gc_adapter: Port code cleanup and feature updates from yuzu

Streamlines the code and introduces fixes for the origin status of the controller along with adapter hotplug support

Co-Authored-By: Narr the Reg <5944268+german77@users.noreply.github.com>
Co-Authored-By: LC <712067+lioncash@users.noreply.github.com>
This commit is contained in:
ameerj 2021-03-08 18:50:16 -05:00
parent 05e28a53e8
commit 700fa6b96a
3 changed files with 390 additions and 320 deletions

View file

@ -4,201 +4,239 @@
#include <chrono>
#include <thread>
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4200) // nonstandard extension used : zero-sized array in struct/union
#endif
#include <libusb.h>
#ifdef _MSC_VER
#pragma warning(pop)
#endif
#include "common/logging/log.h"
#include "common/param_package.h"
#include "input_common/gcadapter/gc_adapter.h"
namespace GCAdapter {
/// Used to loop through and assign button in poller
constexpr std::array<PadButton, 12> PadButtonArray{
PadButton::PAD_BUTTON_LEFT, PadButton::PAD_BUTTON_RIGHT, PadButton::PAD_BUTTON_DOWN,
PadButton::PAD_BUTTON_UP, PadButton::PAD_TRIGGER_Z, PadButton::PAD_TRIGGER_R,
PadButton::PAD_TRIGGER_L, PadButton::PAD_BUTTON_A, PadButton::PAD_BUTTON_B,
PadButton::PAD_BUTTON_X, PadButton::PAD_BUTTON_Y, PadButton::PAD_BUTTON_START,
};
Adapter::Adapter() {
if (usb_adapter_handle != nullptr) {
return;
}
LOG_INFO(Input, "GC Adapter Initialization started");
const int init_res = libusb_init(&libusb_ctx);
if (init_res == LIBUSB_SUCCESS) {
Setup();
adapter_scan_thread = std::thread(&Adapter::AdapterScanThread, this);
} else {
LOG_ERROR(Input, "libusb could not be initialized. failed with error = {}", init_res);
}
}
GCPadStatus Adapter::GetPadStatus(std::size_t port, const std::array<u8, 37>& adapter_payload) {
GCPadStatus pad = {};
const std::size_t offset = 1 + (9 * port);
Adapter::~Adapter() {
JoinThreads();
ClearLibusbHandle();
ResetDevices();
adapter_controllers_status[port] = static_cast<ControllerTypes>(adapter_payload[offset] >> 4);
if (libusb_ctx) {
libusb_exit(libusb_ctx);
}
}
void Adapter::AdapterInputThread() {
LOG_DEBUG(Input, "GC Adapter input thread started");
s32 payload_size{};
AdapterPayload adapter_payload{};
if (adapter_scan_thread.joinable()) {
adapter_scan_thread.join();
}
while (adapter_input_thread_running) {
libusb_interrupt_transfer(usb_adapter_handle, input_endpoint, adapter_payload.data(),
static_cast<s32>(adapter_payload.size()), &payload_size, 16);
if (IsPayloadCorrect(adapter_payload, payload_size)) {
UpdateControllers(adapter_payload);
}
std::this_thread::yield();
}
if (restart_scan_thread) {
adapter_scan_thread = std::thread(&Adapter::AdapterScanThread, this);
restart_scan_thread = false;
}
}
bool Adapter::IsPayloadCorrect(const AdapterPayload& adapter_payload, s32 payload_size) {
if (payload_size != static_cast<s32>(adapter_payload.size()) ||
adapter_payload[0] != LIBUSB_DT_HID) {
LOG_DEBUG(Input, "Error reading payload (size: {}, type: {:02x})", payload_size,
adapter_payload[0]);
if (++input_error_counter > 20) {
LOG_ERROR(Input, "GC adapter timeout, Is the adapter connected?");
adapter_input_thread_running = false;
restart_scan_thread = true;
}
return false;
}
input_error_counter = 0;
return true;
}
void Adapter::UpdateControllers(const AdapterPayload& adapter_payload) {
for (std::size_t port = 0; port < pads.size(); ++port) {
const std::size_t offset = 1 + (9 * port);
const auto type = static_cast<ControllerTypes>(adapter_payload[offset] >> 4);
UpdatePadType(port, type);
if (DeviceConnected(port)) {
const u8 b1 = adapter_payload[offset + 1];
const u8 b2 = adapter_payload[offset + 2];
UpdateStateButtons(port, b1, b2);
UpdateStateAxes(port, adapter_payload);
if (configuring) {
UpdateSettings(port);
}
}
}
}
void Adapter::UpdatePadType(std::size_t port, ControllerTypes pad_type) {
if (pads[port].type == pad_type) {
return;
}
// Device changed reset device and set new type
ResetDevice(port);
pads[port].type = pad_type;
}
void Adapter::UpdateStateButtons(std::size_t port, u8 b1, u8 b2) {
if (port >= pads.size()) {
return;
}
static constexpr std::array<PadButton, 8> b1_buttons{
PadButton::PAD_BUTTON_A, PadButton::PAD_BUTTON_B, PadButton::PAD_BUTTON_X,
PadButton::PAD_BUTTON_Y, PadButton::PAD_BUTTON_LEFT, PadButton::PAD_BUTTON_RIGHT,
PadButton::PAD_BUTTON_DOWN, PadButton::PAD_BUTTON_UP,
PadButton::ButtonA, PadButton::ButtonB, PadButton::ButtonX, PadButton::ButtonY,
PadButton::ButtonLeft, PadButton::ButtonRight, PadButton::ButtonDown, PadButton::ButtonUp,
};
static constexpr std::array<PadButton, 4> b2_buttons{
PadButton::PAD_BUTTON_START,
PadButton::PAD_TRIGGER_Z,
PadButton::PAD_TRIGGER_R,
PadButton::PAD_TRIGGER_L,
PadButton::ButtonStart,
PadButton::TriggerZ,
PadButton::TriggerR,
PadButton::TriggerL,
};
pads[port].buttons = 0;
for (std::size_t i = 0; i < b1_buttons.size(); ++i) {
if ((b1 & (1U << i)) != 0) {
pads[port].buttons =
static_cast<u16>(pads[port].buttons | static_cast<u16>(b1_buttons[i]));
pads[port].last_button = b1_buttons[i];
}
}
for (std::size_t j = 0; j < b2_buttons.size(); ++j) {
if ((b2 & (1U << j)) != 0) {
pads[port].buttons =
static_cast<u16>(pads[port].buttons | static_cast<u16>(b2_buttons[j]));
pads[port].last_button = b2_buttons[j];
}
}
}
void Adapter::UpdateStateAxes(std::size_t port, const AdapterPayload& adapter_payload) {
if (port >= pads.size()) {
return;
}
const std::size_t offset = 1 + (9 * port);
static constexpr std::array<PadAxes, 6> axes{
PadAxes::StickX, PadAxes::StickY, PadAxes::SubstickX,
PadAxes::SubstickY, PadAxes::TriggerLeft, PadAxes::TriggerRight,
};
if (adapter_controllers_status[port] == ControllerTypes::None && !get_origin[port]) {
// Controller may have been disconnected, recalibrate if reconnected.
get_origin[port] = true;
}
if (adapter_controllers_status[port] != ControllerTypes::None) {
const u8 b1 = adapter_payload[offset + 1];
const u8 b2 = adapter_payload[offset + 2];
for (std::size_t i = 0; i < b1_buttons.size(); ++i) {
if ((b1 & (1U << i)) != 0) {
pad.button |= static_cast<u16>(b1_buttons[i]);
}
for (const PadAxes axis : axes) {
const auto index = static_cast<std::size_t>(axis);
const u8 axis_value = adapter_payload[offset + 3 + index];
if (pads[port].axis_origin[index] == 255) {
pads[port].axis_origin[index] = axis_value;
}
for (std::size_t j = 0; j < b2_buttons.size(); ++j) {
if ((b2 & (1U << j)) != 0) {
pad.button |= static_cast<u16>(b2_buttons[j]);
}
}
for (PadAxes axis : axes) {
const std::size_t index = static_cast<std::size_t>(axis);
pad.axis_values[index] = adapter_payload[offset + 3 + index];
}
if (get_origin[port]) {
origin_status[port].axis_values = pad.axis_values;
get_origin[port] = false;
}
}
return pad;
}
void Adapter::PadToState(const GCPadStatus& pad, GCState& state) {
for (const auto& button : PadButtonArray) {
const u16 button_value = static_cast<u16>(button);
state.buttons.insert_or_assign(button_value, pad.button & button_value);
}
for (size_t i = 0; i < pad.axis_values.size(); ++i) {
state.axes.insert_or_assign(static_cast<u8>(i), pad.axis_values[i]);
pads[port].axis_values[index] =
static_cast<s16>(axis_value - pads[port].axis_origin[index]);
}
}
void Adapter::Read() {
LOG_DEBUG(Input, "GC Adapter Read() thread started");
void Adapter::UpdateSettings(std::size_t port) {
if (port >= pads.size()) {
return;
}
int payload_size;
std::array<u8, 37> adapter_payload;
std::array<GCPadStatus, 4> pads;
constexpr u8 axis_threshold = 50;
GCPadStatus pad_status = {port};
while (adapter_thread_running) {
libusb_interrupt_transfer(usb_adapter_handle, input_endpoint, adapter_payload.data(),
sizeof(adapter_payload), &payload_size, 16);
if (pads[port].buttons != 0) {
pad_status.button = pads[port].last_button;
pad_queue.Push(pad_status);
}
if (payload_size != sizeof(adapter_payload) || adapter_payload[0] != LIBUSB_DT_HID) {
LOG_ERROR(Input,
"Error reading payload (size: {}, type: {:02x}) Is the adapter connected?",
payload_size, adapter_payload[0]);
adapter_thread_running = false; // error reading from adapter, stop reading.
break;
// Accounting for a threshold here to ensure an intentional press
for (std::size_t i = 0; i < pads[port].axis_values.size(); ++i) {
const s16 value = pads[port].axis_values[i];
if (value > axis_threshold || value < -axis_threshold) {
pad_status.axis = static_cast<PadAxes>(i);
pad_status.axis_value = value;
pad_status.axis_threshold = axis_threshold;
pad_queue.Push(pad_status);
}
for (std::size_t port = 0; port < pads.size(); ++port) {
pads[port] = GetPadStatus(port, adapter_payload);
if (DeviceConnected(port) && configuring) {
if (pads[port].button != 0) {
pad_queue[port].Push(pads[port]);
}
}
}
// Accounting for a threshold here to ensure an intentional press
for (size_t i = 0; i < pads[port].axis_values.size(); ++i) {
const u8 value = pads[port].axis_values[i];
const u8 origin = origin_status[port].axis_values[i];
if (value > origin + pads[port].THRESHOLD ||
value < origin - pads[port].THRESHOLD) {
pads[port].axis = static_cast<PadAxes>(i);
pads[port].axis_value = pads[port].axis_values[i];
pad_queue[port].Push(pads[port]);
}
}
}
PadToState(pads[port], state[port]);
}
std::this_thread::yield();
void Adapter::AdapterScanThread() {
adapter_scan_thread_running = true;
adapter_input_thread_running = false;
if (adapter_input_thread.joinable()) {
adapter_input_thread.join();
}
ClearLibusbHandle();
ResetDevices();
while (adapter_scan_thread_running && !adapter_input_thread_running) {
Setup();
std::this_thread::sleep_for(std::chrono::seconds(1));
}
}
void Adapter::Setup() {
// Initialize all controllers as unplugged
adapter_controllers_status.fill(ControllerTypes::None);
// Initialize all ports to store axis origin values
get_origin.fill(true);
usb_adapter_handle = libusb_open_device_with_vid_pid(libusb_ctx, 0x057e, 0x0337);
// pointer to list of connected usb devices
libusb_device** devices{};
// populate the list of devices, get the count
const ssize_t device_count = libusb_get_device_list(libusb_ctx, &devices);
if (device_count < 0) {
LOG_ERROR(Input, "libusb_get_device_list failed with error: {}", device_count);
if (usb_adapter_handle == NULL) {
return;
}
if (!CheckDeviceAccess()) {
ClearLibusbHandle();
return;
}
if (devices != nullptr) {
for (std::size_t index = 0; index < static_cast<std::size_t>(device_count); ++index) {
if (CheckDeviceAccess(devices[index])) {
// GC Adapter found and accessible, registering it
GetGCEndpoint(devices[index]);
break;
}
}
libusb_free_device_list(devices, 1);
libusb_device* device = libusb_get_device(usb_adapter_handle);
LOG_INFO(Input, "GC adapter is now connected");
// GC Adapter found and accessible, registering it
if (GetGCEndpoint(device)) {
adapter_scan_thread_running = false;
adapter_input_thread_running = true;
input_error_counter = 0;
adapter_input_thread = std::thread(&Adapter::AdapterInputThread, this);
}
}
bool Adapter::CheckDeviceAccess(libusb_device* device) {
libusb_device_descriptor desc;
const int get_descriptor_error = libusb_get_device_descriptor(device, &desc);
if (get_descriptor_error) {
// could not acquire the descriptor, no point in trying to use it.
LOG_ERROR(Input, "libusb_get_device_descriptor failed with error: {}",
get_descriptor_error);
return false;
bool Adapter::CheckDeviceAccess() {
// This fixes payload problems from offbrand GCAdapters
const s32 control_transfer_error =
libusb_control_transfer(usb_adapter_handle, 0x21, 11, 0x0001, 0, nullptr, 0, 1000);
if (control_transfer_error < 0) {
LOG_ERROR(Input, "libusb_control_transfer failed with error= {}", control_transfer_error);
}
if (desc.idVendor != 0x057e || desc.idProduct != 0x0337) {
// This isn't the device we are looking for.
return false;
}
const int open_error = libusb_open(device, &usb_adapter_handle);
if (open_error == LIBUSB_ERROR_ACCESS) {
LOG_ERROR(Input, "Yuzu can not gain access to this device: ID {:04X}:{:04X}.",
desc.idVendor, desc.idProduct);
return false;
}
if (open_error) {
LOG_ERROR(Input, "libusb_open failed to open device with error = {}", open_error);
return false;
}
int kernel_driver_error = libusb_kernel_driver_active(usb_adapter_handle, 0);
s32 kernel_driver_error = libusb_kernel_driver_active(usb_adapter_handle, 0);
if (kernel_driver_error == 1) {
kernel_driver_error = libusb_detach_kernel_driver(usb_adapter_handle, 0);
if (kernel_driver_error != 0 && kernel_driver_error != LIBUSB_ERROR_NOT_SUPPORTED) {
@ -224,13 +262,13 @@ bool Adapter::CheckDeviceAccess(libusb_device* device) {
return true;
}
void Adapter::GetGCEndpoint(libusb_device* device) {
bool Adapter::GetGCEndpoint(libusb_device* device) {
libusb_config_descriptor* config = nullptr;
const int config_descriptor_return = libusb_get_config_descriptor(device, 0, &config);
if (config_descriptor_return != LIBUSB_SUCCESS) {
LOG_ERROR(Input, "libusb_get_config_descriptor failed with error = {}",
config_descriptor_return);
return;
return false;
}
for (u8 ic = 0; ic < config->bNumInterfaces; ic++) {
@ -239,7 +277,7 @@ void Adapter::GetGCEndpoint(libusb_device* device) {
const libusb_interface_descriptor* interface = &interfaceContainer->altsetting[i];
for (u8 e = 0; e < interface->bNumEndpoints; e++) {
const libusb_endpoint_descriptor* endpoint = &interface->endpoint[e];
if (endpoint->bEndpointAddress & LIBUSB_ENDPOINT_IN) {
if ((endpoint->bEndpointAddress & LIBUSB_ENDPOINT_IN) != 0) {
input_endpoint = endpoint->bEndpointAddress;
} else {
output_endpoint = endpoint->bEndpointAddress;
@ -252,78 +290,89 @@ void Adapter::GetGCEndpoint(libusb_device* device) {
unsigned char clear_payload = 0x13;
libusb_interrupt_transfer(usb_adapter_handle, output_endpoint, &clear_payload,
sizeof(clear_payload), nullptr, 16);
adapter_thread_running = true;
adapter_input_thread = std::thread(&Adapter::Read, this);
return true;
}
Adapter::~Adapter() {
Reset();
}
void Adapter::JoinThreads() {
restart_scan_thread = false;
adapter_input_thread_running = false;
adapter_scan_thread_running = false;
void Adapter::Reset() {
if (adapter_thread_running) {
adapter_thread_running = false;
if (adapter_scan_thread.joinable()) {
adapter_scan_thread.join();
}
if (adapter_input_thread.joinable()) {
adapter_input_thread.join();
}
}
adapter_controllers_status.fill(ControllerTypes::None);
get_origin.fill(true);
void Adapter::ClearLibusbHandle() {
if (usb_adapter_handle) {
libusb_release_interface(usb_adapter_handle, 1);
libusb_close(usb_adapter_handle);
usb_adapter_handle = nullptr;
}
}
if (libusb_ctx) {
libusb_exit(libusb_ctx);
void Adapter::ResetDevices() {
for (std::size_t i = 0; i < pads.size(); ++i) {
ResetDevice(i);
}
}
bool Adapter::DeviceConnected(std::size_t port) {
return adapter_controllers_status[port] != ControllerTypes::None;
void Adapter::ResetDevice(std::size_t port) {
pads[port].type = ControllerTypes::None;
pads[port].buttons = 0;
pads[port].last_button = PadButton::Undefined;
pads[port].axis_values.fill(0);
pads[port].axis_origin.fill(255);
}
void Adapter::ResetDeviceType(std::size_t port) {
adapter_controllers_status[port] = ControllerTypes::None;
std::vector<Common::ParamPackage> Adapter::GetInputDevices() const {
std::vector<Common::ParamPackage> devices;
for (std::size_t port = 0; port < pads.size(); ++port) {
if (!DeviceConnected(port)) {
continue;
}
std::string name = fmt::format("Gamecube Controller {}", port + 1);
devices.emplace_back(Common::ParamPackage{
{"class", "gcpad"},
{"display", std::move(name)},
{"port", std::to_string(port)},
});
}
return devices;
}
bool Adapter::DeviceConnected(std::size_t port) const {
return pads[port].type != ControllerTypes::None;
}
void Adapter::BeginConfiguration() {
get_origin.fill(true);
for (auto& pq : pad_queue) {
pq.Clear();
}
pad_queue.Clear();
configuring = true;
}
void Adapter::EndConfiguration() {
for (auto& pq : pad_queue) {
pq.Clear();
}
pad_queue.Clear();
configuring = false;
}
std::array<Common::SPSCQueue<GCPadStatus>, 4>& Adapter::GetPadQueue() {
Common::SPSCQueue<GCPadStatus>& Adapter::GetPadQueue() {
return pad_queue;
}
const std::array<Common::SPSCQueue<GCPadStatus>, 4>& Adapter::GetPadQueue() const {
const Common::SPSCQueue<GCPadStatus>& Adapter::GetPadQueue() const {
return pad_queue;
}
std::array<GCState, 4>& Adapter::GetPadState() {
return state;
GCController& Adapter::GetPadState(std::size_t port) {
return pads.at(port);
}
const std::array<GCState, 4>& Adapter::GetPadState() const {
return state;
}
int Adapter::GetOriginValue(int port, int axis) const {
return origin_status[port].axis_values[axis];
const GCController& Adapter::GetPadState(std::size_t port) const {
return pads.at(port);
}
} // namespace GCAdapter

View file

@ -17,27 +17,30 @@ struct libusb_context;
struct libusb_device;
struct libusb_device_handle;
namespace Common {
class ParamPackage;
}
namespace GCAdapter {
enum class PadButton {
PAD_BUTTON_LEFT = 0x0001,
PAD_BUTTON_RIGHT = 0x0002,
PAD_BUTTON_DOWN = 0x0004,
PAD_BUTTON_UP = 0x0008,
PAD_TRIGGER_Z = 0x0010,
PAD_TRIGGER_R = 0x0020,
PAD_TRIGGER_L = 0x0040,
PAD_BUTTON_A = 0x0100,
PAD_BUTTON_B = 0x0200,
PAD_BUTTON_X = 0x0400,
PAD_BUTTON_Y = 0x0800,
PAD_BUTTON_START = 0x1000,
Undefined = 0x0000,
ButtonLeft = 0x0001,
ButtonRight = 0x0002,
ButtonDown = 0x0004,
ButtonUp = 0x0008,
TriggerZ = 0x0010,
TriggerR = 0x0020,
TriggerL = 0x0040,
ButtonA = 0x0100,
ButtonB = 0x0200,
ButtonX = 0x0400,
ButtonY = 0x0800,
ButtonStart = 0x1000,
// Below is for compatibility with "AxisButton" type
PAD_STICK = 0x2000,
Stick = 0x2000,
};
extern const std::array<PadButton, 12> PadButtonArray;
enum class PadAxes : u8 {
StickX,
StickY,
@ -48,85 +51,103 @@ enum class PadAxes : u8 {
Undefined,
};
enum class ControllerTypes {
None,
Wired,
Wireless,
};
struct GCPadStatus {
u16 button{}; // Or-ed PAD_BUTTON_* and PAD_TRIGGER_* bits
std::size_t port{};
std::array<u8, 6> axis_values{}; // Triggers and sticks, following indices defined in PadAxes
static constexpr u8 THRESHOLD = 50; // Threshold for axis press for polling
PadButton button{PadButton::Undefined}; // Or-ed PAD_BUTTON_* and PAD_TRIGGER_* bits
u8 port{};
PadAxes axis{PadAxes::Undefined};
u8 axis_value{255};
s16 axis_value{};
u8 axis_threshold{50};
};
struct GCState {
std::unordered_map<int, bool> buttons;
std::unordered_map<int, u16> axes;
struct GCController {
ControllerTypes type{};
u16 buttons{};
PadButton last_button{};
std::array<s16, 6> axis_values{};
std::array<u8, 6> axis_origin{};
};
enum class ControllerTypes { None, Wired, Wireless };
class Adapter {
public:
/// Initialize the GC Adapter capture and read sequence
Adapter();
/// Close the adapter read thread and release the adapter
~Adapter();
/// Used for polling
void BeginConfiguration();
void EndConfiguration();
Common::SPSCQueue<GCPadStatus>& GetPadQueue();
const Common::SPSCQueue<GCPadStatus>& GetPadQueue() const;
GCController& GetPadState(std::size_t port);
const GCController& GetPadState(std::size_t port) const;
/// Returns true if there is a device connected to port
bool DeviceConnected(std::size_t port);
bool DeviceConnected(std::size_t port) const;
std::array<Common::SPSCQueue<GCPadStatus>, 4>& GetPadQueue();
const std::array<Common::SPSCQueue<GCPadStatus>, 4>& GetPadQueue() const;
std::array<GCState, 4>& GetPadState();
const std::array<GCState, 4>& GetPadState() const;
int GetOriginValue(int port, int axis) const;
std::vector<Common::ParamPackage> GetInputDevices() const;
private:
GCPadStatus GetPadStatus(std::size_t port, const std::array<u8, 37>& adapter_payload);
using AdapterPayload = std::array<u8, 37>;
void PadToState(const GCPadStatus& pad, GCState& state);
void UpdatePadType(std::size_t port, ControllerTypes pad_type);
void UpdateControllers(const AdapterPayload& adapter_payload);
void UpdateSettings(std::size_t port);
void UpdateStateButtons(std::size_t port, u8 b1, u8 b2);
void UpdateStateAxes(std::size_t port, const AdapterPayload& adapter_payload);
void Read();
void AdapterInputThread();
/// Resets status of device connected to port
void ResetDeviceType(std::size_t port);
void AdapterScanThread();
/// Returns true if we successfully gain access to GC Adapter
bool CheckDeviceAccess(libusb_device* device);
/// Captures GC Adapter endpoint address,
void GetGCEndpoint(libusb_device* device);
/// For shutting down, clear all data, join all threads, release usb
void Reset();
bool IsPayloadCorrect(const AdapterPayload& adapter_payload, s32 payload_size);
/// For use in initialization, querying devices to find the adapter
void Setup();
/// Resets status of all GC controller devices to a disconnected state
void ResetDevices();
/// Resets status of device connected to a disconnected state
void ResetDevice(std::size_t port);
/// Returns true if we successfully gain access to GC Adapter
bool CheckDeviceAccess();
/// Captures GC Adapter endpoint address
/// Returns true if the endpoint was set correctly
bool GetGCEndpoint(libusb_device* device);
// Join all threads
void JoinThreads();
// Release usb handles
void ClearLibusbHandle();
libusb_device_handle* usb_adapter_handle = nullptr;
std::array<GCController, 4> pads;
Common::SPSCQueue<GCPadStatus> pad_queue;
std::thread adapter_input_thread;
bool adapter_thread_running;
std::thread adapter_scan_thread;
bool adapter_input_thread_running;
bool adapter_scan_thread_running;
bool restart_scan_thread;
libusb_context* libusb_ctx;
u8 input_endpoint = 0;
u8 output_endpoint = 0;
u8 input_endpoint{0};
u8 output_endpoint{0};
u8 input_error_counter{0};
bool configuring = false;
std::array<GCState, 4> state;
std::array<bool, 4> get_origin;
std::array<GCPadStatus, 4> origin_status;
std::array<Common::SPSCQueue<GCPadStatus>, 4> pad_queue;
std::array<ControllerTypes, 4> adapter_controllers_status{};
bool configuring{false};
};
} // namespace GCAdapter

View file

@ -22,7 +22,7 @@ public:
bool GetStatus() const override {
if (gcadapter->DeviceConnected(port)) {
return gcadapter->GetPadState()[port].buttons.at(button);
return (gcadapter->GetPadState(port).buttons & button) != 0;
}
return false;
}
@ -38,16 +38,13 @@ public:
explicit GCAxisButton(int port_, int axis_, float threshold_, bool trigger_if_greater_,
GCAdapter::Adapter* adapter)
: port(port_), axis(axis_), threshold(threshold_), trigger_if_greater(trigger_if_greater_),
gcadapter(adapter),
origin_value(static_cast<float>(adapter->GetOriginValue(port_, axis_))) {}
gcadapter(adapter) {}
bool GetStatus() const override {
if (gcadapter->DeviceConnected(port)) {
const float current_axis_value = gcadapter->GetPadState()[port].axes.at(axis);
const float axis_value = (current_axis_value - origin_value) / 128.0f;
const float current_axis_value = gcadapter->GetPadState(port).axis_values.at(axis);
const float axis_value = current_axis_value / 128.0f;
if (trigger_if_greater) {
// TODO: Might be worthwile to set a slider for the trigger threshold. It is
// currently always set to 0.5 in configure_input_player.cpp ZL/ZR HandleClick
return axis_value > threshold;
}
return axis_value < -threshold;
@ -56,12 +53,11 @@ public:
}
private:
const int port;
const int axis;
const u32 port;
const u32 axis;
float threshold;
bool trigger_if_greater;
GCAdapter::Adapter* gcadapter;
const float origin_value;
const GCAdapter::Adapter* gcadapter;
};
GCButtonFactory::GCButtonFactory(std::shared_ptr<GCAdapter::Adapter> adapter_)
@ -73,7 +69,7 @@ std::unique_ptr<Input::ButtonDevice> GCButtonFactory::Create(const Common::Param
const int button_id = params.Get("button", 0);
const int port = params.Get("port", 0);
constexpr int PAD_STICK_ID = static_cast<u16>(GCAdapter::PadButton::PAD_STICK);
constexpr s32 PAD_STICK_ID = static_cast<s32>(GCAdapter::PadButton::Stick);
// button is not an axis/stick button
if (button_id != PAD_STICK_ID) {
@ -106,32 +102,25 @@ Common::ParamPackage GCButtonFactory::GetNextInput() {
Common::ParamPackage params;
GCAdapter::GCPadStatus pad;
auto& queue = adapter->GetPadQueue();
for (std::size_t port = 0; port < queue.size(); ++port) {
while (queue[port].Pop(pad)) {
// This while loop will break on the earliest detected button
params.Set("engine", "gcpad");
params.Set("port", static_cast<int>(port));
for (const auto& button : GCAdapter::PadButtonArray) {
const u16 button_value = static_cast<u16>(button);
if (pad.button & button_value) {
params.Set("button", button_value);
break;
}
}
while (queue.Pop(pad)) {
// This while loop will break on the earliest detected button
params.Set("engine", "gcpad");
params.Set("port", static_cast<s32>(pad.port));
if (pad.button != GCAdapter::PadButton::Undefined) {
params.Set("button", static_cast<u16>(pad.button));
}
// For Axis button implementation
if (pad.axis != GCAdapter::PadAxes::Undefined) {
params.Set("axis", static_cast<u8>(pad.axis));
params.Set("button", static_cast<u16>(GCAdapter::PadButton::PAD_STICK));
if (pad.axis_value > 128) {
params.Set("direction", "+");
params.Set("threshold", "0.25");
} else {
params.Set("direction", "-");
params.Set("threshold", "-0.25");
}
break;
// For Axis button implementation
if (pad.axis != GCAdapter::PadAxes::Undefined) {
params.Set("axis", static_cast<u8>(pad.axis));
params.Set("button", static_cast<u16>(GCAdapter::PadButton::Stick));
params.Set("threshold", "0.25");
if (pad.axis_value > 0) {
params.Set("direction", "+");
} else {
params.Set("direction", "-");
}
break;
}
}
return params;
@ -149,26 +138,23 @@ void GCButtonFactory::Stop() {
class GCAnalog final : public Input::AnalogDevice {
public:
GCAnalog(int port_, int axis_x_, int axis_y_, float deadzone_, GCAdapter::Adapter* adapter,
float range_)
: port(port_), axis_x(axis_x_), axis_y(axis_y_), deadzone(deadzone_), gcadapter(adapter),
origin_value_x(static_cast<float>(adapter->GetOriginValue(port_, axis_x_))),
origin_value_y(static_cast<float>(adapter->GetOriginValue(port_, axis_y_))),
range(range_) {}
explicit GCAnalog(u32 port_, u32 axis_x_, u32 axis_y_, float deadzone_,
const GCAdapter::Adapter* adapter)
: port(port_), axis_x(axis_x_), axis_y(axis_y_), deadzone(deadzone_), gcadapter(adapter) {}
float GetAxis(int axis) const {
float GetAxis(u32 axis) const {
if (gcadapter->DeviceConnected(port)) {
std::lock_guard lock{mutex};
const auto origin_value = axis % 2 == 0 ? origin_value_x : origin_value_y;
return (gcadapter->GetPadState()[port].axes.at(axis) - origin_value) / (100.0f * range);
const auto axis_value =
static_cast<float>(gcadapter->GetPadState(port).axis_values.at(axis));
return (axis_value) / 50.0f;
}
return 0.0f;
}
std::pair<float, float> GetAnalog(int axis_x, int axis_y) const {
float x = GetAxis(axis_x);
float y = GetAxis(axis_y);
std::pair<float, float> GetAnalog(u32 analog_axis_x, u32 analog_axis_y) const {
float x = GetAxis(analog_axis_x);
float y = GetAxis(analog_axis_y);
// Make sure the coordinates are in the unit circle,
// otherwise normalize it.
float r = x * x + y * y;
@ -192,14 +178,11 @@ public:
}
private:
const int port;
const int axis_x;
const int axis_y;
const u32 port;
const u32 axis_x;
const u32 axis_y;
const float deadzone;
GCAdapter::Adapter* gcadapter;
const float origin_value_x;
const float origin_value_y;
const float range;
const GCAdapter::Adapter* gcadapter;
mutable std::mutex mutex;
};
@ -215,13 +198,12 @@ GCAnalogFactory::GCAnalogFactory(std::shared_ptr<GCAdapter::Adapter> adapter_)
* - "axis_y": the index of the axis to be bind as y-axis
*/
std::unique_ptr<Input::AnalogDevice> GCAnalogFactory::Create(const Common::ParamPackage& params) {
const int port = params.Get("port", 0);
const int axis_x = params.Get("axis_x", 0);
const int axis_y = params.Get("axis_y", 1);
const float deadzone = std::clamp(params.Get("deadzone", 0.0f), 0.0f, .99f);
const float range = std::clamp(params.Get("range", 1.0f), 0.50f, 1.50f);
const auto port = static_cast<u32>(params.Get("port", 0));
const auto axis_x = static_cast<u32>(params.Get("axis_x", 0));
const auto axis_y = static_cast<u32>(params.Get("axis_y", 1));
const auto deadzone = std::clamp(params.Get("deadzone", 0.0f), 0.0f, 1.0f);
return std::make_unique<GCAnalog>(port, axis_x, axis_y, deadzone, adapter.get(), range);
return std::make_unique<GCAnalog>(port, axis_x, axis_y, deadzone, adapter.get());
}
void GCAnalogFactory::Start() {
@ -236,26 +218,44 @@ void GCAnalogFactory::Stop() {
Common::ParamPackage GCAnalogFactory::GetNextInput() {
GCAdapter::GCPadStatus pad;
Common::ParamPackage params;
auto& queue = adapter->GetPadQueue();
for (std::size_t port = 0; port < queue.size(); ++port) {
while (queue[port].Pop(pad)) {
if (pad.axis == GCAdapter::PadAxes::Undefined ||
std::abs((pad.axis_value - 128.0f) / 128.0f) < 0.05) {
continue;
}
// An analog device needs two axes, so we need to store the axis for later and wait for
// a second input event. The axes also must be from the same joystick.
const u8 axis = static_cast<u8>(pad.axis);
if (analog_x_axis == -1) {
analog_x_axis = axis;
controller_number = static_cast<int>(port);
} else if (analog_y_axis == -1 && analog_x_axis != axis &&
controller_number == static_cast<int>(port)) {
analog_y_axis = axis;
}
while (queue.Pop(pad)) {
if (pad.button != GCAdapter::PadButton::Undefined) {
params.Set("engine", "gcpad");
params.Set("port", static_cast<s32>(pad.port));
params.Set("button", static_cast<u16>(pad.button));
return params;
}
if (pad.axis == GCAdapter::PadAxes::Undefined ||
std::abs(static_cast<float>(pad.axis_value) / 128.0f) < 0.1f) {
continue;
}
// An analog device needs two axes, so we need to store the axis for later and wait for
// a second input event. The axes also must be from the same joystick.
const u8 axis = static_cast<u8>(pad.axis);
if (axis == 0 || axis == 1) {
analog_x_axis = 0;
analog_y_axis = 1;
controller_number = static_cast<s32>(pad.port);
break;
}
if (axis == 2 || axis == 3) {
analog_x_axis = 2;
analog_y_axis = 3;
controller_number = static_cast<s32>(pad.port);
break;
}
if (analog_x_axis == -1) {
analog_x_axis = axis;
controller_number = static_cast<s32>(pad.port);
} else if (analog_y_axis == -1 && analog_x_axis != axis &&
controller_number == static_cast<s32>(pad.port)) {
analog_y_axis = axis;
break;
}
}
Common::ParamPackage params;
if (analog_x_axis != -1 && analog_y_axis != -1) {
params.Set("engine", "gcpad");
params.Set("port", controller_number);