citra/src/core/hle/kernel/thread.h

280 lines
8.6 KiB
C++
Raw Normal View History

2014-05-10 03:11:18 +01:00
// Copyright 2014 Citra Emulator Project / PPSSPP Project
2014-12-17 05:38:14 +00:00
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
2014-05-10 03:11:18 +01:00
#pragma once
#include <string>
#include <unordered_map>
#include <vector>
#include <boost/container/flat_map.hpp>
#include <boost/container/flat_set.hpp>
2014-05-10 03:11:18 +01:00
#include "common/common_types.h"
#include "core/arm/arm_interface.h"
#include "core/hle/kernel/object.h"
#include "core/hle/kernel/wait_object.h"
#include "core/hle/result.h"
2014-05-10 03:11:18 +01:00
namespace Kernel {
class Mutex;
class Process;
2017-09-27 00:26:09 +01:00
enum ThreadPriority : u32 {
2018-09-21 15:39:10 +01:00
ThreadPrioHighest = 0, ///< Highest thread priority
ThreadPrioUserlandMax = 24, ///< Highest thread priority for userland apps
ThreadPrioDefault = 48, ///< Default thread priority for userland apps
ThreadPrioLowest = 63, ///< Lowest thread priority
};
enum ThreadProcessorId : s32 {
2018-09-21 15:39:10 +01:00
ThreadProcessorIdDefault = -2, ///< Run thread on default core specified by exheader
ThreadProcessorIdAll = -1, ///< Run thread on either core
ThreadProcessorId0 = 0, ///< Run thread on core 0 (AppCore)
ThreadProcessorId1 = 1, ///< Run thread on core 1 (SysCore)
ThreadProcessorIdMax = 2, ///< Processor ID must be less than this
};
2018-09-21 15:39:10 +01:00
enum class ThreadStatus {
Running, ///< Currently running
Ready, ///< Ready to run
WaitArb, ///< Waiting on an address arbiter
WaitSleep, ///< Waiting due to a SleepThread SVC
WaitIPC, ///< Waiting for the reply from an IPC request
WaitSynchAny, ///< Waiting due to WaitSynch1 or WaitSynchN with wait_all = false
WaitSynchAll, ///< Waiting due to WaitSynchronizationN with wait_all = true
WaitHleEvent, ///< Waiting due to an HLE handler pausing the thread
Dormant, ///< Created but not yet made ready
Dead ///< Run to completion, or forcefully terminated
};
enum class ThreadWakeupReason {
Signal, // The thread was woken up by WakeupAllWaitingThreads due to an object signal.
Timeout // The thread was woken up due to a wait timeout.
};
class Thread final : public WaitObject {
public:
std::string GetName() const override {
return name;
}
std::string GetTypeName() const override {
return "Thread";
}
static const HandleType HANDLE_TYPE = HandleType::Thread;
HandleType GetHandleType() const override {
return HANDLE_TYPE;
}
bool ShouldWait(Thread* thread) const override;
void Acquire(Thread* thread) override;
/**
* Gets the thread's current priority
* @return The current thread's priority
*/
2017-09-27 00:26:09 +01:00
u32 GetPriority() const {
return current_priority;
}
/**
* Sets the thread's current priority
* @param priority The new priority
*/
2017-09-27 00:26:09 +01:00
void SetPriority(u32 priority);
/**
* Boost's a thread's priority to the best priority among the thread's held mutexes.
* This prevents priority inversion via priority inheritance.
*/
void UpdatePriority();
/**
* Temporarily boosts the thread's priority until the next time it is scheduled
* @param priority The new priority
*/
2017-09-27 00:26:09 +01:00
void BoostPriority(u32 priority);
/**
* Gets the thread's thread ID
* @return The thread's ID
*/
u32 GetThreadId() const {
return thread_id;
}
/**
* Resumes a thread from waiting
*/
void ResumeFromWait();
/**
* Schedules an event to wake up the specified thread after the specified delay
* @param nanoseconds The time this thread will be allowed to sleep for
*/
void WakeAfterDelay(s64 nanoseconds);
/**
* Sets the result after the thread awakens (from either WaitSynchronization SVC)
* @param result Value to set to the returned result
*/
void SetWaitSynchronizationResult(ResultCode result);
/**
* Sets the output parameter value after the thread awakens (from WaitSynchronizationN SVC only)
* @param output Value to set to the output parameter
*/
void SetWaitSynchronizationOutput(s32 output);
/**
* Retrieves the index that this particular object occupies in the list of objects
* that the thread passed to WaitSynchronizationN, starting the search from the last element.
* It is used to set the output value of WaitSynchronizationN when the thread is awakened.
* When a thread wakes up due to an object signal, the kernel will use the index of the last
* matching object in the wait objects list in case of having multiple instances of the same
* object in the list.
* @param object Object to query the index of.
*/
s32 GetWaitObjectIndex(WaitObject* object) const;
/**
* Stops a thread, invalidating it from further use
*/
void Stop();
/*
* Returns the Thread Local Storage address of the current thread
* @returns VAddr of the thread's TLS
*/
VAddr GetTLSAddress() const {
return tls_address;
}
/*
* Returns the address of the current thread's command buffer, located in the TLS.
* @returns VAddr of the thread's command buffer.
*/
VAddr GetCommandBufferAddress() const;
/**
* Returns whether this thread is waiting for all the objects in
* its wait list to become ready, as a result of a WaitSynchronizationN call
* with wait_all = true.
*/
bool IsSleepingOnWaitAll() const {
return status == ThreadStatus::WaitSynchAll;
}
std::unique_ptr<ARM_Interface::ThreadContext> context;
u32 thread_id;
ThreadStatus status;
VAddr entry_point;
VAddr stack_top;
2017-09-27 00:26:09 +01:00
u32 nominal_priority; ///< Nominal thread priority, as set by the emulated application
u32 current_priority; ///< Current thread priority, can be temporarily changed
u64 last_running_ticks; ///< CPU tick when thread was last running
s32 processor_id;
VAddr tls_address; ///< Virtual address of the Thread Local Storage of the thread
/// Mutexes currently held by this thread, which will be released when it exits.
boost::container::flat_set<SharedPtr<Mutex>> held_mutexes;
/// Mutexes that this thread is currently waiting for.
boost::container::flat_set<SharedPtr<Mutex>> pending_mutexes;
Process* owner_process; ///< Process that owns this thread
/// Objects that the thread is waiting on, in the same order as they were
// passed to WaitSynchronization1/N.
std::vector<SharedPtr<WaitObject>> wait_objects;
VAddr wait_address; ///< If waiting on an AddressArbiter, this is the arbitration address
std::string name;
using WakeupCallback = void(ThreadWakeupReason reason, SharedPtr<Thread> thread,
SharedPtr<WaitObject> object);
// Callback that will be invoked when the thread is resumed from a waiting state. If the thread
// was waiting via WaitSynchronizationN then the object will be the last object that became
// available. In case of a timeout, the object will be nullptr.
std::function<WakeupCallback> wakeup_callback;
private:
2018-10-12 20:47:06 +01:00
explicit Thread(KernelSystem&);
~Thread() override;
2018-10-12 20:47:06 +01:00
friend class KernelSystem;
};
/**
* Sets up the primary application thread
2018-10-12 20:47:06 +01:00
* @param kernel The kernel instance on which the thread is created
* @param entry_point The address at which the thread should start execution
* @param priority The priority to give the main thread
* @param owner_process The parent process for the main thread
* @return A shared pointer to the main thread
*/
2018-10-12 20:47:06 +01:00
SharedPtr<Thread> SetupMainThread(KernelSystem& kernel, u32 entry_point, u32 priority,
SharedPtr<Process> owner_process);
/**
* Returns whether there are any threads that are ready to run.
*/
bool HaveReadyThreads();
/**
* Reschedules to the next available thread (call after current thread is suspended)
*/
void Reschedule();
/**
* Arbitrate the highest priority thread that is waiting
* @param address The address for which waiting threads should be arbitrated
*/
Thread* ArbitrateHighestPriorityThread(u32 address);
/**
* Arbitrate all threads currently waiting.
* @param address The address for which waiting threads should be arbitrated
*/
void ArbitrateAllThreads(u32 address);
/**
* Gets the current thread
*/
Thread* GetCurrentThread();
/**
* Waits the current thread on a sleep
*/
void WaitCurrentThread_Sleep();
/**
* Stops the current thread and removes it from the thread_list
*/
void ExitCurrentThread();
/**
* Initialize threading
*/
void ThreadingInit();
/**
* Shutdown threading
*/
void ThreadingShutdown();
2016-04-08 17:28:54 +01:00
/**
* Get a const reference to the thread list for debug use
*/
const std::vector<SharedPtr<Thread>>& GetThreadList();
} // namespace Kernel