citra/src/video_core/shader/shader.cpp
Weiyi Wang 7d8f115185 Prefix all size_t with std::
done automatically by executing regex replace `([^:0-9a-zA-Z_])size_t([^0-9a-zA-Z_])` -> `$1std::size_t$2`
2018-09-06 16:03:28 -04:00

166 lines
5.9 KiB
C++

// Copyright 2015 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <cmath>
#include <cstring>
#include "common/bit_set.h"
#include "common/logging/log.h"
#include "common/microprofile.h"
#include "video_core/pica_state.h"
#include "video_core/regs_rasterizer.h"
#include "video_core/regs_shader.h"
#include "video_core/shader/shader.h"
#include "video_core/shader/shader_interpreter.h"
#ifdef ARCHITECTURE_x86_64
#include "video_core/shader/shader_jit_x64.h"
#endif // ARCHITECTURE_x86_64
#include "video_core/video_core.h"
namespace Pica {
namespace Shader {
void OutputVertex::ValidateSemantics(const RasterizerRegs& regs) {
unsigned int num_attributes = regs.vs_output_total;
ASSERT(num_attributes <= 7);
for (std::size_t attrib = 0; attrib < num_attributes; ++attrib) {
u32 output_register_map = regs.vs_output_attributes[attrib].raw;
for (std::size_t comp = 0; comp < 4; ++comp) {
u32 semantic = (output_register_map >> (8 * comp)) & 0x1F;
ASSERT_MSG(semantic < 24 || semantic == RasterizerRegs::VSOutputAttributes::INVALID,
"Invalid/unknown semantic id: {}", semantic);
}
}
}
OutputVertex OutputVertex::FromAttributeBuffer(const RasterizerRegs& regs,
const AttributeBuffer& input) {
// Setup output data
union {
OutputVertex ret{};
// Allow us to overflow OutputVertex to avoid branches, since
// RasterizerRegs::VSOutputAttributes::INVALID would write to slot 31, which
// would be out of bounds otherwise.
std::array<float24, 32> vertex_slots_overflow;
};
// Assert that OutputVertex has enough space for 24 semantic registers
static_assert(sizeof(std::array<float24, 24>) == sizeof(ret),
"Struct and array have different sizes.");
unsigned int num_attributes = regs.vs_output_total & 7;
for (std::size_t attrib = 0; attrib < num_attributes; ++attrib) {
const auto output_register_map = regs.vs_output_attributes[attrib];
vertex_slots_overflow[output_register_map.map_x] = input.attr[attrib][0];
vertex_slots_overflow[output_register_map.map_y] = input.attr[attrib][1];
vertex_slots_overflow[output_register_map.map_z] = input.attr[attrib][2];
vertex_slots_overflow[output_register_map.map_w] = input.attr[attrib][3];
}
// The hardware takes the absolute and saturates vertex colors like this, *before* doing
// interpolation
for (unsigned i = 0; i < 4; ++i) {
float c = std::fabs(ret.color[i].ToFloat32());
ret.color[i] = float24::FromFloat32(c < 1.0f ? c : 1.0f);
}
LOG_TRACE(HW_GPU,
"Output vertex: pos({:.2}, {:.2}, {:.2}, {:.2}), quat({:.2}, {:.2}, {:.2}, {:.2}), "
"col({:.2}, {:.2}, {:.2}, {:.2}), tc0({:.2}, {:.2}), view({:.2}, {:.2}, {:.2})",
ret.pos.x.ToFloat32(), ret.pos.y.ToFloat32(), ret.pos.z.ToFloat32(),
ret.pos.w.ToFloat32(), ret.quat.x.ToFloat32(), ret.quat.y.ToFloat32(),
ret.quat.z.ToFloat32(), ret.quat.w.ToFloat32(), ret.color.x.ToFloat32(),
ret.color.y.ToFloat32(), ret.color.z.ToFloat32(), ret.color.w.ToFloat32(),
ret.tc0.u().ToFloat32(), ret.tc0.v().ToFloat32(), ret.view.x.ToFloat32(),
ret.view.y.ToFloat32(), ret.view.z.ToFloat32());
return ret;
}
void UnitState::LoadInput(const ShaderRegs& config, const AttributeBuffer& input) {
const unsigned max_attribute = config.max_input_attribute_index;
for (unsigned attr = 0; attr <= max_attribute; ++attr) {
unsigned reg = config.GetRegisterForAttribute(attr);
registers.input[reg] = input.attr[attr];
}
}
static void CopyRegistersToOutput(const Math::Vec4<float24>* regs, u32 mask,
AttributeBuffer& buffer) {
int output_i = 0;
for (int reg : Common::BitSet<u32>(mask)) {
buffer.attr[output_i++] = regs[reg];
}
}
void UnitState::WriteOutput(const ShaderRegs& config, AttributeBuffer& output) {
CopyRegistersToOutput(registers.output, config.output_mask, output);
}
UnitState::UnitState(GSEmitter* emitter) : emitter_ptr(emitter) {}
GSEmitter::GSEmitter() {
handlers = new Handlers;
}
GSEmitter::~GSEmitter() {
delete handlers;
}
void GSEmitter::Emit(Math::Vec4<float24> (&output_regs)[16]) {
ASSERT(vertex_id < 3);
// TODO: This should be merged with UnitState::WriteOutput somehow
CopyRegistersToOutput(output_regs, output_mask, buffer[vertex_id]);
if (prim_emit) {
if (winding)
handlers->winding_setter();
for (std::size_t i = 0; i < buffer.size(); ++i) {
handlers->vertex_handler(buffer[i]);
}
}
}
GSUnitState::GSUnitState() : UnitState(&emitter) {}
void GSUnitState::SetVertexHandler(VertexHandler vertex_handler, WindingSetter winding_setter) {
emitter.handlers->vertex_handler = std::move(vertex_handler);
emitter.handlers->winding_setter = std::move(winding_setter);
}
void GSUnitState::ConfigOutput(const ShaderRegs& config) {
emitter.output_mask = config.output_mask;
}
MICROPROFILE_DEFINE(GPU_Shader, "GPU", "Shader", MP_RGB(50, 50, 240));
#ifdef ARCHITECTURE_x86_64
static std::unique_ptr<JitX64Engine> jit_engine;
#endif // ARCHITECTURE_x86_64
static InterpreterEngine interpreter_engine;
ShaderEngine* GetEngine() {
#ifdef ARCHITECTURE_x86_64
// TODO(yuriks): Re-initialize on each change rather than being persistent
if (VideoCore::g_shader_jit_enabled) {
if (jit_engine == nullptr) {
jit_engine = std::make_unique<JitX64Engine>();
}
return jit_engine.get();
}
#endif // ARCHITECTURE_x86_64
return &interpreter_engine;
}
void Shutdown() {
#ifdef ARCHITECTURE_x86_64
jit_engine = nullptr;
#endif // ARCHITECTURE_x86_64
}
} // namespace Shader
} // namespace Pica