emit_x64_floating_point: Reduce NaN processing overhead

This commit is contained in:
MerryMage 2018-08-02 17:17:23 +01:00
parent f5e11d117a
commit 07e0585994

View file

@ -207,6 +207,152 @@ Xbyak::Label ProcessNaN(BlockOfCode& code, Xbyak::Xmm a) {
return end;
}
// This is necessary because x86 and ARM differ in they way they return NaNs from floating point operations
//
// ARM behaviour:
// op1 op2 result
// SNaN SNaN/QNaN op1
// QNaN SNaN op2
// QNaN QNaN op1
// SNaN/QNaN other op1
// other SNaN/QNaN op2
//
// x86 behaviour:
// op1 op2 result
// SNaN/QNaN SNaN/QNaN op1
// SNaN/QNaN other op1
// other SNaN/QNaN op2
//
// With ARM: SNaNs take priority. With x86: it doesn't matter.
//
// From the above we can see what differs between the architectures is
// the case when op1 == QNaN and op2 == SNaN.
//
// We assume that registers op1 and op2 are read-only. This function also trashes xmm0.
// We allow for the case where op1 and result are the same register. We do not read from op1 once result is written to.
template<size_t fsize>
void EmitPostProcessNaNs(BlockOfCode& code, Xbyak::Xmm result, Xbyak::Xmm op1, Xbyak::Xmm op2, Xbyak::Reg64 tmp, Xbyak::Label end) {
using FPT = mp::unsigned_integer_of_size<fsize>;
constexpr FPT exponent_mask = FP::FPInfo<FPT>::exponent_mask;
constexpr FPT mantissa_msb = FP::FPInfo<FPT>::mantissa_msb;
constexpr u8 mantissa_msb_bit = static_cast<u8>(FP::FPInfo<FPT>::explicit_mantissa_width - 1);
// At this point we know that at least one of op1 and op2 is a NaN.
// Thus in op1 ^ op2 at least one of the two would have all 1 bits in the exponent.
// Keeping in mind xor is commutative, there are only four cases:
// SNaN ^ SNaN/Inf -> exponent == 0, mantissa_msb == 0
// QNaN ^ QNaN -> exponent == 0, mantissa_msb == 0
// QNaN ^ SNaN/Inf -> exponent == 0, mantissa_msb == 1
// SNaN/QNaN ^ Otherwise -> exponent != 0, mantissa_msb == ?
//
// We're only really interested in op1 == QNaN and op2 == SNaN,
// so we filter out everything else.
//
// We do it this way instead of checking that op1 is QNaN because
// op1 == QNaN && op2 == QNaN is the most common case. With this method
// that case would only require one branch.
if (code.DoesCpuSupport(Xbyak::util::Cpu::tAVX)) {
code.vxorps(xmm0, op1, op2);
} else {
code.movaps(xmm0, op1);
code.xorps(xmm0, op2);
}
constexpr size_t shift = fsize == 32 ? 0 : 48;
if constexpr (fsize == 32) {
code.movd(tmp.cvt32(), xmm0);
} else {
// We do this to avoid requiring 64-bit immediates
code.pextrw(tmp.cvt32(), xmm0, shift / 16);
}
code.and_(tmp.cvt32(), static_cast<u32>((exponent_mask | mantissa_msb) >> shift));
code.cmp(tmp.cvt32(), static_cast<u32>(mantissa_msb >> shift));
code.jne(end, code.T_NEAR);
// If we're here there are four cases left:
// op1 == SNaN && op2 == QNaN
// op1 == Inf && op2 == QNaN
// op1 == QNaN && op2 == SNaN <<< The problematic case
// op1 == QNaN && op2 == Inf
if constexpr (fsize == 32) {
code.movd(tmp.cvt32(), op2);
code.shl(tmp.cvt32(), 32 - mantissa_msb_bit);
} else {
code.movq(tmp, op2);
code.shl(tmp, 64 - mantissa_msb_bit);
}
// If op2 is a SNaN, CF = 0 and ZF = 0.
code.jna(end, code.T_NEAR);
// Silence the SNaN as required by spec.
if (code.DoesCpuSupport(Xbyak::util::Cpu::tAVX)) {
code.vorps(result, op2, code.MConst(xword, mantissa_msb));
} else {
code.movaps(result, op2);
code.orps(result, code.MConst(xword, mantissa_msb));
}
code.jmp(end, code.T_NEAR);
}
// Do full NaN processing.
template<size_t fsize>
void EmitProcessNaNs(BlockOfCode& code, Xbyak::Xmm result, Xbyak::Xmm op1, Xbyak::Xmm op2, Xbyak::Reg64 tmp, Xbyak::Label end) {
using FPT = mp::unsigned_integer_of_size<fsize>;
constexpr FPT exponent_mask = FP::FPInfo<FPT>::exponent_mask;
constexpr FPT mantissa_msb = FP::FPInfo<FPT>::mantissa_msb;
constexpr u8 mantissa_msb_bit = static_cast<u8>(FP::FPInfo<FPT>::explicit_mantissa_width - 1);
Xbyak::Label return_sum;
if (code.DoesCpuSupport(Xbyak::util::Cpu::tAVX)) {
code.vxorps(xmm0, op1, op2);
} else {
code.movaps(xmm0, op1);
code.xorps(xmm0, op2);
}
constexpr size_t shift = fsize == 32 ? 0 : 48;
if constexpr (fsize == 32) {
code.movd(tmp.cvt32(), xmm0);
} else {
code.pextrw(tmp.cvt32(), xmm0, shift / 16);
}
code.and_(tmp.cvt32(), static_cast<u32>((exponent_mask | mantissa_msb) >> shift));
code.cmp(tmp.cvt32(), static_cast<u32>(mantissa_msb >> shift));
code.jne(return_sum);
if constexpr (fsize == 32) {
code.movd(tmp.cvt32(), op2);
code.shl(tmp.cvt32(), 32 - mantissa_msb_bit);
} else {
code.movq(tmp, op2);
code.shl(tmp, 64 - mantissa_msb_bit);
}
code.jna(return_sum);
if (code.DoesCpuSupport(Xbyak::util::Cpu::tAVX)) {
code.vorps(result, op2, code.MConst(xword, mantissa_msb));
} else {
code.movaps(result, op2);
code.orps(result, code.MConst(xword, mantissa_msb));
}
code.jmp(end, code.T_NEAR);
// x86 behaviour is reliable in this case
code.L(return_sum);
if (result == op1) {
FCODE(adds)(result, op2);
} else if (code.DoesCpuSupport(Xbyak::util::Cpu::tAVX)) {
FCODE(vadds)(result, op1, op2);
} else {
code.movaps(result, op1);
FCODE(adds)(result, op2);
}
code.jmp(end, code.T_NEAR);
}
template <size_t fsize, typename Function>
void FPTwoOp(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst, Function fn) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
@ -274,8 +420,58 @@ void FPThreeOp(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst, [[maybe_unus
}
template <size_t fsize, typename Function>
void FPThreeOp(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst, Function fn, CallDenormalsAreZero call_denormals_are_zero = CallDenormalsAreZero::No) {
FPThreeOp<fsize>(code, ctx, inst, nullptr, fn, call_denormals_are_zero);
void FPThreeOp(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst, Function fn) {
using FPT = mp::unsigned_integer_of_size<fsize>;
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
if (ctx.FPSCR_DN() || !ctx.AccurateNaN()) {
const Xbyak::Xmm result = ctx.reg_alloc.UseScratchXmm(args[0]);
const Xbyak::Xmm operand = ctx.reg_alloc.UseScratchXmm(args[1]);
if constexpr (std::is_member_function_pointer_v<Function>) {
(code.*fn)(result, operand);
} else {
fn(result, operand);
}
if (ctx.AccurateNaN()) {
ForceToDefaultNaN<fsize>(code, result);
}
ctx.reg_alloc.DefineValue(inst, result);
return;
}
const Xbyak::Xmm op1 = ctx.reg_alloc.UseXmm(args[0]);
const Xbyak::Xmm op2 = ctx.reg_alloc.UseXmm(args[1]);
const Xbyak::Xmm result = ctx.reg_alloc.ScratchXmm();
const Xbyak::Reg64 tmp = ctx.reg_alloc.ScratchGpr();
Xbyak::Label end, nan, op_are_nans;
code.movaps(result, op1);
if constexpr (std::is_member_function_pointer_v<Function>) {
(code.*fn)(result, op2);
} else {
fn(result, op2);
}
FCODE(ucomis)(result, result);
code.jp(nan, code.T_NEAR);
code.L(end);
code.SwitchToFarCode();
code.L(nan);
FCODE(ucomis)(op1, op2);
code.jp(op_are_nans);
// Here we must return a positive NaN, because the indefinite value on x86 is a negative NaN!
code.movaps(result, code.MConst(xword, FP::FPInfo<FPT>::DefaultNaN()));
code.jmp(end, code.T_NEAR);
code.L(op_are_nans);
EmitPostProcessNaNs<fsize>(code, result, op1, op2, tmp, end);
code.SwitchToNearCode();
ctx.reg_alloc.DefineValue(inst, result);
}
} // anonymous namespace
@ -334,14 +530,13 @@ void EmitX64::EmitFPDiv64(EmitContext& ctx, IR::Inst* inst) {
template<size_t fsize>
static void EmitFPMax(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst) {
if (ctx.FPSCR_DN()) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const Xbyak::Xmm result = ctx.reg_alloc.UseScratchXmm(args[0]);
const Xbyak::Xmm operand = ctx.reg_alloc.UseScratchXmm(args[1]);
const Xbyak::Reg64 gpr_scratch = ctx.reg_alloc.ScratchGpr();
if (ctx.FPSCR_FTZ()) {
const Xbyak::Reg64 gpr_scratch = ctx.reg_alloc.ScratchGpr();
DenormalsAreZero<fsize>(code, result, gpr_scratch);
DenormalsAreZero<fsize>(code, operand, gpr_scratch);
}
@ -361,26 +556,16 @@ static void EmitFPMax(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst) {
code.jmp(end);
code.L(nan);
if (ctx.FPSCR_DN() || !ctx.AccurateNaN()) {
code.movaps(result, code.MConst(xword, fsize == 32 ? f32_nan : f64_nan));
code.jmp(end);
} else {
EmitProcessNaNs<fsize>(code, result, result, operand, gpr_scratch, end);
}
code.SwitchToNearCode();
ctx.reg_alloc.DefineValue(inst, result);
return;
}
FPThreeOp<fsize>(code, ctx, inst, [&](Xbyak::Xmm result, Xbyak::Xmm operand){
Xbyak::Label equal, end;
FCODE(ucomis)(result, operand);
code.jz(equal);
FCODE(maxs)(result, operand);
code.jmp(end);
code.L(equal);
code.andps(result, operand);
code.L(end);
}, CallDenormalsAreZero::Yes);
}
void EmitX64::EmitFPMax32(EmitContext& ctx, IR::Inst* inst) {
@ -461,14 +646,13 @@ void EmitX64::EmitFPMaxNumeric64(EmitContext& ctx, IR::Inst* inst) {
template<size_t fsize>
static void EmitFPMin(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst) {
if (ctx.FPSCR_DN()) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const Xbyak::Xmm result = ctx.reg_alloc.UseScratchXmm(args[0]);
const Xbyak::Xmm operand = ctx.reg_alloc.UseScratchXmm(args[1]);
const Xbyak::Reg64 gpr_scratch = ctx.reg_alloc.ScratchGpr();
if (ctx.FPSCR_FTZ()) {
const Xbyak::Reg64 gpr_scratch = ctx.reg_alloc.ScratchGpr();
DenormalsAreZero<fsize>(code, result, gpr_scratch);
DenormalsAreZero<fsize>(code, operand, gpr_scratch);
}
@ -488,26 +672,16 @@ static void EmitFPMin(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst) {
code.jmp(end);
code.L(nan);
if (ctx.FPSCR_DN()) {
code.movaps(result, code.MConst(xword, fsize == 32 ? f32_nan : f64_nan));
code.jmp(end);
} else {
EmitProcessNaNs<fsize>(code, result, result, operand, gpr_scratch, end);
}
code.SwitchToNearCode();
ctx.reg_alloc.DefineValue(inst, result);
return;
}
FPThreeOp<fsize>(code, ctx, inst, [&](Xbyak::Xmm result, Xbyak::Xmm operand){
Xbyak::Label equal, end;
FCODE(ucomis)(result, operand);
code.jz(equal);
FCODE(mins)(result, operand);
code.jmp(end);
code.L(equal);
code.orps(result, operand);
code.L(end);
}, CallDenormalsAreZero::Yes);
}
void EmitX64::EmitFPMin32(EmitContext& ctx, IR::Inst* inst) {