citra/src/core/core_timing.cpp

166 lines
5.1 KiB
C++
Raw Normal View History

// Copyright 2008 Dolphin Emulator Project / 2017 Citra Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include <algorithm>
#include <cinttypes>
#include <tuple>
#include "common/assert.h"
2015-06-21 15:11:32 +01:00
#include "common/logging/log.h"
2018-10-27 20:53:20 +01:00
#include "core/core_timing.h"
2018-10-27 20:53:20 +01:00
namespace Core {
2020-01-12 20:01:29 +00:00
Timing* Timing::deserializing = nullptr;
// Sort by time, unless the times are the same, in which case sort by the order added to the queue
2018-10-27 20:53:20 +01:00
bool Timing::Event::operator>(const Event& right) const {
return std::tie(time, fifo_order) > std::tie(right.time, right.fifo_order);
}
2018-10-27 20:53:20 +01:00
bool Timing::Event::operator<(const Event& right) const {
return std::tie(time, fifo_order) < std::tie(right.time, right.fifo_order);
}
2018-10-27 20:53:20 +01:00
TimingEventType* Timing::RegisterEvent(const std::string& name, TimedCallback callback) {
// check for existing type with same name.
// we want event type names to remain unique so that we can use them for serialization.
2020-01-12 00:24:44 +00:00
auto info = event_types.emplace(name, TimingEventType{});
2018-10-27 20:53:20 +01:00
TimingEventType* event_type = &info.first->second;
event_type->name = &info.first->first;
2020-01-12 20:01:29 +00:00
if (callback != nullptr) {
event_type->callback = callback;
}
return event_type;
}
2018-10-27 20:53:20 +01:00
Timing::~Timing() {
MoveEvents();
}
2018-10-27 20:53:20 +01:00
u64 Timing::GetTicks() const {
u64 ticks = static_cast<u64>(global_timer);
if (!is_global_timer_sane) {
ticks += slice_length - downcount;
2017-09-30 17:25:49 +01:00
}
return ticks;
2017-09-30 17:25:49 +01:00
}
2018-10-27 20:53:20 +01:00
void Timing::AddTicks(u64 ticks) {
downcount -= ticks;
}
2018-10-27 20:53:20 +01:00
u64 Timing::GetIdleTicks() const {
return static_cast<u64>(idled_cycles);
}
2018-10-27 20:53:20 +01:00
void Timing::ScheduleEvent(s64 cycles_into_future, const TimingEventType* event_type,
u64 userdata) {
ASSERT(event_type != nullptr);
s64 timeout = GetTicks() + cycles_into_future;
// If this event needs to be scheduled before the next advance(), force one early
if (!is_global_timer_sane)
ForceExceptionCheck(cycles_into_future);
event_queue.emplace_back(Event{timeout, event_fifo_id++, userdata, event_type});
std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>());
}
2018-10-27 20:53:20 +01:00
void Timing::ScheduleEventThreadsafe(s64 cycles_into_future, const TimingEventType* event_type,
u64 userdata) {
ts_queue.Push(Event{global_timer + cycles_into_future, 0, userdata, event_type});
}
2018-10-27 20:53:20 +01:00
void Timing::UnscheduleEvent(const TimingEventType* event_type, u64 userdata) {
auto itr = std::remove_if(event_queue.begin(), event_queue.end(), [&](const Event& e) {
return e.type == event_type && e.userdata == userdata;
});
// Removing random items breaks the invariant so we have to re-establish it.
if (itr != event_queue.end()) {
event_queue.erase(itr, event_queue.end());
std::make_heap(event_queue.begin(), event_queue.end(), std::greater<>());
}
}
2018-10-27 20:53:20 +01:00
void Timing::RemoveEvent(const TimingEventType* event_type) {
auto itr = std::remove_if(event_queue.begin(), event_queue.end(),
[&](const Event& e) { return e.type == event_type; });
// Removing random items breaks the invariant so we have to re-establish it.
if (itr != event_queue.end()) {
event_queue.erase(itr, event_queue.end());
std::make_heap(event_queue.begin(), event_queue.end(), std::greater<>());
}
}
2018-10-27 20:53:20 +01:00
void Timing::RemoveNormalAndThreadsafeEvent(const TimingEventType* event_type) {
MoveEvents();
RemoveEvent(event_type);
}
2018-10-27 20:53:20 +01:00
void Timing::ForceExceptionCheck(s64 cycles) {
cycles = std::max<s64>(0, cycles);
if (downcount > cycles) {
2018-07-23 22:08:14 +01:00
slice_length -= downcount - cycles;
downcount = cycles;
}
}
2018-10-27 20:53:20 +01:00
void Timing::MoveEvents() {
for (Event ev; ts_queue.Pop(ev);) {
ev.fifo_order = event_fifo_id++;
event_queue.emplace_back(std::move(ev));
std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>());
}
}
2018-10-27 20:53:20 +01:00
void Timing::Advance() {
MoveEvents();
2018-07-23 22:08:14 +01:00
s64 cycles_executed = slice_length - downcount;
global_timer += cycles_executed;
slice_length = MAX_SLICE_LENGTH;
is_global_timer_sane = true;
while (!event_queue.empty() && event_queue.front().time <= global_timer) {
Event evt = std::move(event_queue.front());
std::pop_heap(event_queue.begin(), event_queue.end(), std::greater<>());
event_queue.pop_back();
2020-01-12 00:24:44 +00:00
if (event_types.find(*evt.type->name) == event_types.end()) {
LOG_ERROR(Core, "Unknown queued event");
continue;
}
2020-01-12 20:01:29 +00:00
if (evt.type->callback != nullptr) {
evt.type->callback(evt.userdata, global_timer - evt.time);
}
}
is_global_timer_sane = false;
// Still events left (scheduled in the future)
if (!event_queue.empty()) {
slice_length = static_cast<int>(
std::min<s64>(event_queue.front().time - global_timer, MAX_SLICE_LENGTH));
}
downcount = slice_length;
}
2018-10-27 20:53:20 +01:00
void Timing::Idle() {
idled_cycles += downcount;
downcount = 0;
}
2018-10-27 20:53:20 +01:00
std::chrono::microseconds Timing::GetGlobalTimeUs() const {
return std::chrono::microseconds{GetTicks() * 1000000 / BASE_CLOCK_RATE_ARM11};
}
2018-10-27 20:53:20 +01:00
s64 Timing::GetDowncount() const {
return downcount;
}
2018-10-27 20:53:20 +01:00
} // namespace Core