s5);
}
// Implements the .WillOnce() clause.
TypedExpectation& WillOnce(const Action<F>& action) {
ExpectSpecProperty(last_clause_ <= kWillOnce,
".WillOnce() cannot appear after "
".WillRepeatedly() or .RetiresOnSaturation().");
last_clause_ = kWillOnce;
untyped_actions_.push_back(new Action<F>(action));
if (!cardinality_specified()) {
set_cardinality(Exactly(static_cast<int>(untyped_actions_.size())));
}
return *this;
}
// Implements the .WillRepeatedly() clause.
TypedExpectation& WillRepeatedly(const Action<F>& action) {
if (last_clause_ == kWillRepeatedly) {
ExpectSpecProperty(false,
".WillRepeatedly() cannot appear "
"more than once in an EXPECT_CALL().");
} else {
ExpectSpecProperty(last_clause_ < kWillRepeatedly,
".WillRepeatedly() cannot appear "
"after .RetiresOnSaturation().");
}
last_clause_ = kWillRepeatedly;
repeated_action_specified_ = true;
repeated_action_ = action;
if (!cardinality_specified()) {
set_cardinality(AtLeast(static_cast<int>(untyped_actions_.size())));
}
// Now that no more action clauses can be specified, we check
// whether their count makes sense.
CheckActionCountIfNotDone();
return *this;
}
// Implements the .RetiresOnSaturation() clause.
TypedExpectation& RetiresOnSaturation() {
ExpectSpecProperty(last_clause_ < kRetiresOnSaturation,
".RetiresOnSaturation() cannot appear "
"more than once.");
last_clause_ = kRetiresOnSaturation;
retires_on_saturation_ = true;
// Now that no more action clauses can be specified, we check
// whether their count makes sense.
CheckActionCountIfNotDone();
return *this;
}
// Returns the matchers for the arguments as specified inside the
// EXPECT_CALL() macro.
const ArgumentMatcherTuple& matchers() const {
return matchers_;
}
// Returns the matcher specified by the .With() clause.
const Matcher<const ArgumentTuple&>& extra_matcher() const {
return extra_matcher_;
}
// Returns the action specified by the .WillRepeatedly() clause.
const Action<F>& repeated_action() const { return repeated_action_; }
// If this mock method has an extra matcher (i.e. .With(matcher)),
// describes it to the ostream.
void MaybeDescribeExtraMatcherTo(::std::ostream* os) override {
if (extra_matcher_specified_) {
*os << " Expected args: ";
extra_matcher_.DescribeTo(os);
*os << "\n";
}
}
private:
template <typename Function>
friend class FunctionMocker;
// Returns an Expectation object that references and co-owns this
// expectation.
Expectation GetHandle() override { return owner_->GetHandleOf(this); }
// The following methods will be called only after the EXPECT_CALL()
// statement finishes and when the current thread holds
// g_gmock_mutex.
// Returns true if and only if this expectation matches the given arguments.
bool Matches(const ArgumentTuple& args) const
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
g_gmock_mutex.AssertHeld();
return TupleMatches(matchers_, args) && extra_matcher_.Matches(args);
}
// Returns true if and only if this expectation should handle the given
// arguments.
bool ShouldHandleArguments(const ArgumentTuple& args) const
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
g_gmock_mutex.AssertHeld();
// In case the action count wasn't checked when the expectation
// was defined (e.g. if this expectation has no WillRepeatedly()
// or RetiresOnSaturation() clause), we check it when the
// expectation is used for the first time.
CheckActionCountIfNotDone();
return !is_retired() && AllPrerequisitesAreSatisfied() && Matches(args);
}
// Describes the result of matching the arguments against this
// expectation to the given ostream.
void ExplainMatchResultTo(
const ArgumentTuple& args,
::std::ostream* os) const
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
g_gmock_mutex.AssertHeld();
if (is_retired()) {
*os << " Expected: the expectation is active\n"
<< " Actual: it is retired\n";
} else if (!Matches(args)) {
if (!TupleMatches(matchers_, args)) {
ExplainMatchFailureTupleTo(matchers_, args, os);
}
StringMatchResultListener listener;
if (!extra_matcher_.MatchAndExplain(args, &listener)) {
*os << " Expected args: ";
extra_matcher_.DescribeTo(os);
*os << "\n Actual: don't match";
internal::PrintIfNotEmpty(listener.str(), os);
*os << "\n";
}
} else if (!AllPrerequisitesAreSatisfied()) {
*os << " Expected: all pre-requisites are satisfied\n"
<< " Actual: the following immediate pre-requisites "
<< "are not satisfied:\n";
ExpectationSet unsatisfied_prereqs;
FindUnsatisfiedPrerequisites(&unsatisfied_prereqs);
int i = 0;
for (ExpectationSet::const_iterator it = unsatisfied_prereqs.begin();
it != unsatisfied_prereqs.end(); ++it) {
it->expectation_base()->DescribeLocationTo(os);
*os << "pre-requisite #" << i++ << "\n";
}
*os << " (end of pre-requisites)\n";
} else {
// This line is here just for completeness' sake. It will never
// be executed as currently the ExplainMatchResultTo() function
// is called only when the mock function call does NOT match the
// expectation.
*os << "The call matches the expectation.\n";
}
}
// Returns the action that should be taken for the current invocation.
const Action<F>& GetCurrentAction(const FunctionMocker<F>* mocker,
const ArgumentTuple& args) const
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
g_gmock_mutex.AssertHeld();
const int count = call_count();
Assert(count >= 1, __FILE__, __LINE__,
"call_count() is <= 0 when GetCurrentAction() is "
"called - this should never happen.");
const int action_count = static_cast<int>(untyped_actions_.size());
if (action_count > 0 && !repeated_action_specified_ &&
count > action_count) {
// If there is at least one WillOnce() and no WillRepeatedly(),
// we warn the user when the WillOnce() clauses ran out.
::std::stringstream ss;
DescribeLocationTo(&ss);
ss << "Actions ran out in " << source_text() << "...\n"
<< "Called " << count << " times, but only "
<< action_count << " WillOnce()"
<< (action_count == 1 ? " is" : "s are") << " specified - ";
mocker->DescribeDefaultActionTo(args, &ss);
Log(kWarning, ss.str(), 1);
}
return count <= action_count
? *static_cast<const Action<F>*>(
untyped_actions_[static_cast<size_t>(count - 1)])
: repeated_action();
}
// Given the arguments of a mock function call, if the call will
// over-saturate this expectation, returns the default action;
// otherwise, returns the next action in this expectation. Also
// describes *what* happened to 'what', and explains *why* Google
// Mock does it to 'why'. This method is not const as it calls
// IncrementCallCount(). A return value of NULL means the default
// action.
const Action<F>* GetActionForArguments(const FunctionMocker<F>* mocker,
const ArgumentTuple& args,
::std::ostream* what,
::std::ostream* why)
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
g_gmock_mutex.AssertHeld();
if (IsSaturated()) {
// We have an excessive call.
IncrementCallCount();
*what << "Mock function called more times than expected - ";
mocker->DescribeDefaultActionTo(args, what);
DescribeCallCountTo(why);
return nullptr;
}
IncrementCallCount();
RetireAllPreRequisites();
if (retires_on_saturation_ && IsSaturated()) {
Retire();
}
// Must be done after IncrementCount()!
*what << "Mock function call matches " << source_text() <<"...\n";
return &(GetCurrentAction(mocker, args));
}
// All the fields below won't change once the EXPECT_CALL()
// statement finishes.
FunctionMocker<F>* const owner_;
ArgumentMatcherTuple matchers_;
Matcher<const ArgumentTuple&> extra_matcher_;
Action<F> repeated_action_;
GTEST_DISALLOW_COPY_AND_ASSIGN_(TypedExpectation);
}; // class TypedExpectation
// A MockSpec object is used by ON_CALL() or EXPECT_CALL() for
// specifying the default behavior of, or expectation on, a mock
// function.
// Note: class MockSpec really belongs to the ::testing namespace.
// However if we define it in ::testing, MSVC will complain when
// classes in ::testing::internal declare it as a friend class
// template. To workaround this compiler bug, we define MockSpec in
// ::testing::internal and import it into ::testing.
// Logs a message including file and line number information.
GTEST_API_ void LogWithLocation(testing::internal::LogSeverity severity,
const char* file, int line,
const std::string& message);
template <typename F>
class MockSpec {
public:
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
typedef typename internal::Function<F>::ArgumentMatcherTuple
ArgumentMatcherTuple;
// Constructs a MockSpec object, given the function mocker object
// that the spec is associated with.
MockSpec(internal::FunctionMocker<F>* function_mocker,
const ArgumentMatcherTuple& matchers)
: function_mocker_(function_mocker), matchers_(matchers) {}
// Adds a new default action spec to the function mocker and returns
// the newly created spec.
internal::OnCallSpec<F>& InternalDefaultActionSetAt(
const char* file, int line, const char* obj, const char* call) {
LogWithLocation(internal::kInfo, file, line,
std::string("ON_CALL(") + obj + ", " + call + ") invoked");
return function_mocker_->AddNewOnCallSpec(file, line, matchers_);
}
// Adds a new expectation spec to the function mocker and returns
// the newly created spec.
internal::TypedExpectation<F>& InternalExpectedAt(
const char* file, int line, const char* obj, const char* call) {
const std::string source_text(std::string("EXPECT_CALL(") + obj + ", " +
call + ")");
LogWithLocation(internal::kInfo, file, line, source_text + " invoked");
return function_mocker_->AddNewExpectation(
file, line, source_text, matchers_);
}
// This operator overload is used to swallow the superfluous parameter list
// introduced by the ON/EXPECT_CALL macros. See the macro comments for more
// explanation.
MockSpec<F>& operator()(const internal::WithoutMatchers&, void* const) {
return *this;
}
private:
template <typename Function>
friend class internal::FunctionMocker;
// The function mocker that owns this spec.
internal::FunctionMocker<F>* const function_mocker_;
// The argument matchers specified in the spec.
ArgumentMatcherTuple matchers_;
}; // class MockSpec
// Wrapper type for generically holding an ordinary value or lvalue reference.
// If T is not a reference type, it must be copyable or movable.
// ReferenceOrValueWrapper<T> is movable, and will also be copyable unless
// T is a move-only value type (which means that it will always be copyable
// if the current platform does not support move semantics).
//
// The primary template defines handling for values, but function header
// comments describe the contract for the whole template (including
// specializations).
template <typename T>
class ReferenceOrValueWrapper {
public:
// Constructs a wrapper from the given value/reference.
explicit ReferenceOrValueWrapper(T value)
: value_(std::move(value)) {
}
// Unwraps and returns the underlying value/reference, exactly as
// originally passed. The behavior of calling this more than once on
// the same object is unspecified.
T Unwrap() { return std::move(value_); }
// Provides nondestructive access to the underlying value/reference.
// Always returns a const reference (more precisely,
// const std::add_lvalue_reference<T>::type). The behavior of calling this
// after calling Unwrap on the same object is unspecified.
const T& Peek() const {
return value_;
}
private:
T value_;
};
// Specialization for lvalue reference types. See primary template
// for documentation.
template <typename T>
class ReferenceOrValueWrapper<T&> {
public:
// Workaround for debatable pass-by-reference lint warning (c-library-team
// policy precludes NOLINT in this context)
typedef T& reference;
explicit ReferenceOrValueWrapper(reference ref)
: value_ptr_(&ref) {}
T& Unwrap() { return *value_ptr_; }
const T& Peek() const { return *value_ptr_; }
private:
T* value_ptr_;
};
// C++ treats the void type specially. For example, you cannot define
// a void-typed variable or pass a void value to a function.
// ActionResultHolder<T> holds a value of type T, where T must be a
// copyable type or void (T doesn't need to be default-constructable).
// It hides the syntactic difference between void and other types, and
// is used to unify the code for invoking both void-returning and
// non-void-returning mock functions.
// Untyped base class for ActionResultHolder<T>.
class UntypedActionResultHolderBase {
public:
virtual ~UntypedActionResultHolderBase() {}
// Prints the held value as an action's result to os.
virtual void PrintAsActionResult(::std::ostream* os) const = 0;
};
// This generic definition is used when T is not void.
template <typename T>
class ActionResultHolder : public UntypedActionResultHolderBase {
public:
// Returns the held value. Must not be called more than once.
T Unwrap() {
return result_.Unwrap();
}
// Prints the held value as an action's result to os.
void PrintAsActionResult(::std::ostream* os) const override {
*os << "\n Returns: ";
// T may be a reference type, so we don't use UniversalPrint().
UniversalPrinter<T>::Print(result_.Peek(), os);
}
// Performs the given mock function's default action and returns the
// result in a new-ed ActionResultHolder.
template <typename F>
static ActionResultHolder* PerformDefaultAction(
const FunctionMocker<F>* func_mocker,
typename Function<F>::ArgumentTuple&& args,
const std::string& call_description) {
return new ActionResultHolder(Wrapper(func_mocker->PerformDefaultAction(
std::move(args), call_description)));
}
// Performs the given action and returns the result in a new-ed
// ActionResultHolder.
template <typename F>
static ActionResultHolder* PerformAction(
const Action<F>& action, typename Function<F>::ArgumentTuple&& args) {
return new ActionResultHolder(
Wrapper(action.Perform(std::move(args))));
}
private:
typedef ReferenceOrValueWrapper<T> Wrapper;
explicit ActionResultHolder(Wrapper result)
: result_(std::move(result)) {
}
Wrapper result_;
GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionResultHolder);
};
// Specialization for T = void.
template <>
class ActionResultHolder<void> : public UntypedActionResultHolderBase {
public:
void Unwrap() { }
void PrintAsActionResult(::std::ostream* /* os */) const override {}
// Performs the given mock function's default action and returns ownership
// of an empty ActionResultHolder*.
template <typename F>
static ActionResultHolder* PerformDefaultAction(
const FunctionMocker<F>* func_mocker,
typename Function<F>::ArgumentTuple&& args,
const std::string& call_description) {
func_mocker->PerformDefaultAction(std::move(args), call_description);
return new ActionResultHolder;
}
// Performs the given action and returns ownership of an empty
// ActionResultHolder*.
template <typename F>
static ActionResultHolder* PerformAction(
const Action<F>& action, typename Function<F>::ArgumentTuple&& args) {
action.Perform(std::move(args));
return new ActionResultHolder;
}
private:
ActionResultHolder() {}
GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionResultHolder);
};
template <typename F>
class FunctionMocker;
template <typename R, typename... Args>
class FunctionMocker<R(Args...)> final : public UntypedFunctionMockerBase {
using F = R(Args...);
public:
using Result = R;
using ArgumentTuple = std::tuple<Args...>;
using ArgumentMatcherTuple = std::tuple<Matcher<Args>...>;
FunctionMocker() {}
// There is no generally useful and implementable semantics of
// copying a mock object, so copying a mock is usually a user error.
// Thus we disallow copying function mockers. If the user really
// wants to copy a mock object, they should implement their own copy
// operation, for example:
//
// class MockFoo : public Foo {
// public:
// // Defines a copy constructor explicitly.
// MockFoo(const MockFoo& src) {}
// ...
// };
FunctionMocker(const FunctionMocker&) = delete;
FunctionMocker& operator=(const FunctionMocker&) = delete;
// The destructor verifies that all expectations on this mock
// function have been satisfied. If not, it will report Google Test
// non-fatal failures for the violations.
~FunctionMocker() override GTEST_LOCK_EXCLUDED_(g_gmock_mutex) {
MutexLock l(&g_gmock_mutex);
VerifyAndClearExpectationsLocked();
Mock::UnregisterLocked(this);
ClearDefaultActionsLocked();
}
// Returns the ON_CALL spec that matches this mock function with the
// given arguments; returns NULL if no matching ON_CALL is found.
// L = *
const OnCallSpec<F>* FindOnCallSpec(
const ArgumentTuple& args) const {
for (UntypedOnCallSpecs::const_reverse_iterator it
= untyped_on_call_specs_.rbegin();
it != untyped_on_call_specs_.rend(); ++it) {
const OnCallSpec<F>* spec = static_cast<const OnCallSpec<F>*>(*it);
if (spec->Matches(args))
return spec;
}
return nullptr;
}
// Performs the default action of this mock function on the given
// arguments and returns the result. Asserts (or throws if
// exceptions are enabled) with a helpful call descrption if there
// is no valid return value. This method doesn't depend on the
// mutable state of this object, and thus can be called concurrently
// without locking.
// L = *
Result PerformDefaultAction(ArgumentTuple&& args,
const std::string& call_description) const {
const OnCallSpec<F>* const spec =
this->FindOnCallSpec(args);
if (spec != nullptr) {
return spec->GetAction().Perform(std::move(args));
}
const std::string message =
call_description +
"\n The mock function has no default action "
"set, and its return type has no default value set.";
#if GTEST_HAS_EXCEPTIONS
if (!DefaultValue<Result>::Exists()) {
throw std::runtime_error(message);
}
#else
Assert(DefaultValue<Result>::Exists(), "", -1, message);
#endif
return DefaultValue<Result>::Get();
}
// Performs the default action with the given arguments and returns
// the action's result. The call description string will be used in
// the error message to describe the call in the case the default
// action fails. The caller is responsible for deleting the result.
// L = *
UntypedActionResultHolderBase* UntypedPerformDefaultAction(
void* untyped_args, // must point to an ArgumentTuple
const std::string& call_description) const override {
ArgumentTuple* args = static_cast<ArgumentTuple*>(untyped_args);
return ResultHolder::PerformDefaultAction(this, std::move(*args),
call_description);
}
// Performs the given action with the given arguments and returns
// the action's result. The caller is responsible for deleting the
// result.
// L = *
UntypedActionResultHolderBase* UntypedPerformAction(
const void* untyped_action, void* untyped_args) const override {
// Make a copy of the action before performing it, in case the
// action deletes the mock object (and thus deletes itself).
const Action<F> action = *static_cast<const Action<F>*>(untyped_action);
ArgumentTuple* args = static_cast<ArgumentTuple*>(untyped_args);
return ResultHolder::PerformAction(action, std::move(*args));
}
// Implements UntypedFunctionMockerBase::ClearDefaultActionsLocked():
// clears the ON_CALL()s set on this mock function.
void ClearDefaultActionsLocked() override
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
g_gmock_mutex.AssertHeld();
// Deleting our default actions may trigger other mock objects to be
// deleted, for example if an action contains a reference counted smart
// pointer to that mock object, and that is the last reference. So if we
// delete our actions within the context of the global mutex we may deadlock
// when this method is called again. Instead, make a copy of the set of
// actions to delete, clear our set within the mutex, and then delete the
// actions outside of the mutex.
UntypedOnCallSpecs specs_to_delete;
untyped_on_call_specs_.swap(specs_to_delete);
g_gmock_mutex.Unlock();
for (UntypedOnCallSpecs::const_iterator it =
specs_to_delete.begin();
it != specs_to_delete.end(); ++it) {
delete static_cast<const OnCallSpec<F>*>(*it);
}
// Lock the mutex again, since the caller expects it to be locked when we
// return.
g_gmock_mutex.Lock();
}
// Returns the result of invoking this mock function with the given
// arguments. This function can be safely called from multiple
// threads concurrently.
Result Invoke(Args... args) GTEST_LOCK_EXCLUDED_(g_gmock_mutex) {
ArgumentTuple tuple(std::forward<Args>(args)...);
std::unique_ptr<ResultHolder> holder(DownCast_<ResultHolder*>(
this->UntypedInvokeWith(static_cast<void*>(&tuple))));
return holder->Unwrap();
}
MockSpec<F> With(Matcher<Args>... m) {
return MockSpec<F>(this, ::std::make_tuple(std::move(m)...));
}
protected:
template <typename Function>
friend class MockSpec;
typedef ActionResultHolder<Result> ResultHolder;
// Adds and returns a default action spec for this mock function.
OnCallSpec<F>& AddNewOnCallSpec(
const char* file, int line,
const ArgumentMatcherTuple& m)
GTEST_LOCK_EXCLUDED_(g_gmock_mutex) {
Mock::RegisterUseByOnCallOrExpectCall(MockObject(), file, line);
OnCallSpec<F>* const on_call_spec = new OnCallSpec<F>(file, line, m);
untyped_on_call_specs_.push_back(on_call_spec);
return *on_call_spec;
}
// Adds and returns an expectation spec for this mock function.
TypedExpectation<F>& AddNewExpectation(const char* file, int line,
const std::string& source_text,
const ArgumentMatcherTuple& m)
GTEST_LOCK_EXCLUDED_(g_gmock_mutex) {
Mock::RegisterUseByOnCallOrExpectCall(MockObject(), file, line);
TypedExpectation<F>* const expectation =
new TypedExpectation<F>(this, file, line, source_text, m);
const std::shared_ptr<ExpectationBase> untyped_expectation(expectation);
// See the definition of untyped_expectations_ for why access to
// it is unprotected here.
untyped_expectations_.push_back(untyped_expectation);
// Adds this expectation into the implicit sequence if there is one.
Sequence* const implicit_sequence = g_gmock_implicit_sequence.get();
if (implicit_sequence != nullptr) {
implicit_sequence->AddExpectation(Expectation(untyped_expectation));
}
return *expectation;
}
private:
template <typename Func> friend class TypedExpectation;
// Some utilities needed for implementing UntypedInvokeWith().
// Describes what default action will be performed for the given
// arguments.
// L = *
void DescribeDefaultActionTo(const ArgumentTuple& args,
::std::ostream* os) const {
const OnCallSpec<F>* const spec = FindOnCallSpec(args);
if (spec == nullptr) {
*os << (std::is_void<Result>::value ? "returning directly.\n"
: "returning default value.\n");
} else {
*os << "taking default action specified at:\n"
<< FormatFileLocation(spec->file(), spec->line()) << "\n";
}
}
// Writes a message that the call is uninteresting (i.e. neither
// explicitly expected nor explicitly unexpected) to the given
// ostream.
void UntypedDescribeUninterestingCall(const void* untyped_args,
::std::ostream* os) const override
GTEST_LOCK_EXCLUDED_(g_gmock_mutex) {
const ArgumentTuple& args =
*static_cast<const ArgumentTuple*>(untyped_args);
*os << "Uninteresting mock function call - ";
DescribeDefaultActionTo(args, os);
*os << " Function call: " << Name();
UniversalPrint(args, os);
}
// Returns the expectation that matches the given function arguments
// (or NULL is there's no match); when a match is found,
// untyped_action is set to point to the action that should be
// performed (or NULL if the action is "do default"), and
// is_excessive is modified to indicate whether the call exceeds the
// expected number.
//
// Critical section: We must find the matching expectation and the
// corresponding action that needs to be taken in an ATOMIC
// transaction. Otherwise another thread may call this mock
// method in the middle and mess up the state.
//
// However, performing the action has to be left out of the critical
// section. The reason is that we have no control on what the
// action does (it can invoke an arbitrary user function or even a
// mock function) and excessive locking could cause a dead lock.
const ExpectationBase* UntypedFindMatchingExpectation(
const void* untyped_args, const void** untyped_action, bool* is_excessive,
::std::ostream* what, ::std::ostream* why) override
GTEST_LOCK_EXCLUDED_(g_gmock_mutex) {
const ArgumentTuple& args =
*static_cast<const ArgumentTuple*>(untyped_args);
MutexLock l(&g_gmock_mutex);
TypedExpectation<F>* exp = this->FindMatchingExpectationLocked(args);
if (exp == nullptr) { // A match wasn't found.
this->FormatUnexpectedCallMessageLocked(args, what, why);
return nullptr;
}
// This line must be done before calling GetActionForArguments(),
// which will increment the call count for *exp and thus affect
// its saturation status.
*is_excessive = exp->IsSaturated();
const Action<F>* action = exp->GetActionForArguments(this, args, what, why);
if (action != nullptr && action->IsDoDefault())
action = nullptr; // Normalize "do default" to NULL.
*untyped_action = action;
return exp;
}
// Prints the given function arguments to the ostream.
void UntypedPrintArgs(const void* untyped_args,
::std::ostream* os) const override {
const ArgumentTuple& args =
*static_cast<const ArgumentTuple*>(untyped_args);
UniversalPrint(args, os);
}
// Returns the expectation that matches the arguments, or NULL if no
// expectation matches them.
TypedExpectation<F>* FindMatchingExpectationLocked(
const ArgumentTuple& args) const
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
g_gmock_mutex.AssertHeld();
// See the definition of untyped_expectations_ for why access to
// it is unprotected here.
for (typename UntypedExpectations::const_reverse_iterator it =
untyped_expectations_.rbegin();
it != untyped_expectations_.rend(); ++it) {
TypedExpectation<F>* const exp =
static_cast<TypedExpectation<F>*>(it->get());
if (exp->ShouldHandleArguments(args)) {
return exp;
}
}
return nullptr;
}
// Returns a message that the arguments don't match any expectation.
void FormatUnexpectedCallMessageLocked(
const ArgumentTuple& args,
::std::ostream* os,
::std::ostream* why) const
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
g_gmock_mutex.AssertHeld();
*os << "\nUnexpected mock function call - ";
DescribeDefaultActionTo(args, os);
PrintTriedExpectationsLocked(args, why);
}
// Prints a list of expectations that have been tried against the
// current mock function call.
void PrintTriedExpectationsLocked(
const ArgumentTuple& args,
::std::ostream* why) const
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
g_gmock_mutex.AssertHeld();
const size_t count = untyped_expectations_.size();
*why << "Google Mock tried the following " << count << " "
<< (count == 1 ? "expectation, but it didn't match" :
"expectations, but none matched")
<< ":\n";
for (size_t i = 0; i < count; i++) {
TypedExpectation<F>* const expectation =
static_cast<TypedExpectation<F>*>(untyped_expectations_[i].get());
*why << "\n";
expectation->DescribeLocationTo(why);
if (count > 1) {
*why << "tried expectation #" << i << ": ";
}
*why << expectation->source_text() << "...\n";
expectation->ExplainMatchResultTo(args, why);
expectation->DescribeCallCountTo(why);
}
}
}; // class FunctionMocker
// Reports an uninteresting call (whose description is in msg) in the
// manner specified by 'reaction'.
void ReportUninterestingCall(CallReaction reaction, const std::string& msg);
} // namespace internal
namespace internal {
template <typename F>
class MockFunction;
template <typename R, typename... Args>
class MockFunction<R(Args...)> {
public:
MockFunction(const MockFunction&) = delete;
MockFunction& operator=(const MockFunction&) = delete;
std::function<R(Args...)> AsStdFunction() {
return [this](Args... args) -> R {
return this->Call(std::forward<Args>(args)...);
};
}
// Implementation detail: the expansion of the MOCK_METHOD macro.
R Call(Args... args) {
mock_.SetOwnerAndName(this, "Call");
return mock_.Invoke(std::forward<Args>(args)...);
}
MockSpec<R(Args...)> gmock_Call(Matcher<Args>... m) {
mock_.RegisterOwner(this);
return mock_.With(std::move(m)...);
}
MockSpec<R(Args...)> gmock_Call(const WithoutMatchers&, R (*)(Args...)) {
return this->gmock_Call(::testing::A<Args>()...);
}
protected:
MockFunction() = default;
~MockFunction() = default;
private:
FunctionMocker<R(Args...)> mock_;
};
/*
The SignatureOf<F> struct is a meta-function returning function signature
corresponding to the provided F argument.
It makes use of MockFunction easier by allowing it to accept more F arguments
than just function signatures.
Specializations provided here cover only a signature type itself and
std::function. However, if need be it can be easily extended to cover also other
types (like for example boost::function).
*/
template <typename F>
struct SignatureOf;
template <typename R, typename... Args>
struct SignatureOf<R(Args...)> {
using type = R(Args...);
};
template <typename F>
struct SignatureOf<std::function<F>> : SignatureOf<F> {};
template <typename F>
using SignatureOfT = typename SignatureOf<F>::type;
} // namespace internal
// A MockFunction<F> type has one mock method whose type is
// internal::SignatureOfT<F>. It is useful when you just want your
// test code to emit some messages and have Google Mock verify the
// right messages are sent (and perhaps at the right times). For
// example, if you are exercising code:
//
// Foo(1);
// Foo(2);
// Foo(3);
//
// and want to verify that Foo(1) and Foo(3) both invoke
// mock.Bar("a"), but Foo(2) doesn't invoke anything, you can write:
//
// TEST(FooTest, InvokesBarCorrectly) {
// MyMock mock;
// MockFunction<void(string check_point_name)> check;
// {
// InSequence s;
//
// EXPECT_CALL(mock, Bar("a"));
// EXPECT_CALL(check, Call("1"));
// EXPECT_CALL(check, Call("2"));
// EXPECT_CALL(mock, Bar("a"));
// }
// Foo(1);
// check.Call("1");
// Foo(2);
// check.Call("2");
// Foo(3);
// }
//
// The expectation spec says that the first Bar("a") must happen
// before check point "1", the second Bar("a") must happen after check
// point "2", and nothing should happen between the two check
// points. The explicit check points make it easy to tell which
// Bar("a") is called by which call to Foo().
//
// MockFunction<F> can also be used to exercise code that accepts
// std::function<internal::SignatureOfT<F>> callbacks. To do so, use
// AsStdFunction() method to create std::function proxy forwarding to
// original object's Call. Example:
//
// TEST(FooTest, RunsCallbackWithBarArgument) {
// MockFunction<int(string)> callback;
// EXPECT_CALL(callback, Call("bar")).WillOnce(Return(1));
// Foo(callback.AsStdFunction());
// }
//
// The internal::SignatureOfT<F> indirection allows to use other types
// than just function signature type. This is typically useful when
// providing a mock for a predefined std::function type. Example:
//
// using FilterPredicate = std::function<bool(string)>;
// void MyFilterAlgorithm(FilterPredicate predicate);
//
// TEST(FooTest, FilterPredicateAlwaysAccepts) {
// MockFunction<FilterPredicate> predicateMock;
// EXPECT_CALL(predicateMock, Call(_)).WillRepeatedly(Return(true));
// MyFilterAlgorithm(predicateMock.AsStdFunction());
// }
template <typename F>
class MockFunction : public internal::MockFunction<internal::SignatureOfT<F>> {
using Base = internal::MockFunction<internal::SignatureOfT<F>>;
public:
using Base::Base;
};
// The style guide prohibits "using" statements in a namespace scope
// inside a header file. However, the MockSpec class template is
// meant to be defined in the ::testing namespace. The following line
// is just a trick for working around a bug in MSVC 8.0, which cannot
// handle it if we define MockSpec in ::testing.
using internal::MockSpec;
// Const(x) is a convenient function for obtaining a const reference
// to x. This is useful for setting expectations on an overloaded
// const mock method, e.g.
//
// class MockFoo : public FooInterface {
// public:
// MOCK_METHOD0(Bar, int());
// MOCK_CONST_METHOD0(Bar, int&());
// };
//
// MockFoo foo;
// // Expects a call to non-const MockFoo::Bar().
// EXPECT_CALL(foo, Bar());
// // Expects a call to const MockFoo::Bar().
// EXPECT_CALL(Const(foo), Bar());
template <typename T>
inline const T& Const(const T& x) { return x; }
// Constructs an Expectation object that references and co-owns exp.
inline Expectation::Expectation(internal::ExpectationBase& exp) // NOLINT
: expectation_base_(exp.GetHandle().expectation_base()) {}
} // namespace testing
GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251
// Implementation for ON_CALL and EXPECT_CALL macros. A separate macro is
// required to avoid compile errors when the name of the method used in call is
// a result of macro expansion. See CompilesWithMethodNameExpandedFromMacro
// tests in internal/gmock-spec-builders_test.cc for more details.
//
// This macro supports statements both with and without parameter matchers. If
// the parameter list is omitted, gMock will accept any parameters, which allows
// tests to be written that don't need to encode the number of method
// parameter. This technique may only be used for non-overloaded methods.
//
// // These are the same:
// ON_CALL(mock, NoArgsMethod()).WillByDefault(...);
// ON_CALL(mock, NoArgsMethod).WillByDefault(...);
//
// // As are these:
// ON_CALL(mock, TwoArgsMethod(_, _)).WillByDefault(...);
// ON_CALL(mock, TwoArgsMethod).WillByDefault(...);
//
// // Can also specify args if you want, of course:
// ON_CALL(mock, TwoArgsMethod(_, 45)).WillByDefault(...);
//
// // Overloads work as long as you specify parameters:
// ON_CALL(mock, OverloadedMethod(_)).WillByDefault(...);
// ON_CALL(mock, OverloadedMethod(_, _)).WillByDefault(...);
//
// // Oops! Which overload did you want?
// ON_CALL(mock, OverloadedMethod).WillByDefault(...);
// => ERROR: call to member function 'gmock_OverloadedMethod' is ambiguous
//
// How this works: The mock class uses two overloads of the gmock_Method
// expectation setter method plus an operator() overload on the MockSpec object.
// In the matcher list form, the macro expands to:
//
// // This statement:
// ON_CALL(mock, TwoArgsMethod(_, 45))...
//
// // ...expands to:
// mock.gmock_TwoArgsMethod(_, 45)(WithoutMatchers(), nullptr)...
// |-------------v---------------||------------v-------------|
// invokes first overload swallowed by operator()
//
// // ...which is essentially:
// mock.gmock_TwoArgsMethod(_, 45)...
//
// Whereas the form without a matcher list:
//
// // This statement:
// ON_CALL(mock, TwoArgsMethod)...
//
// // ...expands to:
// mock.gmock_TwoArgsMethod(WithoutMatchers(), nullptr)...
// |-----------------------v--------------------------|
// invokes second overload
//
// // ...which is essentially:
// mock.gmock_TwoArgsMethod(_, _)...
//
// The WithoutMatchers() argument is used to disambiguate overloads and to
// block the caller from accidentally invoking the second overload directly. The
// second argument is an internal type derived from the method signature. The
// failure to disambiguate two overloads of this method in the ON_CALL statement
// is how we block callers from setting expectations on overloaded methods.
#define GMOCK_ON_CALL_IMPL_(mock_expr, Setter, call) \
((mock_expr).gmock_##call)(::testing::internal::GetWithoutMatchers(), \
nullptr) \
.Setter(__FILE__, __LINE__, #mock_expr, #call)
#define ON_CALL(obj, call) \
GMOCK_ON_CALL_IMPL_(obj, InternalDefaultActionSetAt, call)
#define EXPECT_CALL(obj, call) \
GMOCK_ON_CALL_IMPL_(obj, InternalExpectedAt, call)
#endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_SPEC_BUILDERS_H_
namespace testing {
namespace internal {
template <typename T>
using identity_t = T;
template <typename Pattern>
struct ThisRefAdjuster {
template <typename T>
using AdjustT = typename std::conditional<
std::is_const<typename std::remove_reference<Pattern>::type>::value,
typename std::conditional<std::is_lvalue_reference<Pattern>::value,
const T&, const T&&>::type,
typename std::conditional<std::is_lvalue_reference<Pattern>::value, T&,
T&&>::type>::type;
template <typename MockType>
static AdjustT<MockType> Adjust(const MockType& mock) {
return static_cast<AdjustT<MockType>>(const_cast<MockType&>(mock));
}
};
} // namespace internal
// The style guide prohibits "using" statements in a namespace scope
// inside a header file. However, the FunctionMocker class template
// is meant to be defined in the ::testing namespace. The following
// line is just a trick for working around a bug in MSVC 8.0, which
// cannot handle it if we define FunctionMocker in ::testing.
using internal::FunctionMocker;
} // namespace testing
#define MOCK_METHOD(...) \
GMOCK_PP_VARIADIC_CALL(GMOCK_INTERNAL_MOCK_METHOD_ARG_, __VA_ARGS__)
#define GMOCK_INTERNAL_MOCK_METHOD_ARG_1(...) \
GMOCK_INTERNAL_WRONG_ARITY(__VA_ARGS__)
#define GMOCK_INTERNAL_MOCK_METHOD_ARG_2(...) \
GMOCK_INTERNAL_WRONG_ARITY(__VA_ARGS__)
#define GMOCK_INTERNAL_MOCK_METHOD_ARG_3(_Ret, _MethodName, _Args) \
GMOCK_INTERNAL_MOCK_METHOD_ARG_4(_Ret, _MethodName, _Args, ())
#define GMOCK_INTERNAL_MOCK_METHOD_ARG_4(_Ret, _MethodName, _Args, _Spec) \
GMOCK_INTERNAL_ASSERT_PARENTHESIS(_Args); \
GMOCK_INTERNAL_ASSERT_PARENTHESIS(_Spec); \
GMOCK_INTERNAL_ASSERT_VALID_SIGNATURE( \
GMOCK_PP_NARG0 _Args, GMOCK_INTERNAL_SIGNATURE(_Ret, _Args)); \
GMOCK_INTERNAL_ASSERT_VALID_SPEC(_Spec) \
GMOCK_INTERNAL_MOCK_METHOD_IMPL( \
GMOCK_PP_NARG0 _Args, _MethodName, GMOCK_INTERNAL_HAS_CONST(_Spec), \
GMOCK_INTERNAL_HAS_OVERRIDE(_Spec), GMOCK_INTERNAL_HAS_FINAL(_Spec), \
GMOCK_INTERNAL_GET_NOEXCEPT_SPEC(_Spec), \
GMOCK_INTERNAL_GET_CALLTYPE(_Spec), GMOCK_INTERNAL_GET_REF_SPEC(_Spec), \
(GMOCK_INTERNAL_SIGNATURE(_Ret, _Args)))
#define GMOCK_INTERNAL_MOCK_METHOD_ARG_5(...) \
GMOCK_INTERNAL_WRONG_ARITY(__VA_ARGS__)
#define GMOCK_INTERNAL_MOCK_METHOD_ARG_6(...) \
GMOCK_INTERNAL_WRONG_ARITY(__VA_ARGS__)
#define GMOCK_INTERNAL_MOCK_METHOD_ARG_7(...) \
GMOCK_INTERNAL_WRONG_ARITY(__VA_ARGS__)
#define GMOCK_INTERNAL_WRONG_ARITY(...) \
static_assert( \
false, \
"MOCK_METHOD must be called with 3 or 4 arguments. _Ret, " \
"_MethodName, _Args and optionally _Spec. _Args and _Spec must be " \
"enclosed in parentheses. If _Ret is a type with unprotected commas, " \
"it must also be enclosed in parentheses.")
#define GMOCK_INTERNAL_ASSERT_PARENTHESIS(_Tuple) \
static_assert( \
GMOCK_PP_IS_ENCLOSED_PARENS(_Tuple), \
GMOCK_PP_STRINGIZE(_Tuple) " should be enclosed in parentheses.")
#define GMOCK_INTERNAL_ASSERT_VALID_SIGNATURE(_N, ...) \
static_assert( \
std::is_function<__VA_ARGS__>::value, \
"Signature must be a function type, maybe return type contains " \
"unprotected comma."); \
static_assert( \
::testing::tuple_size<typename ::testing::internal::Function< \
__VA_ARGS__>::ArgumentTuple>::value == _N, \
"This method does not take " GMOCK_PP_STRINGIZE( \
_N) " arguments. Parenthesize all types with unprotected commas.")
#define GMOCK_INTERNAL_ASSERT_VALID_SPEC(_Spec) \
GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_ASSERT_VALID_SPEC_ELEMENT, ~, _Spec)
#define GMOCK_INTERNAL_MOCK_METHOD_IMPL(_N, _MethodName, _Constness, \
_Override, _Final, _NoexceptSpec, \
_CallType, _RefSpec, _Signature) \
typename ::testing::internal::Function<GMOCK_PP_REMOVE_PARENS( \
_Signature)>::Result \
GMOCK_INTERNAL_EXPAND(_CallType) \
_MethodName(GMOCK_PP_REPEAT(GMOCK_INTERNAL_PARAMETER, _Signature, _N)) \
GMOCK_PP_IF(_Constness, const, ) _RefSpec _NoexceptSpec \
GMOCK_PP_IF(_Override, override, ) GMOCK_PP_IF(_Final, final, ) { \
GMOCK_MOCKER_(_N, _Constness, _MethodName) \
.SetOwnerAndName(this, #_MethodName); \
return GMOCK_MOCKER_(_N, _Constness, _MethodName) \
.Invoke(GMOCK_PP_REPEAT(GMOCK_INTERNAL_FORWARD_ARG, _Signature, _N)); \
} \
::testing::MockSpec<GMOCK_PP_REMOVE_PARENS(_Signature)> gmock_##_MethodName( \
GMOCK_PP_REPEAT(GMOCK_INTERNAL_MATCHER_PARAMETER, _Signature, _N)) \
GMOCK_PP_IF(_Constness, const, ) _RefSpec { \
GMOCK_MOCKER_(_N, _Constness, _MethodName).RegisterOwner(this); \
return GMOCK_MOCKER_(_N, _Constness, _MethodName) \
.With(GMOCK_PP_REPEAT(GMOCK_INTERNAL_MATCHER_ARGUMENT, , _N)); \
} \
::testing::MockSpec<GMOCK_PP_REMOVE_PARENS(_Signature)> gmock_##_MethodName( \
const ::testing::internal::WithoutMatchers&, \
GMOCK_PP_IF(_Constness, const, )::testing::internal::Function< \
GMOCK_PP_REMOVE_PARENS(_Signature)>*) const _RefSpec _NoexceptSpec { \
return ::testing::internal::ThisRefAdjuster<GMOCK_PP_IF( \
_Constness, const, ) int _RefSpec>::Adjust(*this) \
.gmock_##_MethodName(GMOCK_PP_REPEAT( \
GMOCK_INTERNAL_A_MATCHER_ARGUMENT, _Signature, _N)); \
} \
mutable ::testing::FunctionMocker<GMOCK_PP_REMOVE_PARENS(_Signature)> \
GMOCK_MOCKER_(_N, _Constness, _MethodName)
#define GMOCK_INTERNAL_EXPAND(...) __VA_ARGS__
// Five Valid modifiers.
#define GMOCK_INTERNAL_HAS_CONST(_Tuple) \
GMOCK_PP_HAS_COMMA(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_DETECT_CONST, ~, _Tuple))
#define GMOCK_INTERNAL_HAS_OVERRIDE(_Tuple) \
GMOCK_PP_HAS_COMMA( \
GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_DETECT_OVERRIDE, ~, _Tuple))
#define GMOCK_INTERNAL_HAS_FINAL(_Tuple) \
GMOCK_PP_HAS_COMMA(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_DETECT_FINAL, ~, _Tuple))
#define GMOCK_INTERNAL_GET_NOEXCEPT_SPEC(_Tuple) \
GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_NOEXCEPT_SPEC_IF_NOEXCEPT, ~, _Tuple)
#define GMOCK_INTERNAL_NOEXCEPT_SPEC_IF_NOEXCEPT(_i, _, _elem) \
GMOCK_PP_IF( \
GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_NOEXCEPT(_i, _, _elem)), \
_elem, )
#define GMOCK_INTERNAL_GET_REF_SPEC(_Tuple) \
GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_REF_SPEC_IF_REF, ~, _Tuple)
#define GMOCK_INTERNAL_REF_SPEC_IF_REF(_i, _, _elem) \
GMOCK_PP_IF(GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_REF(_i, _, _elem)), \
GMOCK_PP_CAT(GMOCK_INTERNAL_UNPACK_, _elem), )
#define GMOCK_INTERNAL_GET_CALLTYPE(_Tuple) \
GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GET_CALLTYPE_IMPL, ~, _Tuple)
#define GMOCK_INTERNAL_ASSERT_VALID_SPEC_ELEMENT(_i, _, _elem) \
static_assert( \
(GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_CONST(_i, _, _elem)) + \
GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_OVERRIDE(_i, _, _elem)) + \
GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_FINAL(_i, _, _elem)) + \
GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_NOEXCEPT(_i, _, _elem)) + \
GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_REF(_i, _, _elem)) + \
GMOCK_INTERNAL_IS_CALLTYPE(_elem)) == 1, \
GMOCK_PP_STRINGIZE( \
_elem) " cannot be recognized as a valid specification modifier.");
// Modifiers implementation.
#define GMOCK_INTERNAL_DETECT_CONST(_i, _, _elem) \
GMOCK_PP_CAT(GMOCK_INTERNAL_DETECT_CONST_I_, _elem)
#define GMOCK_INTERNAL_DETECT_CONST_I_const ,
#define GMOCK_INTERNAL_DETECT_OVERRIDE(_i, _, _elem) \
GMOCK_PP_CAT(GMOCK_INTERNAL_DETECT_OVERRIDE_I_, _elem)
#define GMOCK_INTERNAL_DETECT_OVERRIDE_I_override ,
#define GMOCK_INTERNAL_DETECT_FINAL(_i, _, _elem) \
GMOCK_PP_CAT(GMOCK_INTERNAL_DETECT_FINAL_I_, _elem)
#define GMOCK_INTERNAL_DETECT_FINAL_I_final ,
#define GMOCK_INTERNAL_DETECT_NOEXCEPT(_i, _, _elem) \
GMOCK_PP_CAT(GMOCK_INTERNAL_DETECT_NOEXCEPT_I_, _elem)
#define GMOCK_INTERNAL_DETECT_NOEXCEPT_I_noexcept ,
#define GMOCK_INTERNAL_DETECT_REF(_i, _, _elem) \
GMOCK_PP_CAT(GMOCK_INTERNAL_DETECT_REF_I_, _elem)
#define GMOCK_INTERNAL_DETECT_REF_I_ref ,
#define GMOCK_INTERNAL_UNPACK_ref(x) x
#define GMOCK_INTERNAL_GET_CALLTYPE_IMPL(_i, _, _elem) \
GMOCK_PP_IF(GMOCK_INTERNAL_IS_CALLTYPE(_elem), \
GMOCK_INTERNAL_GET_VALUE_CALLTYPE, GMOCK_PP_EMPTY) \
(_elem)
// TODO(iserna): GMOCK_INTERNAL_IS_CALLTYPE and
// GMOCK_INTERNAL_GET_VALUE_CALLTYPE needed more expansions to work on windows
// maybe they can be simplified somehow.
#define GMOCK_INTERNAL_IS_CALLTYPE(_arg) \
GMOCK_INTERNAL_IS_CALLTYPE_I( \
GMOCK_PP_CAT(GMOCK_INTERNAL_IS_CALLTYPE_HELPER_, _arg))
#define GMOCK_INTERNAL_IS_CALLTYPE_I(_arg) GMOCK_PP_IS_ENCLOSED_PARENS(_arg)
#define GMOCK_INTERNAL_GET_VALUE_CALLTYPE(_arg) \
GMOCK_INTERNAL_GET_VALUE_CALLTYPE_I( \
GMOCK_PP_CAT(GMOCK_INTERNAL_IS_CALLTYPE_HELPER_, _arg))
#define GMOCK_INTERNAL_GET_VALUE_CALLTYPE_I(_arg) \
GMOCK_PP_IDENTITY _arg
#define GMOCK_INTERNAL_IS_CALLTYPE_HELPER_Calltype
// Note: The use of `identity_t` here allows _Ret to represent return types that
// would normally need to be specified in a different way. For example, a method
// returning a function pointer must be written as
//
// fn_ptr_return_t (*method(method_args_t...))(fn_ptr_args_t...)
//
// But we only support placing the return type at the beginning. To handle this,
// we wrap all calls in identity_t, so that a declaration will be expanded to
//
// identity_t<fn_ptr_return_t (*)(fn_ptr_args_t...)> method(method_args_t...)
//
// This allows us to work around the syntactic oddities of function/method
// types.
#define GMOCK_INTERNAL_SIGNATURE(_Ret, _Args) \
::testing::internal::identity_t<GMOCK_PP_IF(GMOCK_PP_IS_BEGIN_PARENS(_Ret), \
GMOCK_PP_REMOVE_PARENS, \
GMOCK_PP_IDENTITY)(_Ret)>( \
GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GET_TYPE, _, _Args))
#define GMOCK_INTERNAL_GET_TYPE(_i, _, _elem) \
GMOCK_PP_COMMA_IF(_i) \
GMOCK_PP_IF(GMOCK_PP_IS_BEGIN_PARENS(_elem), GMOCK_PP_REMOVE_PARENS, \
GMOCK_PP_IDENTITY) \
(_elem)
#define GMOCK_INTERNAL_PARAMETER(_i, _Signature, _) \
GMOCK_PP_COMMA_IF(_i) \
GMOCK_INTERNAL_ARG_O(_i, GMOCK_PP_REMOVE_PARENS(_Signature)) \
gmock_a##_i
#define GMOCK_INTERNAL_FORWARD_ARG(_i, _Signature, _) \
GMOCK_PP_COMMA_IF(_i) \
::std::forward<GMOCK_INTERNAL_ARG_O( \
_i, GMOCK_PP_REMOVE_PARENS(_Signature))>(gmock_a##_i)
#define GMOCK_INTERNAL_MATCHER_PARAMETER(_i, _Signature, _) \
GMOCK_PP_COMMA_IF(_i) \
GMOCK_INTERNAL_MATCHER_O(_i, GMOCK_PP_REMOVE_PARENS(_Signature)) \
gmock_a##_i
#define GMOCK_INTERNAL_MATCHER_ARGUMENT(_i, _1, _2) \
GMOCK_PP_COMMA_IF(_i) \
gmock_a##_i
#define GMOCK_INTERNAL_A_MATCHER_ARGUMENT(_i, _Signature, _) \
GMOCK_PP_COMMA_IF(_i) \
::testing::A<GMOCK_INTERNAL_ARG_O(_i, GMOCK_PP_REMOVE_PARENS(_Signature))>()
#define GMOCK_INTERNAL_ARG_O(_i, ...) \
typename ::testing::internal::Function<__VA_ARGS__>::template Arg<_i>::type
#define GMOCK_INTERNAL_MATCHER_O(_i, ...) \
const ::testing::Matcher<typename ::testing::internal::Function< \
__VA_ARGS__>::template Arg<_i>::type>&
#define MOCK_METHOD0(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 0, __VA_ARGS__)
#define MOCK_METHOD1(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 1, __VA_ARGS__)
#define MOCK_METHOD2(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 2, __VA_ARGS__)
#define MOCK_METHOD3(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 3, __VA_ARGS__)
#define MOCK_METHOD4(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 4, __VA_ARGS__)
#define MOCK_METHOD5(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 5, __VA_ARGS__)
#define MOCK_METHOD6(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 6, __VA_ARGS__)
#define MOCK_METHOD7(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 7, __VA_ARGS__)
#define MOCK_METHOD8(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 8, __VA_ARGS__)
#define MOCK_METHOD9(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 9, __VA_ARGS__)
#define MOCK_METHOD10(m, ...) \
GMOCK_INTERNAL_MOCK_METHODN(, , m, 10, __VA_ARGS__)
#define MOCK_CONST_METHOD0(m, ...) \
GMOCK_INTERNAL_MOCK_METHODN(const, , m, 0, __VA_ARGS__)
#define MOCK_CONST_METHOD1(m, ...) \
GMOCK_INTERNAL_MOCK_METHODN(const, , m, 1, __VA_ARGS__)
#define MOCK_CONST_METHOD2(m, ...) \
GMOCK_INTERNAL_MOCK_METHODN(const, , m, 2, __VA_ARGS__)
#define MOCK_CONST_METHOD3(m, ...) \
GMOCK_INTERNAL_MOCK_METHODN(const, , m, 3, __VA_ARGS__)
#define MOCK_CONST_METHOD4(m, ...) \
GMOCK_INTERNAL_MOCK_METHODN(const, , m, 4, __VA_ARGS__)
#define MOCK_CONST_METHOD5(m, ...) \
GMOCK_INTERNAL_MOCK_METHODN(const, , m, 5, __VA_ARGS__)
#define MOCK_CONST_METHOD6(m, ...) \
GMOCK_INTERNAL_MOCK_METHODN(const, , m, 6, __VA_ARGS__)
#define MOCK_CONST_METHOD7(m, ...) \
GMOCK_INTERNAL_MOCK_METHODN(const, , m, 7, __VA_ARGS__)
#define MOCK_CONST_METHOD8(m, ...) \
GMOCK_INTERNAL_MOCK_METHODN(const, , m, 8, __VA_ARGS__)
#define MOCK_CONST_METHOD9(m, ...) \
GMOCK_INTERNAL_MOCK_METHODN(const, , m, 9, __VA_ARGS__)
#define MOCK_CONST_METHOD10(m, ...) \
GMOCK_INTERNAL_MOCK_METHODN(const, , m, 10, __VA_ARGS__)
#define MOCK_METHOD0_T(m, ...) MOCK_METHOD0(m, __VA_ARGS__)
#define MOCK_METHOD1_T(m, ...) MOCK_METHOD1(m, __VA_ARGS__)
#define MOCK_METHOD2_T(m, ...) MOCK_METHOD2(m, __VA_ARGS__)
#define MOCK_METHOD3_T(m, ...) MOCK_METHOD3(m, __VA_ARGS__)
#define MOCK_METHOD4_T(m, ...) MOCK_METHOD4(m, __VA_ARGS__)
#define MOCK_METHOD5_T(m, ...) MOCK_METHOD5(m, __VA_ARGS__)
#define MOCK_METHOD6_T(m, ...) MOCK_METHOD6(m, __VA_ARGS__)
#define MOCK_METHOD7_T(m, ...) MOCK_METHOD7(m, __VA_ARGS__)
#define MOCK_METHOD8_T(m, ...) MOCK_METHOD8(m, __VA_ARGS__)
#define MOCK_METHOD9_T(m, ...) MOCK_METHOD9(m, __VA_ARGS__)
#define MOCK_METHOD10_T(m, ...) MOCK_METHOD10(m, __VA_ARGS__)
#define MOCK_CONST_METHOD0_T(m, ...) MOCK_CONST_METHOD0(m, __VA_ARGS__)
#define MOCK_CONST_METHOD1_T(m, ...) MOCK_CONST_METHOD1(m, __VA_ARGS__)
#define MOCK_CONST_METHOD2_T(m, ...) MOCK_CONST_METHOD2(m, __VA_ARGS__)
#define MOCK_CONST_METHOD3_T(m, ...) MOCK_CONST_METHOD3(m, __VA_ARGS__)
#define MOCK_CONST_METHOD4_T(m, ...) MOCK_CONST_METHOD4(m, __VA_ARGS__)
#define MOCK_CONST_METHOD5_T(m, ...) MOCK_CONST_METHOD5(m, __VA_ARGS__)
#define MOCK_CONST_METHOD6_T(m, ...) MOCK_CONST_METHOD6(m, __VA_ARGS__)
#define MOCK_CONST_METHOD7_T(m, ...) MOCK_CONST_METHOD7(m, __VA_ARGS__)
#define MOCK_CONST_METHOD8_T(m, ...) MOCK_CONST_METHOD8(m, __VA_ARGS__)
#define MOCK_CONST_METHOD9_T(m, ...) MOCK_CONST_METHOD9(m, __VA_ARGS__)
#define MOCK_CONST_METHOD10_T(m, ...) MOCK_CONST_METHOD10(m, __VA_ARGS__)
#define MOCK_METHOD0_WITH_CALLTYPE(ct, m, ...) \
GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 0, __VA_ARGS__)
#define MOCK_METHOD1_WITH_CALLTYPE(ct, m, ...) \
GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 1, __VA_ARGS__)
#define MOCK_METHOD2_WITH_CALLTYPE(ct, m, ...) \
GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 2, __VA_ARGS__)
#define MOCK_METHOD3_WITH_CALLTYPE(ct, m, ...) \
GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 3, __VA_ARGS__)
#define MOCK_METHOD4_WITH_CALLTYPE(ct, m, ...) \
GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 4, __VA_ARGS__)
#define MOCK_METHOD5_WITH_CALLTYPE(ct, m, ...) \
GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 5, __VA_ARGS__)
#define MOCK_METHOD6_WITH_CALLTYPE(ct, m, ...) \
GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 6, __VA_ARGS__)
#define MOCK_METHOD7_WITH_CALLTYPE(ct, m, ...) \
GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 7, __VA_ARGS__)
#define MOCK_METHOD8_WITH_CALLTYPE(ct, m, ...) \
GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 8, __VA_ARGS__)
#define MOCK_METHOD9_WITH_CALLTYPE(ct, m, ...) \
GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 9, __VA_ARGS__)
#define MOCK_METHOD10_WITH_CALLTYPE(ct, m, ...) \
GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 10, __VA_ARGS__)
#define MOCK_CONST_METHOD0_WITH_CALLTYPE(ct, m, ...) \
GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 0, __VA_ARGS__)
#define MOCK_CONST_METHOD1_WITH_CALLTYPE(ct, m, ...) \
GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 1, __VA_ARGS__)
#define MOCK_CONST_METHOD2_WITH_CALLTYPE(ct, m, ...) \
GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 2, __VA_ARGS__)
#define MOCK_CONST_METHOD3_WITH_CALLTYPE(ct, m, ...) \
GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 3, __VA_ARGS__)
#define MOCK_CONST_METHOD4_WITH_CALLTYPE(ct, m, ...) \
GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 4, __VA_ARGS__)
#define MOCK_CONST_METHOD5_WITH_CALLTYPE(ct, m, ...) \
GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 5, __VA_ARGS__)
#define MOCK_CONST_METHOD6_WITH_CALLTYPE(ct, m, ...) \
GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 6, __VA_ARGS__)
#define MOCK_CONST_METHOD7_WITH_CALLTYPE(ct, m, ...) \
GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 7, __VA_ARGS__)
#define MOCK_CONST_METHOD8_WITH_CALLTYPE(ct, m, ...) \
GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 8, __VA_ARGS__)
#define MOCK_CONST_METHOD9_WITH_CALLTYPE(ct, m, ...) \
GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 9, __VA_ARGS__)
#define MOCK_CONST_METHOD10_WITH_CALLTYPE(ct, m, ...) \
GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 10, __VA_ARGS__)
#define MOCK_METHOD0_T_WITH_CALLTYPE(ct, m, ...) \
MOCK_METHOD0_WITH_CALLTYPE(ct, m, __VA_ARGS__)
#define MOCK_METHOD1_T_WITH_CALLTYPE(ct, m, ...) \
MOCK_METHOD1_WITH_CALLTYPE(ct, m, __VA_ARGS__)
#define MOCK_METHOD2_T_WITH_CALLTYPE(ct, m, ...) \
MOCK_METHOD2_WITH_CALLTYPE(ct, m, __VA_ARGS__)
#define MOCK_METHOD3_T_WITH_CALLTYPE(ct, m, ...) \
MOCK_METHOD3_WITH_CALLTYPE(ct, m, __VA_ARGS__)
#define MOCK_METHOD4_T_WITH_CALLTYPE(ct, m, ...) \
MOCK_METHOD4_WITH_CALLTYPE(ct, m, __VA_ARGS__)
#define MOCK_METHOD5_T_WITH_CALLTYPE(ct, m, ...) \
MOCK_METHOD5_WITH_CALLTYPE(ct, m, __VA_ARGS__)
#define MOCK_METHOD6_T_WITH_CALLTYPE(ct, m, ...) \
MOCK_METHOD6_WITH_CALLTYPE(ct, m, __VA_ARGS__)
#define MOCK_METHOD7_T_WITH_CALLTYPE(ct, m, ...) \
MOCK_METHOD7_WITH_CALLTYPE(ct, m, __VA_ARGS__)
#define MOCK_METHOD8_T_WITH_CALLTYPE(ct, m, ...) \
MOCK_METHOD8_WITH_CALLTYPE(ct, m, __VA_ARGS__)
#define MOCK_METHOD9_T_WITH_CALLTYPE(ct, m, ...) \
MOCK_METHOD9_WITH_CALLTYPE(ct, m, __VA_ARGS__)
#define MOCK_METHOD10_T_WITH_CALLTYPE(ct, m, ...) \
MOCK_METHOD10_WITH_CALLTYPE(ct, m, __VA_ARGS__)
#define MOCK_CONST_METHOD0_T_WITH_CALLTYPE(ct, m, ...) \
MOCK_CONST_METHOD0_WITH_CALLTYPE(ct, m, __VA_ARGS__)
#define MOCK_CONST_METHOD1_T_WITH_CALLTYPE(ct, m, ...) \
MOCK_CONST_METHOD1_WITH_CALLTYPE(ct, m, __VA_ARGS__)
#define MOCK_CONST_METHOD2_T_WITH_CALLTYPE(ct, m, ...) \
MOCK_CONST_METHOD2_WITH_CALLTYPE(ct, m, __VA_ARGS__)
#define MOCK_CONST_METHOD3_T_WITH_CALLTYPE(ct, m, ...) \
MOCK_CONST_METHOD3_WITH_CALLTYPE(ct, m, __VA_ARGS__)
#define MOCK_CONST_METHOD4_T_WITH_CALLTYPE(ct, m, ...) \
MOCK_CONST_METHOD4_WITH_CALLTYPE(ct, m, __VA_ARGS__)
#define MOCK_CONST_METHOD5_T_WITH_CALLTYPE(ct, m, ...) \
MOCK_CONST_METHOD5_WITH_CALLTYPE(ct, m, __VA_ARGS__)
#define MOCK_CONST_METHOD6_T_WITH_CALLTYPE(ct, m, ...) \
MOCK_CONST_METHOD6_WITH_CALLTYPE(ct, m, __VA_ARGS__)
#define MOCK_CONST_METHOD7_T_WITH_CALLTYPE(ct, m, ...) \
MOCK_CONST_METHOD7_WITH_CALLTYPE(ct, m, __VA_ARGS__)
#define MOCK_CONST_METHOD8_T_WITH_CALLTYPE(ct, m, ...) \
MOCK_CONST_METHOD8_WITH_CALLTYPE(ct, m, __VA_ARGS__)
#define MOCK_CONST_METHOD9_T_WITH_CALLTYPE(ct, m, ...) \
MOCK_CONST_METHOD9_WITH_CALLTYPE(ct, m, __VA_ARGS__)
#define MOCK_CONST_METHOD10_T_WITH_CALLTYPE(ct, m, ...) \
MOCK_CONST_METHOD10_WITH_CALLTYPE(ct, m, __VA_ARGS__)
#define GMOCK_INTERNAL_MOCK_METHODN(constness, ct, Method, args_num, ...) \
GMOCK_INTERNAL_ASSERT_VALID_SIGNATURE( \
args_num, ::testing::internal::identity_t<__VA_ARGS__>); \
GMOCK_INTERNAL_MOCK_METHOD_IMPL( \
args_num, Method, GMOCK_PP_NARG0(constness), 0, 0, , ct, , \
(::testing::internal::identity_t<__VA_ARGS__>))
#define GMOCK_MOCKER_(arity, constness, Method) \
GTEST_CONCAT_TOKEN_(gmock##constness##arity##_##Method##_, __LINE__)
#endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_FUNCTION_MOCKER_H_
// Copyright 2007, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Google Mock - a framework for writing C++ mock classes.
//
// This file implements some commonly used variadic actions.
// GOOGLETEST_CM0002 DO NOT DELETE
#ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_ACTIONS_H_
#define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_ACTIONS_H_
#include <memory>
#include <utility>
// Include any custom callback actions added by the local installation.
// GOOGLETEST_CM0002 DO NOT DELETE
#ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_GENERATED_ACTIONS_H_
#define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_GENERATED_ACTIONS_H_
#endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_GENERATED_ACTIONS_H_
// Sometimes you want to give an action explicit template parameters
// that cannot be inferred from its value parameters. ACTION() and
// ACTION_P*() don't support that. ACTION_TEMPLATE() remedies that
// and can be viewed as an extension to ACTION() and ACTION_P*().
//
// The syntax:
//
// ACTION_TEMPLATE(ActionName,
// HAS_m_TEMPLATE_PARAMS(kind1, name1, ..., kind_m, name_m),
// AND_n_VALUE_PARAMS(p1, ..., p_n)) { statements; }
//
// defines an action template that takes m explicit template
// parameters and n value parameters. name_i is the name of the i-th
// template parameter, and kind_i specifies whether it's a typename,
// an integral constant, or a template. p_i is the name of the i-th
// value parameter.
//
// Example:
//
// // DuplicateArg<k, T>(output) converts the k-th argument of the mock
// // function to type T and copies it to *output.
// ACTION_TEMPLATE(DuplicateArg,
// HAS_2_TEMPLATE_PARAMS(int, k, typename, T),
// AND_1_VALUE_PARAMS(output)) {
// *output = T(::std::get<k>(args));
// }
// ...
// int n;
// EXPECT_CALL(mock, Foo(_, _))
// .WillOnce(DuplicateArg<1, unsigned char>(&n));
//
// To create an instance of an action template, write:
//
// ActionName<t1, ..., t_m>(v1, ..., v_n)
//
// where the ts are the template arguments and the vs are the value
// arguments. The value argument types are inferred by the compiler.
// If you want to explicitly specify the value argument types, you can
// provide additional template arguments:
//
// ActionName<t1, ..., t_m, u1, ..., u_k>(v1, ..., v_n)
//
// where u_i is the desired type of v_i.
//
// ACTION_TEMPLATE and ACTION/ACTION_P* can be overloaded on the
// number of value parameters, but not on the number of template
// parameters. Without the restriction, the meaning of the following
// is unclear:
//
// OverloadedAction<int, bool>(x);
//
// Are we using a single-template-parameter action where 'bool' refers
// to the type of x, or are we using a two-template-parameter action
// where the compiler is asked to infer the type of x?
//
// Implementation notes:
//
// GMOCK_INTERNAL_*_HAS_m_TEMPLATE_PARAMS and
// GMOCK_INTERNAL_*_AND_n_VALUE_PARAMS are internal macros for
// implementing ACTION_TEMPLATE. The main trick we use is to create
// new macro invocations when expanding a macro. For example, we have
//
// #define ACTION_TEMPLATE(name, template_params, value_params)
// ... GMOCK_INTERNAL_DECL_##template_params ...
//
// which causes ACTION_TEMPLATE(..., HAS_1_TEMPLATE_PARAMS(typename, T), ...)
// to expand to
//
// ... GMOCK_INTERNAL_DECL_HAS_1_TEMPLATE_PARAMS(typename, T) ...
//
// Since GMOCK_INTERNAL_DECL_HAS_1_TEMPLATE_PARAMS is a macro, the
// preprocessor will continue to expand it to
//
// ... typename T ...
//
// This technique conforms to the C++ standard and is portable. It
// allows us to implement action templates using O(N) code, where N is
// the maximum number of template/value parameters supported. Without
// using it, we'd have to devote O(N^2) amount of code to implement all
// combinations of m and n.
// Declares the template parameters.
#define GMOCK_INTERNAL_DECL_HAS_1_TEMPLATE_PARAMS(kind0, name0) kind0 name0
#define GMOCK_INTERNAL_DECL_HAS_2_TEMPLATE_PARAMS(kind0, name0, kind1, \
name1) kind0 name0, kind1 name1
#define GMOCK_INTERNAL_DECL_HAS_3_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
kind2, name2) kind0 name0, kind1 name1, kind2 name2
#define GMOCK_INTERNAL_DECL_HAS_4_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
kind2, name2, kind3, name3) kind0 name0, kind1 name1, kind2 name2, \
kind3 name3
#define GMOCK_INTERNAL_DECL_HAS_5_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
kind2, name2, kind3, name3, kind4, name4) kind0 name0, kind1 name1, \
kind2 name2, kind3 name3, kind4 name4
#define GMOCK_INTERNAL_DECL_HAS_6_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
kind2, name2, kind3, name3, kind4, name4, kind5, name5) kind0 name0, \
kind1 name1, kind2 name2, kind3 name3, kind4 name4, kind5 name5
#define GMOCK_INTERNAL_DECL_HAS_7_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \
name6) kind0 name0, kind1 name1, kind2 name2, kind3 name3, kind4 name4, \
kind5 name5, kind6 name6
#define GMOCK_INTERNAL_DECL_HAS_8_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \
kind7, name7) kind0 name0, kind1 name1, kind2 name2, kind3 name3, \
kind4 name4, kind5 name5, kind6 name6, kind7 name7
#define GMOCK_INTERNAL_DECL_HAS_9_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \
kind7, name7, kind8, name8) kind0 name0, kind1 name1, kind2 name2, \
kind3 name3, kind4 name4, kind5 name5, kind6 name6, kind7 name7, \
kind8 name8
#define GMOCK_INTERNAL_DECL_HAS_10_TEMPLATE_PARAMS(kind0, name0, kind1, \
name1, kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \
name6, kind7, name7, kind8, name8, kind9, name9) kind0 name0, \
kind1 name1, kind2 name2, kind3 name3, kind4 name4, kind5 name5, \
kind6 name6, kind7 name7, kind8 name8, kind9 name9
// Lists the template parameters.
#define GMOCK_INTERNAL_LIST_HAS_1_TEMPLATE_PARAMS(kind0, name0) name0
#define GMOCK_INTERNAL_LIST_HAS_2_TEMPLATE_PARAMS(kind0, name0, kind1, \
name1) name0, name1
#define GMOCK_INTERNAL_LIST_HAS_3_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
kind2, name2) name0, name1, name2
#define GMOCK_INTERNAL_LIST_HAS_4_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
kind2, name2, kind3, name3) name0, name1, name2, name3
#define GMOCK_INTERNAL_LIST_HAS_5_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
kind2, name2, kind3, name3, kind4, name4) name0, name1, name2, name3, \
name4
#define GMOCK_INTERNAL_LIST_HAS_6_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
kind2, name2, kind3, name3, kind4, name4, kind5, name5) name0, name1, \
name2, name3, name4, name5
#define GMOCK_INTERNAL_LIST_HAS_7_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \
name6) name0, name1, name2, name3, name4, name5, name6
#define GMOCK_INTERNAL_LIST_HAS_8_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \
kind7, name7) name0, name1, name2, name3, name4, name5, name6, name7
#define GMOCK_INTERNAL_LIST_HAS_9_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \
kind7, name7, kind8, name8) name0, name1, name2, name3, name4, name5, \
name6, name7, name8
#define GMOCK_INTERNAL_LIST_HAS_10_TEMPLATE_PARAMS(kind0, name0, kind1, \
name1, kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \
name6, kind7, name7, kind8, name8, kind9, name9) name0, name1, name2, \
name3, name4, name5, name6, name7, name8, name9
// Declares the types of value parameters.
#define GMOCK_INTERNAL_DECL_TYPE_AND_0_VALUE_PARAMS()
#define GMOCK_INTERNAL_DECL_TYPE_AND_1_VALUE_PARAMS(p0) , typename p0##_type
#define GMOCK_INTERNAL_DECL_TYPE_AND_2_VALUE_PARAMS(p0, p1) , \
typename p0##_type, typename p1##_type
#define GMOCK_INTERNAL_DECL_TYPE_AND_3_VALUE_PARAMS(p0, p1, p2) , \
typename p0##_type, typename p1##_type, typename p2##_type
#define GMOCK_INTERNAL_DECL_TYPE_AND_4_VALUE_PARAMS(p0, p1, p2, p3) , \
typename p0##_type, typename p1##_type, typename p2##_type, \
typename p3##_type
#define GMOCK_INTERNAL_DECL_TYPE_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) , \
typename p0##_type, typename p1##_type, typename p2##_type, \
typename p3##_type, typename p4##_type
#define GMOCK_INTERNAL_DECL_TYPE_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) , \
typename p0##_type, typename p1##_type, typename p2##_type, \
typename p3##_type, typename p4##_type, typename p5##_type
#define GMOCK_INTERNAL_DECL_TYPE_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
p6) , typename p0##_type, typename p1##_type, typename p2##_type, \
typename p3##_type, typename p4##_type, typename p5##_type, \
typename p6##_type
#define GMOCK_INTERNAL_DECL_TYPE_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
p6, p7) , typename p0##_type, typename p1##_type, typename p2##_type, \
typename p3##_type, typename p4##_type, typename p5##_type, \
typename p6##_type, typename p7##_type
#define GMOCK_INTERNAL_DECL_TYPE_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
p6, p7, p8) , typename p0##_type, typename p1##_type, typename p2##_type, \
typename p3##_type, typename p4##_type, typename p5##_type, \
typename p6##_type, typename p7##_type, typename p8##_type
#define GMOCK_INTERNAL_DECL_TYPE_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
p6, p7, p8, p9) , typename p0##_type, typename p1##_type, \
typename p2##_type, typename p3##_type, typename p4##_type, \
typename p5##_type, typename p6##_type, typename p7##_type, \
typename p8##_type, typename p9##_type
// Initializes the value parameters.
#define GMOCK_INTERNAL_INIT_AND_0_VALUE_PARAMS()\
()
#define GMOCK_INTERNAL_INIT_AND_1_VALUE_PARAMS(p0)\
(p0##_type gmock_p0) : p0(::std::move(gmock_p0))
#define GMOCK_INTERNAL_INIT_AND_2_VALUE_PARAMS(p0, p1)\
(p0##_type gmock_p0, p1##_type gmock_p1) : p0(::std::move(gmock_p0)), \
p1(::std::move(gmock_p1))
#define GMOCK_INTERNAL_INIT_AND_3_VALUE_PARAMS(p0, p1, p2)\
(p0##_type gmock_p0, p1##_type gmock_p1, \
p2##_type gmock_p2) : p0(::std::move(gmock_p0)), \
p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2))
#define GMOCK_INTERNAL_INIT_AND_4_VALUE_PARAMS(p0, p1, p2, p3)\
(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
p3##_type gmock_p3) : p0(::std::move(gmock_p0)), \
p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \
p3(::std::move(gmock_p3))
#define GMOCK_INTERNAL_INIT_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4)\
(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
p3##_type gmock_p3, p4##_type gmock_p4) : p0(::std::move(gmock_p0)), \
p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \
p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4))
#define GMOCK_INTERNAL_INIT_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5)\
(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
p3##_type gmock_p3, p4##_type gmock_p4, \
p5##_type gmock_p5) : p0(::std::move(gmock_p0)), \
p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \
p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)), \
p5(::std::move(gmock_p5))
#define GMOCK_INTERNAL_INIT_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6)\
(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \
p6##_type gmock_p6) : p0(::std::move(gmock_p0)), \
p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \
p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)), \
p5(::std::move(gmock_p5)), p6(::std::move(gmock_p6))
#define GMOCK_INTERNAL_INIT_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, p7)\
(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \
p6##_type gmock_p6, p7##_type gmock_p7) : p0(::std::move(gmock_p0)), \
p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \
p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)), \
p5(::std::move(gmock_p5)), p6(::std::move(gmock_p6)), \
p7(::std::move(gmock_p7))
#define GMOCK_INTERNAL_INIT_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
p7, p8)\
(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \
p6##_type gmock_p6, p7##_type gmock_p7, \
p8##_type gmock_p8) : p0(::std::move(gmock_p0)), \
p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \
p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)), \
p5(::std::move(gmock_p5)), p6(::std::move(gmock_p6)), \
p7(::std::move(gmock_p7)), p8(::std::move(gmock_p8))
#define GMOCK_INTERNAL_INIT_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
p7, p8, p9)\
(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \
p6##_type gmock_p6, p7##_type gmock_p7, p8##_type gmock_p8, \
p9##_type gmock_p9) : p0(::std::move(gmock_p0)), \
p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \
p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)), \
p5(::std::move(gmock_p5)), p6(::std::move(gmock_p6)), \
p7(::std::move(gmock_p7)), p8(::std::move(gmock_p8)), \
p9(::std::move(gmock_p9))
// Defines the copy constructor
#define GMOCK_INTERNAL_DEFN_COPY_AND_0_VALUE_PARAMS() \
{} // Avoid https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82134
#define GMOCK_INTERNAL_DEFN_COPY_AND_1_VALUE_PARAMS(...) = default;
#define GMOCK_INTERNAL_DEFN_COPY_AND_2_VALUE_PARAMS(...) = default;
#define GMOCK_INTERNAL_DEFN_COPY_AND_3_VALUE_PARAMS(...) = default;
#define GMOCK_INTERNAL_DEFN_COPY_AND_4_VALUE_PARAMS(...) = default;
#define GMOCK_INTERNAL_DEFN_COPY_AND_5_VALUE_PARAMS(...) = default;
#define GMOCK_INTERNAL_DEFN_COPY_AND_6_VALUE_PARAMS(...) = default;
#define GMOCK_INTERNAL_DEFN_COPY_AND_7_VALUE_PARAMS(...) = default;
#define GMOCK_INTERNAL_DEFN_COPY_AND_8_VALUE_PARAMS(...) = default;
#define GMOCK_INTERNAL_DEFN_COPY_AND_9_VALUE_PARAMS(...) = default;
#define GMOCK_INTERNAL_DEFN_COPY_AND_10_VALUE_PARAMS(...) = default;
// Declares the fields for storing the value parameters.
#define GMOCK_INTERNAL_DEFN_AND_0_VALUE_PARAMS()
#define GMOCK_INTERNAL_DEFN_AND_1_VALUE_PARAMS(p0) p0##_type p0;
#define GMOCK_INTERNAL_DEFN_AND_2_VALUE_PARAMS(p0, p1) p0##_type p0; \
p1##_type p1;
#define GMOCK_INTERNAL_DEFN_AND_3_VALUE_PARAMS(p0, p1, p2) p0##_type p0; \
p1##_type p1; p2##_type p2;
#define GMOCK_INTERNAL_DEFN_AND_4_VALUE_PARAMS(p0, p1, p2, p3) p0##_type p0; \
p1##_type p1; p2##_type p2; p3##_type p3;
#define GMOCK_INTERNAL_DEFN_AND_5_VALUE_PARAMS(p0, p1, p2, p3, \
p4) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4;
#define GMOCK_INTERNAL_DEFN_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, \
p5) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4; \
p5##_type p5;
#define GMOCK_INTERNAL_DEFN_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
p6) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4; \
p5##_type p5; p6##_type p6;
#define GMOCK_INTERNAL_DEFN_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
p7) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4; \
p5##_type p5; p6##_type p6; p7##_type p7;
#define GMOCK_INTERNAL_DEFN_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
p7, p8) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; \
p4##_type p4; p5##_type p5; p6##_type p6; p7##_type p7; p8##_type p8;
#define GMOCK_INTERNAL_DEFN_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
p7, p8, p9) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; \
p4##_type p4; p5##_type p5; p6##_type p6; p7##_type p7; p8##_type p8; \
p9##_type p9;
// Lists the value parameters.
#define GMOCK_INTERNAL_LIST_AND_0_VALUE_PARAMS()
#define GMOCK_INTERNAL_LIST_AND_1_VALUE_PARAMS(p0) p0
#define GMOCK_INTERNAL_LIST_AND_2_VALUE_PARAMS(p0, p1) p0, p1
#define GMOCK_INTERNAL_LIST_AND_3_VALUE_PARAMS(p0, p1, p2) p0, p1, p2
#define GMOCK_INTERNAL_LIST_AND_4_VALUE_PARAMS(p0, p1, p2, p3) p0, p1, p2, p3
#define GMOCK_INTERNAL_LIST_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) p0, p1, \
p2, p3, p4
#define GMOCK_INTERNAL_LIST_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) p0, \
p1, p2, p3, p4, p5
#define GMOCK_INTERNAL_LIST_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
p6) p0, p1, p2, p3, p4, p5, p6
#define GMOCK_INTERNAL_LIST_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
p7) p0, p1, p2, p3, p4, p5, p6, p7
#define GMOCK_INTERNAL_LIST_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
p7, p8) p0, p1, p2, p3, p4, p5, p6, p7, p8
#define GMOCK_INTERNAL_LIST_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
p7, p8, p9) p0, p1, p2, p3, p4, p5, p6, p7, p8, p9
// Lists the value parameter types.
#define GMOCK_INTERNAL_LIST_TYPE_AND_0_VALUE_PARAMS()
#define GMOCK_INTERNAL_LIST_TYPE_AND_1_VALUE_PARAMS(p0) , p0##_type
#define GMOCK_INTERNAL_LIST_TYPE_AND_2_VALUE_PARAMS(p0, p1) , p0##_type, \
p1##_type
#define GMOCK_INTERNAL_LIST_TYPE_AND_3_VALUE_PARAMS(p0, p1, p2) , p0##_type, \
p1##_type, p2##_type
#define GMOCK_INTERNAL_LIST_TYPE_AND_4_VALUE_PARAMS(p0, p1, p2, p3) , \
p0##_type, p1##_type, p2##_type, p3##_type
#define GMOCK_INTERNAL_LIST_TYPE_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) , \
p0##_type, p1##_type, p2##_type, p3##_type, p4##_type
#define GMOCK_INTERNAL_LIST_TYPE_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) , \
p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, p5##_type
#define GMOCK_INTERNAL_LIST_TYPE_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
p6) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, p5##_type, \
p6##_type
#define GMOCK_INTERNAL_LIST_TYPE_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
p6, p7) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \
p5##_type, p6##_type, p7##_type
#define GMOCK_INTERNAL_LIST_TYPE_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
p6, p7, p8) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \
p5##_type, p6##_type, p7##_type, p8##_type
#define GMOCK_INTERNAL_LIST_TYPE_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
p6, p7, p8, p9) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \
p5##_type, p6##_type, p7##_type, p8##_type, p9##_type
// Declares the value parameters.
#define GMOCK_INTERNAL_DECL_AND_0_VALUE_PARAMS()
#define GMOCK_INTERNAL_DECL_AND_1_VALUE_PARAMS(p0) p0##_type p0
#define GMOCK_INTERNAL_DECL_AND_2_VALUE_PARAMS(p0, p1) p0##_type p0, \
p1##_type p1
#define GMOCK_INTERNAL_DECL_AND_3_VALUE_PARAMS(p0, p1, p2) p0##_type p0, \
p1##_type p1, p2##_type p2
#define GMOCK_INTERNAL_DECL_AND_4_VALUE_PARAMS(p0, p1, p2, p3) p0##_type p0, \
p1##_type p1, p2##_type p2, p3##_type p3
#define GMOCK_INTERNAL_DECL_AND_5_VALUE_PARAMS(p0, p1, p2, p3, \
p4) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4
#define GMOCK_INTERNAL_DECL_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, \
p5) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4, \
p5##_type p5
#define GMOCK_INTERNAL_DECL_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
p6) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4, \
p5##_type p5, p6##_type p6
#define GMOCK_INTERNAL_DECL_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
p7) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4, \
p5##_type p5, p6##_type p6, p7##_type p7
#define GMOCK_INTERNAL_DECL_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
p7, p8) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \
p4##_type p4, p5##_type p5, p6##_type p6, p7##_type p7, p8##_type p8
#define GMOCK_INTERNAL_DECL_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
p7, p8, p9) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \
p4##_type p4, p5##_type p5, p6##_type p6, p7##_type p7, p8##_type p8, \
p9##_type p9
// The suffix of the class template implementing the action template.
#define GMOCK_INTERNAL_COUNT_AND_0_VALUE_PARAMS()
#define GMOCK_INTERNAL_COUNT_AND_1_VALUE_PARAMS(p0) P
#define GMOCK_INTERNAL_COUNT_AND_2_VALUE_PARAMS(p0, p1) P2
#define GMOCK_INTERNAL_COUNT_AND_3_VALUE_PARAMS(p0, p1, p2) P3
#define GMOCK_INTERNAL_COUNT_AND_4_VALUE_PARAMS(p0, p1, p2, p3) P4
#define GMOCK_INTERNAL_COUNT_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) P5
#define GMOCK_INTERNAL_COUNT_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) P6
#define GMOCK_INTERNAL_COUNT_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6) P7
#define GMOCK_INTERNAL_COUNT_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
p7) P8
#define GMOCK_INTERNAL_COUNT_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
p7, p8) P9
#define GMOCK_INTERNAL_COUNT_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
p7, p8, p9) P10
// The name of the class template implementing the action template.
#define GMOCK_ACTION_CLASS_(name, value_params)\
GTEST_CONCAT_TOKEN_(name##Action, GMOCK_INTERNAL_COUNT_##value_params)
#define ACTION_TEMPLATE(name, template_params, value_params) \
template <GMOCK_INTERNAL_DECL_##template_params \
GMOCK_INTERNAL_DECL_TYPE_##value_params> \
class GMOCK_ACTION_CLASS_(name, value_params) { \
public: \
explicit GMOCK_ACTION_CLASS_(name, value_params)( \
GMOCK_INTERNAL_DECL_##value_params) \
GMOCK_PP_IF(GMOCK_PP_IS_EMPTY(GMOCK_INTERNAL_COUNT_##value_params), \
= default; , \
: impl_(std::make_shared<gmock_Impl>( \
GMOCK_INTERNAL_LIST_##value_params)) { }) \
GMOCK_ACTION_CLASS_(name, value_params)( \
const GMOCK_ACTION_CLASS_(name, value_params)&) noexcept \
GMOCK_INTERNAL_DEFN_COPY_##value_params \
GMOCK_ACTION_CLASS_(name, value_params)( \
GMOCK_ACTION_CLASS_(name, value_params)&&) noexcept \
GMOCK_INTERNAL_DEFN_COPY_##value_params \
template <typename F> \
operator ::testing::Action<F>() const { \
return GMOCK_PP_IF( \
GMOCK_PP_IS_EMPTY(GMOCK_INTERNAL_COUNT_##value_params), \
(::testing::internal::MakeAction<F, gmock_Impl>()), \
(::testing::internal::MakeAction<F>(impl_))); \
} \
private: \
class gmock_Impl { \
public: \
explicit gmock_Impl GMOCK_INTERNAL_INIT_##value_params {} \
template <typename function_type, typename return_type, \
typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \
GMOCK_INTERNAL_DEFN_##value_params \
}; \
GMOCK_PP_IF(GMOCK_PP_IS_EMPTY(GMOCK_INTERNAL_COUNT_##value_params), \
, std::shared_ptr<const gmock_Impl> impl_;) \
}; \
template <GMOCK_INTERNAL_DECL_##template_params \
GMOCK_INTERNAL_DECL_TYPE_##value_params> \
GMOCK_ACTION_CLASS_(name, value_params)< \
GMOCK_INTERNAL_LIST_##template_params \
GMOCK_INTERNAL_LIST_TYPE_##value_params> name( \
GMOCK_INTERNAL_DECL_##value_params) GTEST_MUST_USE_RESULT_; \
template <GMOCK_INTERNAL_DECL_##template_params \
GMOCK_INTERNAL_DECL_TYPE_##value_params> \
inline GMOCK_ACTION_CLASS_(name, value_params)< \
GMOCK_INTERNAL_LIST_##template_params \
GMOCK_INTERNAL_LIST_TYPE_##value_params> name( \
GMOCK_INTERNAL_DECL_##value_params) { \
return GMOCK_ACTION_CLASS_(name, value_params)< \
GMOCK_INTERNAL_LIST_##template_params \
GMOCK_INTERNAL_LIST_TYPE_##value_params>( \
GMOCK_INTERNAL_LIST_##value_params); \
} \
template <GMOCK_INTERNAL_DECL_##template_params \
GMOCK_INTERNAL_DECL_TYPE_##value_params> \
template <typename function_type, typename return_type, typename args_type, \
GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
return_type GMOCK_ACTION_CLASS_(name, value_params)< \
GMOCK_INTERNAL_LIST_##template_params \
GMOCK_INTERNAL_LIST_TYPE_##value_params>::gmock_Impl::gmock_PerformImpl( \
GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
namespace testing {
// The ACTION*() macros trigger warning C4100 (unreferenced formal
// parameter) in MSVC with -W4. Unfortunately they cannot be fixed in
// the macro definition, as the warnings are generated when the macro
// is expanded and macro expansion cannot contain #pragma. Therefore
// we suppress them here.
#ifdef _MSC_VER
# pragma warning(push)
# pragma warning(disable:4100)
#endif
namespace internal {
// internal::InvokeArgument - a helper for InvokeArgument action.
// The basic overloads are provided here for generic functors.
// Overloads for other custom-callables are provided in the
// internal/custom/gmock-generated-actions.h header.
template <typename F, typename... Args>
auto InvokeArgument(F f, Args... args) -> decltype(f(args...)) {
return f(args...);
}
template <std::size_t index, typename... Params>
struct InvokeArgumentAction {
template <typename... Args>
auto operator()(Args&&... args) const -> decltype(internal::InvokeArgument(
std::get<index>(std::forward_as_tuple(std::forward<Args>(args)...)),
std::declval<const Params&>()...)) {
internal::FlatTuple<Args&&...> args_tuple(FlatTupleConstructTag{},
std::forward<Args>(args)...);
return params.Apply([&](const Params&... unpacked_params) {
auto&& callable = args_tuple.template Get<index>();
return internal::InvokeArgument(
std::forward<decltype(callable)>(callable), unpacked_params...);
});
}
internal::FlatTuple<Params...> params;
};
} // namespace internal
// The InvokeArgument<N>(a1, a2, ..., a_k) action invokes the N-th
// (0-based) argument, which must be a k-ary callable, of the mock
// function, with arguments a1, a2, ..., a_k.
//
// Notes:
//
// 1. The arguments are passed by value by default. If you need to
// pass an argument by reference, wrap it inside std::ref(). For
// example,
//
// InvokeArgument<1>(5, string("Hello"), std::ref(foo))
//
// passes 5 and string("Hello") by value, and passes foo by
// reference.
//
// 2. If the callable takes an argument by reference but std::ref() is
// not used, it will receive the reference to a copy of the value,
// instead of the original value. For example, when the 0-th
// argument of the mock function takes a const string&, the action
//
// InvokeArgument<0>(string("Hello"))
//
// makes a copy of the temporary string("Hello") object and passes a
// reference of the copy, instead of the original temporary object,
// to the callable. This makes it easy for a user to define an
// InvokeArgument action from temporary values and have it performed
// later.
template <std::size_t index, typename... Params>
internal::InvokeArgumentAction<index, typename std::decay<Params>::type...>
InvokeArgument(Params&&... params) {
return {internal::FlatTuple<typename std::decay<Params>::type...>(
internal::FlatTupleConstructTag{}, std::forward<Params>(params)...)};
}
#ifdef _MSC_VER
# pragma warning(pop)
#endif
} // namespace testing
#endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_ACTIONS_H_
// Copyright 2013, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Google Mock - a framework for writing C++ mock classes.
//
// This file implements some matchers that depend on gmock-matchers.h.
//
// Note that tests are implemented in gmock-matchers_test.cc rather than
// gmock-more-matchers-test.cc.
// GOOGLETEST_CM0002 DO NOT DELETE
#ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_MATCHERS_H_
#define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_MATCHERS_H_
namespace testing {
// Silence C4100 (unreferenced formal
// parameter) for MSVC
#ifdef _MSC_VER
# pragma warning(push)
# pragma warning(disable:4100)
#if (_MSC_VER == 1900)
// and silence C4800 (C4800: 'int *const ': forcing value
// to bool 'true' or 'false') for MSVC 14
# pragma warning(disable:4800)
#endif
#endif
// Defines a matcher that matches an empty container. The container must
// support both size() and empty(), which all STL-like containers provide.
MATCHER(IsEmpty, negation ? "isn't empty" : "is empty") {
if (arg.empty()) {
return true;
}
*result_listener << "whose size is " << arg.size();
return false;
}
// Define a matcher that matches a value that evaluates in boolean
// context to true. Useful for types that define "explicit operator
// bool" operators and so can't be compared for equality with true
// and false.
MATCHER(IsTrue, negation ? "is false" : "is true") {
return static_cast<bool>(arg);
}
// Define a matcher that matches a value that evaluates in boolean
// context to false. Useful for types that define "explicit operator
// bool" operators and so can't be compared for equality with true
// and false.
MATCHER(IsFalse, negation ? "is true" : "is false") {
return !static_cast<bool>(arg);
}
#ifdef _MSC_VER
# pragma warning(pop)
#endif
} // namespace testing
#endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_MATCHERS_H_
// Copyright 2008, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Implements class templates NiceMock, NaggyMock, and StrictMock.
//
// Given a mock class MockFoo that is created using Google Mock,
// NiceMock<MockFoo> is a subclass of MockFoo that allows
// uninteresting calls (i.e. calls to mock methods that have no
// EXPECT_CALL specs), NaggyMock<MockFoo> is a subclass of MockFoo
// that prints a warning when an uninteresting call occurs, and
// StrictMock<MockFoo> is a subclass of MockFoo that treats all
// uninteresting calls as errors.
//
// Currently a mock is naggy by default, so MockFoo and
// NaggyMock<MockFoo> behave like the same. However, we will soon
// switch the default behavior of mocks to be nice, as that in general
// leads to more maintainable tests. When that happens, MockFoo will
// stop behaving like NaggyMock<MockFoo> and start behaving like
// NiceMock<MockFoo>.
//
// NiceMock, NaggyMock, and StrictMock "inherit" the constructors of
// their respective base class. Therefore you can write
// NiceMock<MockFoo>(5, "a") to construct a nice mock where MockFoo
// has a constructor that accepts (int, const char*), for example.
//
// A known limitation is that NiceMock<MockFoo>, NaggyMock<MockFoo>,
// and StrictMock<MockFoo> only works for mock methods defined using
// the MOCK_METHOD* family of macros DIRECTLY in the MockFoo class.
// If a mock method is defined in a base class of MockFoo, the "nice"
// or "strict" modifier may not affect it, depending on the compiler.
// In particular, nesting NiceMock, NaggyMock, and StrictMock is NOT
// supported.
// GOOGLETEST_CM0002 DO NOT DELETE
#ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_NICE_STRICT_H_
#define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_NICE_STRICT_H_
#include <type_traits>
namespace testing {
template <class MockClass>
class NiceMock;
template <class MockClass>
class NaggyMock;
template <class MockClass>
class StrictMock;
namespace internal {
template <typename T>
std::true_type StrictnessModifierProbe(const NiceMock<T>&);
template <typename T>
std::true_type StrictnessModifierProbe(const NaggyMock<T>&);
template <typename T>
std::true_type StrictnessModifierProbe(const StrictMock<T>&);
std::false_type StrictnessModifierProbe(...);
template <typename T>
constexpr bool HasStrictnessModifier() {
return decltype(StrictnessModifierProbe(std::declval<const T&>()))::value;
}
// Base classes that register and deregister with testing::Mock to alter the
// default behavior around uninteresting calls. Inheriting from one of these
// classes first and then MockClass ensures the MockClass constructor is run
// after registration, and that the MockClass destructor runs before
// deregistration. This guarantees that MockClass's constructor and destructor
// run with the same level of strictness as its instance methods.
#if GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MINGW && \
(defined(_MSC_VER) || defined(__clang__))
// We need to mark these classes with this declspec to ensure that
// the empty base class optimization is performed.
#define GTEST_INTERNAL_EMPTY_BASE_CLASS __declspec(empty_bases)
#else
#define GTEST_INTERNAL_EMPTY_BASE_CLASS
#endif
template <typename Base>
class NiceMockImpl {
public:
NiceMockImpl() { ::testing::Mock::AllowUninterestingCalls(this); }
~NiceMockImpl() { ::testing::Mock::UnregisterCallReaction(this); }
};
template <typename Base>
class NaggyMockImpl {
public:
NaggyMockImpl() { ::testing::Mock::WarnUninterestingCalls(this); }
~NaggyMockImpl() { ::testing::Mock::UnregisterCallReaction(this); }
};
template <typename Base>
class StrictMockImpl {
public:
StrictMockImpl() { ::testing::Mock::FailUninterestingCalls(this); }
~StrictMockImpl() { ::testing::Mock::UnregisterCallReaction(this); }
};
} // namespace internal
template <class MockClass>
class GTEST_INTERNAL_EMPTY_BASE_CLASS NiceMock
: private internal::NiceMockImpl<MockClass>,
public MockClass {
public:
static_assert(!internal::HasStrictnessModifier<MockClass>(),
"Can't apply NiceMock to a class hierarchy that already has a "
"strictness modifier. See "
"https://google.github.io/googletest/"
"gmock_cook_book.html#NiceStrictNaggy");
NiceMock() : MockClass() {
static_assert(sizeof(*this) == sizeof(MockClass),
"The impl subclass shouldn't introduce any padding");
}
// Ideally, we would inherit base class's constructors through a using
// declaration, which would preserve their visibility. However, many existing
// tests rely on the fact that current implementation reexports protected
// constructors as public. These tests would need to be cleaned up first.
// Single argument constructor is special-cased so that it can be
// made explicit.
template <typename A>
explicit NiceMock(A&& arg) : MockClass(std::forward<A>(arg)) {
static_assert(sizeof(*this) == sizeof(MockClass),
"The impl subclass shouldn't introduce any padding");
}
template <typename TArg1, typename TArg2, typename... An>
NiceMock(TArg1&& arg1, TArg2&& arg2, An&&... args)
: MockClass(std::forward<TArg1>(arg1), std::forward<TArg2>(arg2),
std::forward<An>(args)...) {
static_assert(sizeof(*this) == sizeof(MockClass),
"The impl subclass shouldn't introduce any padding");
}
private:
GTEST_DISALLOW_COPY_AND_ASSIGN_(NiceMock);
};
template <class MockClass>
class GTEST_INTERNAL_EMPTY_BASE_CLASS NaggyMock
: private internal::NaggyMockImpl<MockClass>,
public MockClass {
static_assert(!internal::HasStrictnessModifier<MockClass>(),
"Can't apply NaggyMock to a class hierarchy that already has a "
"strictness modifier. See "
"https://google.github.io/googletest/"
"gmock_cook_book.html#NiceStrictNaggy");
public:
NaggyMock() : MockClass() {
static_assert(sizeof(*this) == sizeof(MockClass),
"The impl subclass shouldn't introduce any padding");
}
// Ideally, we would inherit base class's constructors through a using
// declaration, which would preserve their visibility. However, many existing
// tests rely on the fact that current implementation reexports protected
// constructors as public. These tests would need to be cleaned up first.
// Single argument constructor is special-cased so that it can be
// made explicit.
template <typename A>
explicit NaggyMock(A&& arg) : MockClass(std::forward<A>(arg)) {
static_assert(sizeof(*this) == sizeof(MockClass),
"The impl subclass shouldn't introduce any padding");
}
template <typename TArg1, typename TArg2, typename... An>
NaggyMock(TArg1&& arg1, TArg2&& arg2, An&&... args)
: MockClass(std::forward<TArg1>(arg1), std::forward<TArg2>(arg2),
std::forward<An>(args)...) {
static_assert(sizeof(*this) == sizeof(MockClass),
"The impl subclass shouldn't introduce any padding");
}
private:
GTEST_DISALLOW_COPY_AND_ASSIGN_(NaggyMock);
};
template <class MockClass>
class GTEST_INTERNAL_EMPTY_BASE_CLASS StrictMock
: private internal::StrictMockImpl<MockClass>,
public MockClass {
public:
static_assert(
!internal::HasStrictnessModifier<MockClass>(),
"Can't apply StrictMock to a class hierarchy that already has a "
"strictness modifier. See "
"https://google.github.io/googletest/"
"gmock_cook_book.html#NiceStrictNaggy");
StrictMock() : MockClass() {
static_assert(sizeof(*this) == sizeof(MockClass),
"The impl subclass shouldn't introduce any padding");
}
// Ideally, we would inherit base class's constructors through a using
// declaration, which would preserve their visibility. However, many existing
// tests rely on the fact that current implementation reexports protected
// constructors as public. These tests would need to be cleaned up first.
// Single argument constructor is special-cased so that it can be
// made explicit.
template <typename A>
explicit StrictMock(A&& arg) : MockClass(std::forward<A>(arg)) {
static_assert(sizeof(*this) == sizeof(MockClass),
"The impl subclass shouldn't introduce any padding");
}
template <typename TArg1, typename TArg2, typename... An>
StrictMock(TArg1&& arg1, TArg2&& arg2, An&&... args)
: MockClass(std::forward<TArg1>(arg1), std::forward<TArg2>(arg2),
std::forward<An>(args)...) {
static_assert(sizeof(*this) == sizeof(MockClass),
"The impl subclass shouldn't introduce any padding");
}
private:
GTEST_DISALLOW_COPY_AND_ASSIGN_(StrictMock);
};
#undef GTEST_INTERNAL_EMPTY_BASE_CLASS
} // namespace testing
#endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_NICE_STRICT_H_
namespace testing {
// Declares Google Mock flags that we want a user to use programmatically.
GMOCK_DECLARE_bool_(catch_leaked_mocks);
GMOCK_DECLARE_string_(verbose);
GMOCK_DECLARE_int32_(default_mock_behavior);
// Initializes Google Mock. This must be called before running the
// tests. In particular, it parses the command line for the flags
// that Google Mock recognizes. Whenever a Google Mock flag is seen,
// it is removed from argv, and *argc is decremented.
//
// No value is returned. Instead, the Google Mock flag variables are
// updated.
//
// Since Google Test is needed for Google Mock to work, this function
// also initializes Google Test and parses its flags, if that hasn't
// been done.
GTEST_API_ void InitGoogleMock(int* argc, char** argv);
// This overloaded version can be used in Windows programs compiled in
// UNICODE mode.
GTEST_API_ void InitGoogleMock(int* argc, wchar_t** argv);
// This overloaded version can be used on Arduino/embedded platforms where
// there is no argc/argv.
GTEST_API_ void InitGoogleMock();
} // namespace testing
#endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_H_