429 lines
17 KiB
C++
429 lines
17 KiB
C++
// Copyright 2015 Citra Emulator Project
|
|
// Licensed under GPLv2 or any later version
|
|
// Refer to the license.txt file included.
|
|
|
|
#include <algorithm>
|
|
#include <memory>
|
|
#include "common/assert.h"
|
|
#include "common/common_funcs.h"
|
|
#include "common/logging/log.h"
|
|
#include "core/hle/kernel/errors.h"
|
|
#include "core/hle/kernel/memory.h"
|
|
#include "core/hle/kernel/process.h"
|
|
#include "core/hle/kernel/resource_limit.h"
|
|
#include "core/hle/kernel/thread.h"
|
|
#include "core/hle/kernel/vm_manager.h"
|
|
#include "core/memory.h"
|
|
|
|
namespace Kernel {
|
|
|
|
std::shared_ptr<CodeSet> KernelSystem::CreateCodeSet(std::string name, u64 program_id) {
|
|
auto codeset{std::make_shared<CodeSet>(*this)};
|
|
|
|
codeset->name = std::move(name);
|
|
codeset->program_id = program_id;
|
|
|
|
return codeset;
|
|
}
|
|
|
|
CodeSet::CodeSet(KernelSystem& kernel) : Object(kernel) {}
|
|
CodeSet::~CodeSet() {}
|
|
|
|
std::shared_ptr<Process> KernelSystem::CreateProcess(std::shared_ptr<CodeSet> code_set) {
|
|
auto process{std::make_shared<Process>(*this)};
|
|
|
|
process->codeset = std::move(code_set);
|
|
process->flags.raw = 0;
|
|
process->flags.memory_region.Assign(MemoryRegion::APPLICATION);
|
|
process->status = ProcessStatus::Created;
|
|
process->process_id = ++next_process_id;
|
|
|
|
process_list.push_back(process);
|
|
return process;
|
|
}
|
|
|
|
void Process::ParseKernelCaps(const u32* kernel_caps, std::size_t len) {
|
|
for (std::size_t i = 0; i < len; ++i) {
|
|
u32 descriptor = kernel_caps[i];
|
|
u32 type = descriptor >> 20;
|
|
|
|
if (descriptor == 0xFFFFFFFF) {
|
|
// Unused descriptor entry
|
|
continue;
|
|
} else if ((type & 0xF00) == 0xE00) { // 0x0FFF
|
|
// Allowed interrupts list
|
|
LOG_WARNING(Loader, "ExHeader allowed interrupts list ignored");
|
|
} else if ((type & 0xF80) == 0xF00) { // 0x07FF
|
|
// Allowed syscalls mask
|
|
unsigned int index = ((descriptor >> 24) & 7) * 24;
|
|
u32 bits = descriptor & 0xFFFFFF;
|
|
|
|
while (bits && index < svc_access_mask.size()) {
|
|
svc_access_mask.set(index, bits & 1);
|
|
++index;
|
|
bits >>= 1;
|
|
}
|
|
} else if ((type & 0xFF0) == 0xFE0) { // 0x00FF
|
|
// Handle table size
|
|
handle_table_size = descriptor & 0x3FF;
|
|
} else if ((type & 0xFF8) == 0xFF0) { // 0x007F
|
|
// Misc. flags
|
|
flags.raw = descriptor & 0xFFFF;
|
|
} else if ((type & 0xFFE) == 0xFF8) { // 0x001F
|
|
// Mapped memory range
|
|
if (i + 1 >= len || ((kernel_caps[i + 1] >> 20) & 0xFFE) != 0xFF8) {
|
|
LOG_WARNING(Loader, "Incomplete exheader memory range descriptor ignored.");
|
|
continue;
|
|
}
|
|
u32 end_desc = kernel_caps[i + 1];
|
|
++i; // Skip over the second descriptor on the next iteration
|
|
|
|
AddressMapping mapping;
|
|
mapping.address = descriptor << 12;
|
|
VAddr end_address = end_desc << 12;
|
|
|
|
if (mapping.address < end_address) {
|
|
mapping.size = end_address - mapping.address;
|
|
} else {
|
|
mapping.size = 0;
|
|
}
|
|
|
|
mapping.read_only = (descriptor & (1 << 20)) != 0;
|
|
mapping.unk_flag = (end_desc & (1 << 20)) != 0;
|
|
|
|
address_mappings.push_back(mapping);
|
|
} else if ((type & 0xFFF) == 0xFFE) { // 0x000F
|
|
// Mapped memory page
|
|
AddressMapping mapping;
|
|
mapping.address = descriptor << 12;
|
|
mapping.size = Memory::PAGE_SIZE;
|
|
mapping.read_only = false;
|
|
mapping.unk_flag = false;
|
|
|
|
address_mappings.push_back(mapping);
|
|
} else if ((type & 0xFE0) == 0xFC0) { // 0x01FF
|
|
// Kernel version
|
|
kernel_version = descriptor & 0xFFFF;
|
|
|
|
int minor = kernel_version & 0xFF;
|
|
int major = (kernel_version >> 8) & 0xFF;
|
|
LOG_INFO(Loader, "ExHeader kernel version: {}.{}", major, minor);
|
|
} else {
|
|
LOG_ERROR(Loader, "Unhandled kernel caps descriptor: 0x{:08X}", descriptor);
|
|
}
|
|
}
|
|
}
|
|
|
|
void Process::Run(s32 main_thread_priority, u32 stack_size) {
|
|
memory_region = kernel.GetMemoryRegion(flags.memory_region);
|
|
|
|
auto MapSegment = [&](CodeSet::Segment& segment, VMAPermission permissions,
|
|
MemoryState memory_state) {
|
|
HeapAllocate(segment.addr, segment.size, permissions, memory_state, true);
|
|
kernel.memory.WriteBlock(*this, segment.addr, codeset->memory->data() + segment.offset,
|
|
segment.size);
|
|
};
|
|
|
|
// Map CodeSet segments
|
|
MapSegment(codeset->CodeSegment(), VMAPermission::ReadExecute, MemoryState::Code);
|
|
MapSegment(codeset->RODataSegment(), VMAPermission::Read, MemoryState::Code);
|
|
MapSegment(codeset->DataSegment(), VMAPermission::ReadWrite, MemoryState::Private);
|
|
|
|
// Allocate and map stack
|
|
HeapAllocate(Memory::HEAP_VADDR_END - stack_size, stack_size, VMAPermission::ReadWrite,
|
|
MemoryState::Locked, true);
|
|
|
|
// Map special address mappings
|
|
kernel.MapSharedPages(vm_manager);
|
|
for (const auto& mapping : address_mappings) {
|
|
kernel.HandleSpecialMapping(vm_manager, mapping);
|
|
}
|
|
|
|
status = ProcessStatus::Running;
|
|
|
|
vm_manager.LogLayout(Log::Level::Debug);
|
|
Kernel::SetupMainThread(kernel, codeset->entrypoint, main_thread_priority, SharedFrom(this));
|
|
}
|
|
|
|
VAddr Process::GetLinearHeapAreaAddress() const {
|
|
// Starting from system version 8.0.0 a new linear heap layout is supported to allow usage of
|
|
// the extra RAM in the n3DS.
|
|
return kernel_version < 0x22C ? Memory::LINEAR_HEAP_VADDR : Memory::NEW_LINEAR_HEAP_VADDR;
|
|
}
|
|
|
|
VAddr Process::GetLinearHeapBase() const {
|
|
return GetLinearHeapAreaAddress() + memory_region->base;
|
|
}
|
|
|
|
VAddr Process::GetLinearHeapLimit() const {
|
|
return GetLinearHeapBase() + memory_region->size;
|
|
}
|
|
|
|
ResultVal<VAddr> Process::HeapAllocate(VAddr target, u32 size, VMAPermission perms,
|
|
MemoryState memory_state, bool skip_range_check) {
|
|
LOG_DEBUG(Kernel, "Allocate heap target={:08X}, size={:08X}", target, size);
|
|
if (target < Memory::HEAP_VADDR || target + size > Memory::HEAP_VADDR_END ||
|
|
target + size < target) {
|
|
if (!skip_range_check) {
|
|
LOG_ERROR(Kernel, "Invalid heap address");
|
|
return ERR_INVALID_ADDRESS;
|
|
}
|
|
}
|
|
|
|
auto vma = vm_manager.FindVMA(target);
|
|
if (vma->second.type != VMAType::Free || vma->second.base + vma->second.size < target + size) {
|
|
LOG_ERROR(Kernel, "Trying to allocate already allocated memory");
|
|
return ERR_INVALID_ADDRESS_STATE;
|
|
}
|
|
|
|
auto allocated_fcram = memory_region->HeapAllocate(size);
|
|
if (allocated_fcram.empty()) {
|
|
LOG_ERROR(Kernel, "Not enough space");
|
|
return ERR_OUT_OF_HEAP_MEMORY;
|
|
}
|
|
|
|
// Maps heap block by block
|
|
VAddr interval_target = target;
|
|
for (const auto& interval : allocated_fcram) {
|
|
u32 interval_size = interval.upper() - interval.lower();
|
|
LOG_DEBUG(Kernel, "Allocated FCRAM region lower={:08X}, upper={:08X}", interval.lower(),
|
|
interval.upper());
|
|
std::fill(kernel.memory.GetFCRAMPointer(interval.lower()),
|
|
kernel.memory.GetFCRAMPointer(interval.upper()), 0);
|
|
auto vma = vm_manager.MapBackingMemory(interval_target,
|
|
kernel.memory.GetFCRAMPointer(interval.lower()),
|
|
interval_size, memory_state);
|
|
ASSERT(vma.Succeeded());
|
|
vm_manager.Reprotect(vma.Unwrap(), perms);
|
|
interval_target += interval_size;
|
|
}
|
|
|
|
memory_used += size;
|
|
resource_limit->current_commit += size;
|
|
|
|
return MakeResult<VAddr>(target);
|
|
}
|
|
|
|
ResultCode Process::HeapFree(VAddr target, u32 size) {
|
|
LOG_DEBUG(Kernel, "Free heap target={:08X}, size={:08X}", target, size);
|
|
if (target < Memory::HEAP_VADDR || target + size > Memory::HEAP_VADDR_END ||
|
|
target + size < target) {
|
|
LOG_ERROR(Kernel, "Invalid heap address");
|
|
return ERR_INVALID_ADDRESS;
|
|
}
|
|
|
|
if (size == 0) {
|
|
return RESULT_SUCCESS;
|
|
}
|
|
|
|
// Free heaps block by block
|
|
CASCADE_RESULT(auto backing_blocks, vm_manager.GetBackingBlocksForRange(target, size));
|
|
for (const auto [backing_memory, block_size] : backing_blocks) {
|
|
memory_region->Free(kernel.memory.GetFCRAMOffset(backing_memory), block_size);
|
|
}
|
|
|
|
ResultCode result = vm_manager.UnmapRange(target, size);
|
|
ASSERT(result.IsSuccess());
|
|
|
|
memory_used -= size;
|
|
resource_limit->current_commit -= size;
|
|
|
|
return RESULT_SUCCESS;
|
|
}
|
|
|
|
ResultVal<VAddr> Process::LinearAllocate(VAddr target, u32 size, VMAPermission perms) {
|
|
LOG_DEBUG(Kernel, "Allocate linear heap target={:08X}, size={:08X}", target, size);
|
|
u32 physical_offset;
|
|
if (target == 0) {
|
|
auto offset = memory_region->LinearAllocate(size);
|
|
if (!offset) {
|
|
LOG_ERROR(Kernel, "Not enough space");
|
|
return ERR_OUT_OF_HEAP_MEMORY;
|
|
}
|
|
physical_offset = *offset;
|
|
target = physical_offset + GetLinearHeapAreaAddress();
|
|
} else {
|
|
if (target < GetLinearHeapBase() || target + size > GetLinearHeapLimit() ||
|
|
target + size < target) {
|
|
LOG_ERROR(Kernel, "Invalid linear heap address");
|
|
return ERR_INVALID_ADDRESS;
|
|
}
|
|
|
|
// Kernel would crash/return error when target doesn't meet some requirement.
|
|
// It seems that target is required to follow immediately after the allocated linear heap,
|
|
// or cover the entire hole if there is any.
|
|
// Right now we just ignore these checks because they are still unclear. Further more,
|
|
// games and homebrew only ever seem to pass target = 0 here (which lets the kernel decide
|
|
// the address), so this not important.
|
|
|
|
physical_offset = target - GetLinearHeapAreaAddress(); // relative to FCRAM
|
|
if (!memory_region->LinearAllocate(physical_offset, size)) {
|
|
LOG_ERROR(Kernel, "Trying to allocate already allocated memory");
|
|
return ERR_INVALID_ADDRESS_STATE;
|
|
}
|
|
}
|
|
|
|
u8* backing_memory = kernel.memory.GetFCRAMPointer(physical_offset);
|
|
|
|
std::fill(backing_memory, backing_memory + size, 0);
|
|
auto vma = vm_manager.MapBackingMemory(target, backing_memory, size, MemoryState::Continuous);
|
|
ASSERT(vma.Succeeded());
|
|
vm_manager.Reprotect(vma.Unwrap(), perms);
|
|
|
|
memory_used += size;
|
|
resource_limit->current_commit += size;
|
|
|
|
LOG_DEBUG(Kernel, "Allocated at target={:08X}", target);
|
|
return MakeResult<VAddr>(target);
|
|
}
|
|
|
|
ResultCode Process::LinearFree(VAddr target, u32 size) {
|
|
LOG_DEBUG(Kernel, "Free linear heap target={:08X}, size={:08X}", target, size);
|
|
if (target < GetLinearHeapBase() || target + size > GetLinearHeapLimit() ||
|
|
target + size < target) {
|
|
LOG_ERROR(Kernel, "Invalid linear heap address");
|
|
return ERR_INVALID_ADDRESS;
|
|
}
|
|
|
|
if (size == 0) {
|
|
return RESULT_SUCCESS;
|
|
}
|
|
|
|
ResultCode result = vm_manager.UnmapRange(target, size);
|
|
if (result.IsError()) {
|
|
LOG_ERROR(Kernel, "Trying to free already freed memory");
|
|
return result;
|
|
}
|
|
|
|
memory_used -= size;
|
|
resource_limit->current_commit -= size;
|
|
|
|
u32 physical_offset = target - GetLinearHeapAreaAddress(); // relative to FCRAM
|
|
memory_region->Free(physical_offset, size);
|
|
|
|
return RESULT_SUCCESS;
|
|
}
|
|
|
|
ResultCode Process::Map(VAddr target, VAddr source, u32 size, VMAPermission perms,
|
|
bool privileged) {
|
|
LOG_DEBUG(Kernel, "Map memory target={:08X}, source={:08X}, size={:08X}, perms={:08X}", target,
|
|
source, size, static_cast<u8>(perms));
|
|
if (source < Memory::HEAP_VADDR || source + size > Memory::HEAP_VADDR_END ||
|
|
source + size < source) {
|
|
LOG_ERROR(Kernel, "Invalid source address");
|
|
return ERR_INVALID_ADDRESS;
|
|
}
|
|
|
|
// TODO(wwylele): check target address range. Is it also restricted to heap region?
|
|
|
|
auto vma = vm_manager.FindVMA(target);
|
|
if (vma->second.type != VMAType::Free || vma->second.base + vma->second.size < target + size) {
|
|
LOG_ERROR(Kernel, "Trying to map to already allocated memory");
|
|
return ERR_INVALID_ADDRESS_STATE;
|
|
}
|
|
|
|
// Check range overlapping
|
|
if (source - target < size || target - source < size) {
|
|
if (privileged) {
|
|
if (source == target) {
|
|
// privileged Map allows identical source and target address, which simply changes
|
|
// the state and the permission of the memory
|
|
return vm_manager.ChangeMemoryState(source, size, MemoryState::Private,
|
|
VMAPermission::ReadWrite,
|
|
MemoryState::AliasCode, perms);
|
|
} else {
|
|
return ERR_INVALID_ADDRESS;
|
|
}
|
|
} else {
|
|
return ERR_INVALID_ADDRESS_STATE;
|
|
}
|
|
}
|
|
|
|
MemoryState source_state = privileged ? MemoryState::Locked : MemoryState::Aliased;
|
|
MemoryState target_state = privileged ? MemoryState::AliasCode : MemoryState::Alias;
|
|
VMAPermission source_perm = privileged ? VMAPermission::None : VMAPermission::ReadWrite;
|
|
|
|
// Mark source region as Aliased
|
|
CASCADE_CODE(vm_manager.ChangeMemoryState(source, size, MemoryState::Private,
|
|
VMAPermission::ReadWrite, source_state, source_perm));
|
|
|
|
CASCADE_RESULT(auto backing_blocks, vm_manager.GetBackingBlocksForRange(source, size));
|
|
VAddr interval_target = target;
|
|
for (const auto [backing_memory, block_size] : backing_blocks) {
|
|
auto target_vma =
|
|
vm_manager.MapBackingMemory(interval_target, backing_memory, block_size, target_state);
|
|
ASSERT(target_vma.Succeeded());
|
|
vm_manager.Reprotect(target_vma.Unwrap(), perms);
|
|
interval_target += block_size;
|
|
}
|
|
|
|
return RESULT_SUCCESS;
|
|
}
|
|
ResultCode Process::Unmap(VAddr target, VAddr source, u32 size, VMAPermission perms,
|
|
bool privileged) {
|
|
LOG_DEBUG(Kernel, "Unmap memory target={:08X}, source={:08X}, size={:08X}, perms={:08X}",
|
|
target, source, size, static_cast<u8>(perms));
|
|
if (source < Memory::HEAP_VADDR || source + size > Memory::HEAP_VADDR_END ||
|
|
source + size < source) {
|
|
LOG_ERROR(Kernel, "Invalid source address");
|
|
return ERR_INVALID_ADDRESS;
|
|
}
|
|
|
|
// TODO(wwylele): check target address range. Is it also restricted to heap region?
|
|
|
|
// TODO(wwylele): check that the source and the target are actually a pair created by Map
|
|
// Should return error 0xD8E007F5 in this case
|
|
|
|
if (source - target < size || target - source < size) {
|
|
if (privileged) {
|
|
if (source == target) {
|
|
// privileged Unmap allows identical source and target address, which simply changes
|
|
// the state and the permission of the memory
|
|
return vm_manager.ChangeMemoryState(source, size, MemoryState::AliasCode,
|
|
VMAPermission::None, MemoryState::Private,
|
|
perms);
|
|
} else {
|
|
return ERR_INVALID_ADDRESS;
|
|
}
|
|
} else {
|
|
return ERR_INVALID_ADDRESS_STATE;
|
|
}
|
|
}
|
|
|
|
MemoryState source_state = privileged ? MemoryState::Locked : MemoryState::Aliased;
|
|
|
|
CASCADE_CODE(vm_manager.UnmapRange(target, size));
|
|
|
|
// Change back source region state. Note that the permission is reprotected according to param
|
|
CASCADE_CODE(vm_manager.ChangeMemoryState(source, size, source_state, VMAPermission::None,
|
|
MemoryState::Private, perms));
|
|
|
|
return RESULT_SUCCESS;
|
|
}
|
|
|
|
Kernel::Process::Process(KernelSystem& kernel)
|
|
: Object(kernel), handle_table(kernel), kernel(kernel), vm_manager(kernel.memory) {
|
|
|
|
kernel.memory.RegisterPageTable(&vm_manager.page_table);
|
|
}
|
|
Kernel::Process::~Process() {
|
|
// Release all objects this process owns first so that their potential destructor can do clean
|
|
// up with this process before further destruction.
|
|
// TODO(wwylele): explicitly destroy or invalidate objects this process owns (threads, shared
|
|
// memory etc.) even if they are still referenced by other processes.
|
|
handle_table.Clear();
|
|
|
|
kernel.memory.UnregisterPageTable(&vm_manager.page_table);
|
|
}
|
|
|
|
std::shared_ptr<Process> KernelSystem::GetProcessById(u32 process_id) const {
|
|
auto itr = std::find_if(
|
|
process_list.begin(), process_list.end(),
|
|
[&](const std::shared_ptr<Process>& process) { return process->process_id == process_id; });
|
|
|
|
if (itr == process_list.end())
|
|
return nullptr;
|
|
|
|
return *itr;
|
|
}
|
|
} // namespace Kernel
|