Previously, these were sitting outside of the Kernel namespace, which
doesn't really make sense, given they're related to the Thread class
which is within the Kernel namespace.
General moving to keep kernel object types separate from the direct
kernel code. Also essentially a preliminary cleanup before eliminating
global kernel state in the kernel code.
Kernel/Threads: Add a new thread status that will allow using a Kernel::Event to put a guest thread to sleep inside an HLE handler until said event is signaled
This change makes for a clearer (less confusing) path of execution in the scheduler, now the code to execute when a thread awakes is closer to the code that puts the thread to sleep (WaitSynch1, WaitSynchN). It also allows us to implement the special wake up behavior of ReplyAndReceive without hacking up WaitObject::WakeupAllWaitingThreads.
If savestates are desired in the future, we can change this implementation to one similar to the CoreTiming event system, where we first register the callback functions at startup and assign their identifiers to the Thread callback variable instead of directly assigning a lambda to the wake up callback variable.
Don't automatically assume that Thread::Create will only be called when the parent process is currently scheduled. This assumption will be broken when applets or system modules are loaded.
This commit removes the overly general THREADSTATUS_WAIT_SYNCH and replaces it with two more granular statuses:
THREADSTATUS_WAIT_SYNCH_ANY when a thread waits on objects via WaitSynchronization1 or WaitSynchronizationN with wait_all = false.
THREADSTATUS_WAIT_SYNCH_ALL when a thread waits on objects via WaitSynchronizationN with wait_all = true.
Define a variable with the value of the sync timeout error code.
Use a boost::flat_map instead of an unordered_map to hold the equivalence of objects and wait indices in a WaitSynchN call.
Threads will now be awakened when the objects they're waiting on are signaled, instead of repeating the WaitSynchronization call every now and then.
The scheduler is now called once after every SVC call, and once after a thread is awakened from sleep by its timeout callback.
This new implementation is based off reverse-engineering of the real kernel.
See https://gist.github.com/Subv/02f29bd9f1e5deb7aceea1e8f019c8f4 for a more detailed description of how the real kernel handles rescheduling.
Each thread gets a 0x200-byte area from the 0x1000-sized page, when all 8 thread slots in a single page are used up, the kernel allocates a new page to hold another 8 entries.
This is consistent with what the real kernel does.