ir_emitter: Should be in the IR namespace, not the Arm namespace

This commit is contained in:
MerryMage 2016-08-25 17:36:42 +01:00
parent 922d1fd198
commit 30df51c2dc
6 changed files with 363 additions and 363 deletions

View file

@ -8,7 +8,7 @@
#include "ir_emitter.h" #include "ir_emitter.h"
namespace Dynarmic { namespace Dynarmic {
namespace Arm { namespace IR {
void IREmitter::Unimplemented() { void IREmitter::Unimplemented() {
@ -24,542 +24,542 @@ u32 IREmitter::AlignPC(size_t alignment) {
return static_cast<u32>(pc - pc % alignment); return static_cast<u32>(pc - pc % alignment);
} }
IR::Value IREmitter::Imm1(bool imm1) { Value IREmitter::Imm1(bool imm1) {
return IR::Value(imm1); return Value(imm1);
} }
IR::Value IREmitter::Imm8(u8 imm8) { Value IREmitter::Imm8(u8 imm8) {
return IR::Value(imm8); return Value(imm8);
} }
IR::Value IREmitter::Imm32(u32 imm32) { Value IREmitter::Imm32(u32 imm32) {
return IR::Value(imm32); return Value(imm32);
} }
IR::Value IREmitter::GetRegister(Reg reg) { Value IREmitter::GetRegister(Arm::Reg reg) {
if (reg == Reg::PC) { if (reg == Arm::Reg::PC) {
return Imm32(PC()); return Imm32(PC());
} }
return Inst(IR::Opcode::GetRegister, { IR::Value(reg) }); return Inst(Opcode::GetRegister, { Value(reg) });
} }
IR::Value IREmitter::GetExtendedRegister(ExtReg reg) { Value IREmitter::GetExtendedRegister(Arm::ExtReg reg) {
if (reg >= Arm::ExtReg::S0 && reg <= Arm::ExtReg::S31) { if (reg >= Arm::ExtReg::S0 && reg <= Arm::ExtReg::S31) {
return Inst(IR::Opcode::GetExtendedRegister32, {IR::Value(reg)}); return Inst(Opcode::GetExtendedRegister32, {Value(reg)});
} else if (reg >= Arm::ExtReg::D0 && reg <= Arm::ExtReg::D31) { } else if (reg >= Arm::ExtReg::D0 && reg <= Arm::ExtReg::D31) {
return Inst(IR::Opcode::GetExtendedRegister64, {IR::Value(reg)}); return Inst(Opcode::GetExtendedRegister64, {Value(reg)});
} else { } else {
ASSERT_MSG(false, "Invalid reg."); ASSERT_MSG(false, "Invalid reg.");
} }
} }
void IREmitter::SetRegister(const Reg reg, const IR::Value& value) { void IREmitter::SetRegister(const Arm::Reg reg, const Value& value) {
ASSERT(reg != Reg::PC); ASSERT(reg != Arm::Reg::PC);
Inst(IR::Opcode::SetRegister, { IR::Value(reg), value }); Inst(Opcode::SetRegister, { Value(reg), value });
} }
void IREmitter::SetExtendedRegister(const ExtReg reg, const IR::Value& value) { void IREmitter::SetExtendedRegister(const Arm::ExtReg reg, const Value& value) {
if (reg >= Arm::ExtReg::S0 && reg <= Arm::ExtReg::S31) { if (reg >= Arm::ExtReg::S0 && reg <= Arm::ExtReg::S31) {
Inst(IR::Opcode::SetExtendedRegister32, {IR::Value(reg), value}); Inst(Opcode::SetExtendedRegister32, {Value(reg), value});
} else if (reg >= Arm::ExtReg::D0 && reg <= Arm::ExtReg::D31) { } else if (reg >= Arm::ExtReg::D0 && reg <= Arm::ExtReg::D31) {
Inst(IR::Opcode::SetExtendedRegister64, {IR::Value(reg), value}); Inst(Opcode::SetExtendedRegister64, {Value(reg), value});
} else { } else {
ASSERT_MSG(false, "Invalid reg."); ASSERT_MSG(false, "Invalid reg.");
} }
} }
void IREmitter::ALUWritePC(const IR::Value& value) { void IREmitter::ALUWritePC(const Value& value) {
// This behaviour is ARM version-dependent. // This behaviour is ARM version-dependent.
// The below implementation is for ARMv6k // The below implementation is for ARMv6k
BranchWritePC(value); BranchWritePC(value);
} }
void IREmitter::BranchWritePC(const IR::Value& value) { void IREmitter::BranchWritePC(const Value& value) {
if (!current_location.TFlag()) { if (!current_location.TFlag()) {
auto new_pc = And(value, Imm32(0xFFFFFFFC)); auto new_pc = And(value, Imm32(0xFFFFFFFC));
Inst(IR::Opcode::SetRegister, { IR::Value(Reg::PC), new_pc }); Inst(Opcode::SetRegister, { Value(Arm::Reg::PC), new_pc });
} else { } else {
auto new_pc = And(value, Imm32(0xFFFFFFFE)); auto new_pc = And(value, Imm32(0xFFFFFFFE));
Inst(IR::Opcode::SetRegister, { IR::Value(Reg::PC), new_pc }); Inst(Opcode::SetRegister, { Value(Arm::Reg::PC), new_pc });
} }
} }
void IREmitter::BXWritePC(const IR::Value& value) { void IREmitter::BXWritePC(const Value& value) {
Inst(IR::Opcode::BXWritePC, {value}); Inst(Opcode::BXWritePC, {value});
} }
void IREmitter::LoadWritePC(const IR::Value& value) { void IREmitter::LoadWritePC(const Value& value) {
// This behaviour is ARM version-dependent. // This behaviour is ARM version-dependent.
// The below implementation is for ARMv6k // The below implementation is for ARMv6k
BXWritePC(value); BXWritePC(value);
} }
void IREmitter::CallSupervisor(const IR::Value& value) { void IREmitter::CallSupervisor(const Value& value) {
Inst(IR::Opcode::CallSupervisor, {value}); Inst(Opcode::CallSupervisor, {value});
} }
void IREmitter::PushRSB(const LocationDescriptor& return_location) { void IREmitter::PushRSB(const Arm::LocationDescriptor& return_location) {
Inst(IR::Opcode::PushRSB, {IR::Value(return_location.UniqueHash())}); Inst(Opcode::PushRSB, {Value(return_location.UniqueHash())});
} }
IR::Value IREmitter::GetCpsr() { Value IREmitter::GetCpsr() {
return Inst(IR::Opcode::GetCpsr, {}); return Inst(Opcode::GetCpsr, {});
} }
void IREmitter::SetCpsr(const IR::Value& value) { void IREmitter::SetCpsr(const Value& value) {
Inst(IR::Opcode::SetCpsr, {value}); Inst(Opcode::SetCpsr, {value});
} }
IR::Value IREmitter::GetCFlag() { Value IREmitter::GetCFlag() {
return Inst(IR::Opcode::GetCFlag, {}); return Inst(Opcode::GetCFlag, {});
} }
void IREmitter::SetNFlag(const IR::Value& value) { void IREmitter::SetNFlag(const Value& value) {
Inst(IR::Opcode::SetNFlag, {value}); Inst(Opcode::SetNFlag, {value});
} }
void IREmitter::SetZFlag(const IR::Value& value) { void IREmitter::SetZFlag(const Value& value) {
Inst(IR::Opcode::SetZFlag, {value}); Inst(Opcode::SetZFlag, {value});
} }
void IREmitter::SetCFlag(const IR::Value& value) { void IREmitter::SetCFlag(const Value& value) {
Inst(IR::Opcode::SetCFlag, {value}); Inst(Opcode::SetCFlag, {value});
} }
void IREmitter::SetVFlag(const IR::Value& value) { void IREmitter::SetVFlag(const Value& value) {
Inst(IR::Opcode::SetVFlag, {value}); Inst(Opcode::SetVFlag, {value});
} }
void IREmitter::OrQFlag(const IR::Value& value) { void IREmitter::OrQFlag(const Value& value) {
Inst(IR::Opcode::OrQFlag, {value}); Inst(Opcode::OrQFlag, {value});
} }
IR::Value IREmitter::Pack2x32To1x64(const IR::Value& lo, const IR::Value& hi) Value IREmitter::Pack2x32To1x64(const Value& lo, const Value& hi)
{ {
return Inst(IR::Opcode::Pack2x32To1x64, {lo, hi}); return Inst(Opcode::Pack2x32To1x64, {lo, hi});
} }
IR::Value IREmitter::LeastSignificantWord(const IR::Value& value) { Value IREmitter::LeastSignificantWord(const Value& value) {
return Inst(IR::Opcode::LeastSignificantWord, {value}); return Inst(Opcode::LeastSignificantWord, {value});
} }
IREmitter::ResultAndCarry IREmitter::MostSignificantWord(const IR::Value& value) { IREmitter::ResultAndCarry IREmitter::MostSignificantWord(const Value& value) {
auto result = Inst(IR::Opcode::MostSignificantWord, {value}); auto result = Inst(Opcode::MostSignificantWord, {value});
auto carry_out = Inst(IR::Opcode::GetCarryFromOp, {result}); auto carry_out = Inst(Opcode::GetCarryFromOp, {result});
return {result, carry_out}; return {result, carry_out};
} }
IR::Value IREmitter::LeastSignificantHalf(const IR::Value& value) { Value IREmitter::LeastSignificantHalf(const Value& value) {
return Inst(IR::Opcode::LeastSignificantHalf, {value}); return Inst(Opcode::LeastSignificantHalf, {value});
} }
IR::Value IREmitter::LeastSignificantByte(const IR::Value& value) { Value IREmitter::LeastSignificantByte(const Value& value) {
return Inst(IR::Opcode::LeastSignificantByte, {value}); return Inst(Opcode::LeastSignificantByte, {value});
} }
IR::Value IREmitter::MostSignificantBit(const IR::Value& value) { Value IREmitter::MostSignificantBit(const Value& value) {
return Inst(IR::Opcode::MostSignificantBit, {value}); return Inst(Opcode::MostSignificantBit, {value});
} }
IR::Value IREmitter::IsZero(const IR::Value& value) { Value IREmitter::IsZero(const Value& value) {
return Inst(IR::Opcode::IsZero, {value}); return Inst(Opcode::IsZero, {value});
} }
IR::Value IREmitter::IsZero64(const IR::Value& value) { Value IREmitter::IsZero64(const Value& value) {
return Inst(IR::Opcode::IsZero64, {value}); return Inst(Opcode::IsZero64, {value});
} }
IREmitter::ResultAndCarry IREmitter::LogicalShiftLeft(const IR::Value& value_in, const IR::Value& shift_amount, const IR::Value& carry_in) { IREmitter::ResultAndCarry IREmitter::LogicalShiftLeft(const Value& value_in, const Value& shift_amount, const Value& carry_in) {
auto result = Inst(IR::Opcode::LogicalShiftLeft, {value_in, shift_amount, carry_in}); auto result = Inst(Opcode::LogicalShiftLeft, {value_in, shift_amount, carry_in});
auto carry_out = Inst(IR::Opcode::GetCarryFromOp, {result}); auto carry_out = Inst(Opcode::GetCarryFromOp, {result});
return {result, carry_out}; return {result, carry_out};
} }
IREmitter::ResultAndCarry IREmitter::LogicalShiftRight(const IR::Value& value_in, const IR::Value& shift_amount, const IR::Value& carry_in) { IREmitter::ResultAndCarry IREmitter::LogicalShiftRight(const Value& value_in, const Value& shift_amount, const Value& carry_in) {
auto result = Inst(IR::Opcode::LogicalShiftRight, {value_in, shift_amount, carry_in}); auto result = Inst(Opcode::LogicalShiftRight, {value_in, shift_amount, carry_in});
auto carry_out = Inst(IR::Opcode::GetCarryFromOp, {result}); auto carry_out = Inst(Opcode::GetCarryFromOp, {result});
return {result, carry_out}; return {result, carry_out};
} }
IR::Value IREmitter::LogicalShiftRight64(const IR::Value& value_in, const IR::Value& shift_amount) { Value IREmitter::LogicalShiftRight64(const Value& value_in, const Value& shift_amount) {
return Inst(IR::Opcode::LogicalShiftRight64, {value_in, shift_amount}); return Inst(Opcode::LogicalShiftRight64, {value_in, shift_amount});
} }
IREmitter::ResultAndCarry IREmitter::ArithmeticShiftRight(const IR::Value& value_in, const IR::Value& shift_amount, const IR::Value& carry_in) { IREmitter::ResultAndCarry IREmitter::ArithmeticShiftRight(const Value& value_in, const Value& shift_amount, const Value& carry_in) {
auto result = Inst(IR::Opcode::ArithmeticShiftRight, {value_in, shift_amount, carry_in}); auto result = Inst(Opcode::ArithmeticShiftRight, {value_in, shift_amount, carry_in});
auto carry_out = Inst(IR::Opcode::GetCarryFromOp, {result}); auto carry_out = Inst(Opcode::GetCarryFromOp, {result});
return {result, carry_out}; return {result, carry_out};
} }
IREmitter::ResultAndCarry IREmitter::RotateRight(const IR::Value& value_in, const IR::Value& shift_amount, const IR::Value& carry_in) { IREmitter::ResultAndCarry IREmitter::RotateRight(const Value& value_in, const Value& shift_amount, const Value& carry_in) {
auto result = Inst(IR::Opcode::RotateRight, {value_in, shift_amount, carry_in}); auto result = Inst(Opcode::RotateRight, {value_in, shift_amount, carry_in});
auto carry_out = Inst(IR::Opcode::GetCarryFromOp, {result}); auto carry_out = Inst(Opcode::GetCarryFromOp, {result});
return {result, carry_out}; return {result, carry_out};
} }
IREmitter::ResultAndCarry IREmitter::RotateRightExtended(const IR::Value& value_in, const IR::Value& carry_in) { IREmitter::ResultAndCarry IREmitter::RotateRightExtended(const Value& value_in, const Value& carry_in) {
auto result = Inst(IR::Opcode::RotateRightExtended, {value_in, carry_in}); auto result = Inst(Opcode::RotateRightExtended, {value_in, carry_in});
auto carry_out = Inst(IR::Opcode::GetCarryFromOp, {result}); auto carry_out = Inst(Opcode::GetCarryFromOp, {result});
return {result, carry_out}; return {result, carry_out};
} }
IREmitter::ResultAndCarryAndOverflow IREmitter::AddWithCarry(const IR::Value& a, const IR::Value& b, const IR::Value& carry_in) { IREmitter::ResultAndCarryAndOverflow IREmitter::AddWithCarry(const Value& a, const Value& b, const Value& carry_in) {
auto result = Inst(IR::Opcode::AddWithCarry, {a, b, carry_in}); auto result = Inst(Opcode::AddWithCarry, {a, b, carry_in});
auto carry_out = Inst(IR::Opcode::GetCarryFromOp, {result}); auto carry_out = Inst(Opcode::GetCarryFromOp, {result});
auto overflow = Inst(IR::Opcode::GetOverflowFromOp, {result}); auto overflow = Inst(Opcode::GetOverflowFromOp, {result});
return {result, carry_out, overflow}; return {result, carry_out, overflow};
} }
IR::Value IREmitter::Add(const IR::Value& a, const IR::Value& b) { Value IREmitter::Add(const Value& a, const Value& b) {
return Inst(IR::Opcode::AddWithCarry, {a, b, Imm1(0)}); return Inst(Opcode::AddWithCarry, {a, b, Imm1(0)});
} }
IR::Value IREmitter::Add64(const IR::Value& a, const IR::Value& b) { Value IREmitter::Add64(const Value& a, const Value& b) {
return Inst(IR::Opcode::Add64, {a, b}); return Inst(Opcode::Add64, {a, b});
} }
IREmitter::ResultAndCarryAndOverflow IREmitter::SubWithCarry(const IR::Value& a, const IR::Value& b, const IR::Value& carry_in) { IREmitter::ResultAndCarryAndOverflow IREmitter::SubWithCarry(const Value& a, const Value& b, const Value& carry_in) {
// This is equivalent to AddWithCarry(a, Not(b), carry_in). // This is equivalent to AddWithCarry(a, Not(b), carry_in).
auto result = Inst(IR::Opcode::SubWithCarry, {a, b, carry_in}); auto result = Inst(Opcode::SubWithCarry, {a, b, carry_in});
auto carry_out = Inst(IR::Opcode::GetCarryFromOp, {result}); auto carry_out = Inst(Opcode::GetCarryFromOp, {result});
auto overflow = Inst(IR::Opcode::GetOverflowFromOp, {result}); auto overflow = Inst(Opcode::GetOverflowFromOp, {result});
return {result, carry_out, overflow}; return {result, carry_out, overflow};
} }
IR::Value IREmitter::Sub(const IR::Value& a, const IR::Value& b) { Value IREmitter::Sub(const Value& a, const Value& b) {
return Inst(IR::Opcode::SubWithCarry, {a, b, Imm1(1)}); return Inst(Opcode::SubWithCarry, {a, b, Imm1(1)});
} }
IR::Value IREmitter::Sub64(const IR::Value& a, const IR::Value& b) { Value IREmitter::Sub64(const Value& a, const Value& b) {
return Inst(IR::Opcode::Sub64, {a, b}); return Inst(Opcode::Sub64, {a, b});
} }
IR::Value IREmitter::Mul(const IR::Value& a, const IR::Value& b) { Value IREmitter::Mul(const Value& a, const Value& b) {
return Inst(IR::Opcode::Mul, {a, b}); return Inst(Opcode::Mul, {a, b});
} }
IR::Value IREmitter::Mul64(const IR::Value& a, const IR::Value& b) { Value IREmitter::Mul64(const Value& a, const Value& b) {
return Inst(IR::Opcode::Mul64, {a, b}); return Inst(Opcode::Mul64, {a, b});
} }
IR::Value IREmitter::And(const IR::Value& a, const IR::Value& b) { Value IREmitter::And(const Value& a, const Value& b) {
return Inst(IR::Opcode::And, {a, b}); return Inst(Opcode::And, {a, b});
} }
IR::Value IREmitter::Eor(const IR::Value& a, const IR::Value& b) { Value IREmitter::Eor(const Value& a, const Value& b) {
return Inst(IR::Opcode::Eor, {a, b}); return Inst(Opcode::Eor, {a, b});
} }
IR::Value IREmitter::Or(const IR::Value& a, const IR::Value& b) { Value IREmitter::Or(const Value& a, const Value& b) {
return Inst(IR::Opcode::Or, {a, b}); return Inst(Opcode::Or, {a, b});
} }
IR::Value IREmitter::Not(const IR::Value& a) { Value IREmitter::Not(const Value& a) {
return Inst(IR::Opcode::Not, {a}); return Inst(Opcode::Not, {a});
} }
IR::Value IREmitter::SignExtendWordToLong(const IR::Value& a) { Value IREmitter::SignExtendWordToLong(const Value& a) {
return Inst(IR::Opcode::SignExtendWordToLong, {a}); return Inst(Opcode::SignExtendWordToLong, {a});
} }
IR::Value IREmitter::SignExtendHalfToWord(const IR::Value& a) { Value IREmitter::SignExtendHalfToWord(const Value& a) {
return Inst(IR::Opcode::SignExtendHalfToWord, {a}); return Inst(Opcode::SignExtendHalfToWord, {a});
} }
IR::Value IREmitter::SignExtendByteToWord(const IR::Value& a) { Value IREmitter::SignExtendByteToWord(const Value& a) {
return Inst(IR::Opcode::SignExtendByteToWord, {a}); return Inst(Opcode::SignExtendByteToWord, {a});
} }
IR::Value IREmitter::ZeroExtendWordToLong(const IR::Value& a) { Value IREmitter::ZeroExtendWordToLong(const Value& a) {
return Inst(IR::Opcode::ZeroExtendWordToLong, {a}); return Inst(Opcode::ZeroExtendWordToLong, {a});
} }
IR::Value IREmitter::ZeroExtendHalfToWord(const IR::Value& a) { Value IREmitter::ZeroExtendHalfToWord(const Value& a) {
return Inst(IR::Opcode::ZeroExtendHalfToWord, {a}); return Inst(Opcode::ZeroExtendHalfToWord, {a});
} }
IR::Value IREmitter::ZeroExtendByteToWord(const IR::Value& a) { Value IREmitter::ZeroExtendByteToWord(const Value& a) {
return Inst(IR::Opcode::ZeroExtendByteToWord, {a}); return Inst(Opcode::ZeroExtendByteToWord, {a});
} }
IR::Value IREmitter::ByteReverseWord(const IR::Value& a) { Value IREmitter::ByteReverseWord(const Value& a) {
return Inst(IR::Opcode::ByteReverseWord, {a}); return Inst(Opcode::ByteReverseWord, {a});
} }
IR::Value IREmitter::ByteReverseHalf(const IR::Value& a) { Value IREmitter::ByteReverseHalf(const Value& a) {
return Inst(IR::Opcode::ByteReverseHalf, {a}); return Inst(Opcode::ByteReverseHalf, {a});
} }
IR::Value IREmitter::ByteReverseDual(const IR::Value& a) { Value IREmitter::ByteReverseDual(const Value& a) {
return Inst(IR::Opcode::ByteReverseDual, {a}); return Inst(Opcode::ByteReverseDual, {a});
} }
IR::Value IREmitter::PackedSaturatedAddU8(const IR::Value& a, const IR::Value& b) { Value IREmitter::PackedSaturatedAddU8(const Value& a, const Value& b) {
return Inst(IR::Opcode::PackedSaturatedAddU8, {a, b}); return Inst(Opcode::PackedSaturatedAddU8, {a, b});
} }
IR::Value IREmitter::PackedSaturatedAddS8(const IR::Value& a, const IR::Value& b) { Value IREmitter::PackedSaturatedAddS8(const Value& a, const Value& b) {
return Inst(IR::Opcode::PackedSaturatedAddS8, {a, b}); return Inst(Opcode::PackedSaturatedAddS8, {a, b});
} }
IR::Value IREmitter::PackedSaturatedSubU8(const IR::Value& a, const IR::Value& b) { Value IREmitter::PackedSaturatedSubU8(const Value& a, const Value& b) {
return Inst(IR::Opcode::PackedSaturatedSubU8, {a, b}); return Inst(Opcode::PackedSaturatedSubU8, {a, b});
} }
IR::Value IREmitter::PackedSaturatedSubS8(const IR::Value& a, const IR::Value& b) { Value IREmitter::PackedSaturatedSubS8(const Value& a, const Value& b) {
return Inst(IR::Opcode::PackedSaturatedSubS8, {a, b}); return Inst(Opcode::PackedSaturatedSubS8, {a, b});
} }
IR::Value IREmitter::PackedSaturatedAddU16(const IR::Value& a, const IR::Value& b) { Value IREmitter::PackedSaturatedAddU16(const Value& a, const Value& b) {
return Inst(IR::Opcode::PackedSaturatedAddU16, {a, b}); return Inst(Opcode::PackedSaturatedAddU16, {a, b});
} }
IR::Value IREmitter::PackedSaturatedAddS16(const IR::Value& a, const IR::Value& b) { Value IREmitter::PackedSaturatedAddS16(const Value& a, const Value& b) {
return Inst(IR::Opcode::PackedSaturatedAddS16, {a, b}); return Inst(Opcode::PackedSaturatedAddS16, {a, b});
} }
IR::Value IREmitter::PackedSaturatedSubU16(const IR::Value& a, const IR::Value& b) { Value IREmitter::PackedSaturatedSubU16(const Value& a, const Value& b) {
return Inst(IR::Opcode::PackedSaturatedSubU16, {a, b}); return Inst(Opcode::PackedSaturatedSubU16, {a, b});
} }
IR::Value IREmitter::PackedSaturatedSubS16(const IR::Value& a, const IR::Value& b) { Value IREmitter::PackedSaturatedSubS16(const Value& a, const Value& b) {
return Inst(IR::Opcode::PackedSaturatedSubS16, {a, b}); return Inst(Opcode::PackedSaturatedSubS16, {a, b});
} }
IR::Value IREmitter::TransferToFP32(const IR::Value& a) { Value IREmitter::TransferToFP32(const Value& a) {
return Inst(IR::Opcode::TransferToFP32, {a}); return Inst(Opcode::TransferToFP32, {a});
} }
IR::Value IREmitter::TransferToFP64(const IR::Value& a) { Value IREmitter::TransferToFP64(const Value& a) {
return Inst(IR::Opcode::TransferToFP64, {a}); return Inst(Opcode::TransferToFP64, {a});
} }
IR::Value IREmitter::TransferFromFP32(const IR::Value& a) { Value IREmitter::TransferFromFP32(const Value& a) {
return Inst(IR::Opcode::TransferFromFP32, {a}); return Inst(Opcode::TransferFromFP32, {a});
} }
IR::Value IREmitter::TransferFromFP64(const IR::Value& a) { Value IREmitter::TransferFromFP64(const Value& a) {
return Inst(IR::Opcode::TransferFromFP64, {a}); return Inst(Opcode::TransferFromFP64, {a});
} }
IR::Value IREmitter::FPAbs32(const IR::Value& a) { Value IREmitter::FPAbs32(const Value& a) {
return Inst(IR::Opcode::FPAbs32, {a}); return Inst(Opcode::FPAbs32, {a});
} }
IR::Value IREmitter::FPAbs64(const IR::Value& a) { Value IREmitter::FPAbs64(const Value& a) {
return Inst(IR::Opcode::FPAbs64, {a}); return Inst(Opcode::FPAbs64, {a});
} }
IR::Value IREmitter::FPAdd32(const IR::Value& a, const IR::Value& b, bool fpscr_controlled) { Value IREmitter::FPAdd32(const Value& a, const Value& b, bool fpscr_controlled) {
ASSERT(fpscr_controlled); ASSERT(fpscr_controlled);
return Inst(IR::Opcode::FPAdd32, {a, b}); return Inst(Opcode::FPAdd32, {a, b});
} }
IR::Value IREmitter::FPAdd64(const IR::Value& a, const IR::Value& b, bool fpscr_controlled) { Value IREmitter::FPAdd64(const Value& a, const Value& b, bool fpscr_controlled) {
ASSERT(fpscr_controlled); ASSERT(fpscr_controlled);
return Inst(IR::Opcode::FPAdd64, {a, b}); return Inst(Opcode::FPAdd64, {a, b});
} }
IR::Value IREmitter::FPDiv32(const IR::Value& a, const IR::Value& b, bool fpscr_controlled) { Value IREmitter::FPDiv32(const Value& a, const Value& b, bool fpscr_controlled) {
ASSERT(fpscr_controlled); ASSERT(fpscr_controlled);
return Inst(IR::Opcode::FPDiv32, {a, b}); return Inst(Opcode::FPDiv32, {a, b});
} }
IR::Value IREmitter::FPDiv64(const IR::Value& a, const IR::Value& b, bool fpscr_controlled) { Value IREmitter::FPDiv64(const Value& a, const Value& b, bool fpscr_controlled) {
ASSERT(fpscr_controlled); ASSERT(fpscr_controlled);
return Inst(IR::Opcode::FPDiv64, {a, b}); return Inst(Opcode::FPDiv64, {a, b});
} }
IR::Value IREmitter::FPMul32(const IR::Value& a, const IR::Value& b, bool fpscr_controlled) { Value IREmitter::FPMul32(const Value& a, const Value& b, bool fpscr_controlled) {
ASSERT(fpscr_controlled); ASSERT(fpscr_controlled);
return Inst(IR::Opcode::FPMul32, {a, b}); return Inst(Opcode::FPMul32, {a, b});
} }
IR::Value IREmitter::FPMul64(const IR::Value& a, const IR::Value& b, bool fpscr_controlled) { Value IREmitter::FPMul64(const Value& a, const Value& b, bool fpscr_controlled) {
ASSERT(fpscr_controlled); ASSERT(fpscr_controlled);
return Inst(IR::Opcode::FPMul64, {a, b}); return Inst(Opcode::FPMul64, {a, b});
} }
IR::Value IREmitter::FPNeg32(const IR::Value& a) { Value IREmitter::FPNeg32(const Value& a) {
return Inst(IR::Opcode::FPNeg32, {a}); return Inst(Opcode::FPNeg32, {a});
} }
IR::Value IREmitter::FPNeg64(const IR::Value& a) { Value IREmitter::FPNeg64(const Value& a) {
return Inst(IR::Opcode::FPNeg64, {a}); return Inst(Opcode::FPNeg64, {a});
} }
IR::Value IREmitter::FPSqrt32(const IR::Value& a) { Value IREmitter::FPSqrt32(const Value& a) {
return Inst(IR::Opcode::FPSqrt32, {a}); return Inst(Opcode::FPSqrt32, {a});
} }
IR::Value IREmitter::FPSqrt64(const IR::Value& a) { Value IREmitter::FPSqrt64(const Value& a) {
return Inst(IR::Opcode::FPSqrt64, {a}); return Inst(Opcode::FPSqrt64, {a});
} }
IR::Value IREmitter::FPSub32(const IR::Value& a, const IR::Value& b, bool fpscr_controlled) { Value IREmitter::FPSub32(const Value& a, const Value& b, bool fpscr_controlled) {
ASSERT(fpscr_controlled); ASSERT(fpscr_controlled);
return Inst(IR::Opcode::FPSub32, {a, b}); return Inst(Opcode::FPSub32, {a, b});
} }
IR::Value IREmitter::FPSub64(const IR::Value& a, const IR::Value& b, bool fpscr_controlled) { Value IREmitter::FPSub64(const Value& a, const Value& b, bool fpscr_controlled) {
ASSERT(fpscr_controlled); ASSERT(fpscr_controlled);
return Inst(IR::Opcode::FPSub64, {a, b}); return Inst(Opcode::FPSub64, {a, b});
} }
IR::Value IREmitter::FPDoubleToSingle(const IR::Value& a, bool fpscr_controlled) { Value IREmitter::FPDoubleToSingle(const Value& a, bool fpscr_controlled) {
ASSERT(fpscr_controlled); ASSERT(fpscr_controlled);
return Inst(IR::Opcode::FPDoubleToSingle, {a}); return Inst(Opcode::FPDoubleToSingle, {a});
} }
IR::Value IREmitter::FPSingleToDouble(const IR::Value& a, bool fpscr_controlled) { Value IREmitter::FPSingleToDouble(const Value& a, bool fpscr_controlled) {
ASSERT(fpscr_controlled); ASSERT(fpscr_controlled);
return Inst(IR::Opcode::FPSingleToDouble, {a}); return Inst(Opcode::FPSingleToDouble, {a});
} }
IR::Value IREmitter::FPSingleToS32(const IR::Value& a, bool round_towards_zero, bool fpscr_controlled) { Value IREmitter::FPSingleToS32(const Value& a, bool round_towards_zero, bool fpscr_controlled) {
ASSERT(fpscr_controlled); ASSERT(fpscr_controlled);
return Inst(IR::Opcode::FPSingleToS32, {a, Imm1(round_towards_zero)}); return Inst(Opcode::FPSingleToS32, {a, Imm1(round_towards_zero)});
} }
IR::Value IREmitter::FPSingleToU32(const IR::Value& a, bool round_towards_zero, bool fpscr_controlled) { Value IREmitter::FPSingleToU32(const Value& a, bool round_towards_zero, bool fpscr_controlled) {
ASSERT(fpscr_controlled); ASSERT(fpscr_controlled);
return Inst(IR::Opcode::FPSingleToU32, {a, Imm1(round_towards_zero)}); return Inst(Opcode::FPSingleToU32, {a, Imm1(round_towards_zero)});
} }
IR::Value IREmitter::FPDoubleToS32(const IR::Value& a, bool round_towards_zero, bool fpscr_controlled) { Value IREmitter::FPDoubleToS32(const Value& a, bool round_towards_zero, bool fpscr_controlled) {
ASSERT(fpscr_controlled); ASSERT(fpscr_controlled);
return Inst(IR::Opcode::FPDoubleToS32, {a, Imm1(round_towards_zero)}); return Inst(Opcode::FPDoubleToS32, {a, Imm1(round_towards_zero)});
} }
IR::Value IREmitter::FPDoubleToU32(const IR::Value& a, bool round_towards_zero, bool fpscr_controlled) { Value IREmitter::FPDoubleToU32(const Value& a, bool round_towards_zero, bool fpscr_controlled) {
ASSERT(fpscr_controlled); ASSERT(fpscr_controlled);
return Inst(IR::Opcode::FPDoubleToU32, {a, Imm1(round_towards_zero)}); return Inst(Opcode::FPDoubleToU32, {a, Imm1(round_towards_zero)});
} }
IR::Value IREmitter::FPS32ToSingle(const IR::Value& a, bool round_to_nearest, bool fpscr_controlled) { Value IREmitter::FPS32ToSingle(const Value& a, bool round_to_nearest, bool fpscr_controlled) {
ASSERT(fpscr_controlled); ASSERT(fpscr_controlled);
return Inst(IR::Opcode::FPS32ToSingle, {a, Imm1(round_to_nearest)}); return Inst(Opcode::FPS32ToSingle, {a, Imm1(round_to_nearest)});
} }
IR::Value IREmitter::FPU32ToSingle(const IR::Value& a, bool round_to_nearest, bool fpscr_controlled) { Value IREmitter::FPU32ToSingle(const Value& a, bool round_to_nearest, bool fpscr_controlled) {
ASSERT(fpscr_controlled); ASSERT(fpscr_controlled);
return Inst(IR::Opcode::FPU32ToSingle, {a, Imm1(round_to_nearest)}); return Inst(Opcode::FPU32ToSingle, {a, Imm1(round_to_nearest)});
} }
IR::Value IREmitter::FPS32ToDouble(const IR::Value& a, bool round_to_nearest, bool fpscr_controlled) { Value IREmitter::FPS32ToDouble(const Value& a, bool round_to_nearest, bool fpscr_controlled) {
ASSERT(fpscr_controlled); ASSERT(fpscr_controlled);
return Inst(IR::Opcode::FPS32ToDouble, {a, Imm1(round_to_nearest)}); return Inst(Opcode::FPS32ToDouble, {a, Imm1(round_to_nearest)});
} }
IR::Value IREmitter::FPU32ToDouble(const IR::Value& a, bool round_to_nearest, bool fpscr_controlled) { Value IREmitter::FPU32ToDouble(const Value& a, bool round_to_nearest, bool fpscr_controlled) {
ASSERT(fpscr_controlled); ASSERT(fpscr_controlled);
return Inst(IR::Opcode::FPU32ToDouble, {a, Imm1(round_to_nearest)}); return Inst(Opcode::FPU32ToDouble, {a, Imm1(round_to_nearest)});
} }
void IREmitter::ClearExlcusive() { void IREmitter::ClearExlcusive() {
Inst(IR::Opcode::ClearExclusive, {}); Inst(Opcode::ClearExclusive, {});
} }
void IREmitter::SetExclusive(const IR::Value& vaddr, size_t byte_size) { void IREmitter::SetExclusive(const Value& vaddr, size_t byte_size) {
ASSERT(byte_size == 1 || byte_size == 2 || byte_size == 4 || byte_size == 8 || byte_size == 16); ASSERT(byte_size == 1 || byte_size == 2 || byte_size == 4 || byte_size == 8 || byte_size == 16);
Inst(IR::Opcode::SetExclusive, {vaddr, Imm8(u8(byte_size))}); Inst(Opcode::SetExclusive, {vaddr, Imm8(u8(byte_size))});
} }
IR::Value IREmitter::ReadMemory8(const IR::Value& vaddr) { Value IREmitter::ReadMemory8(const Value& vaddr) {
return Inst(IR::Opcode::ReadMemory8, {vaddr}); return Inst(Opcode::ReadMemory8, {vaddr});
} }
IR::Value IREmitter::ReadMemory16(const IR::Value& vaddr) { Value IREmitter::ReadMemory16(const Value& vaddr) {
auto value = Inst(IR::Opcode::ReadMemory16, {vaddr}); auto value = Inst(Opcode::ReadMemory16, {vaddr});
return current_location.EFlag() ? ByteReverseHalf(value) : value; return current_location.EFlag() ? ByteReverseHalf(value) : value;
} }
IR::Value IREmitter::ReadMemory32(const IR::Value& vaddr) { Value IREmitter::ReadMemory32(const Value& vaddr) {
auto value = Inst(IR::Opcode::ReadMemory32, {vaddr}); auto value = Inst(Opcode::ReadMemory32, {vaddr});
return current_location.EFlag() ? ByteReverseWord(value) : value; return current_location.EFlag() ? ByteReverseWord(value) : value;
} }
IR::Value IREmitter::ReadMemory64(const IR::Value& vaddr) { Value IREmitter::ReadMemory64(const Value& vaddr) {
auto value = Inst(IR::Opcode::ReadMemory64, {vaddr}); auto value = Inst(Opcode::ReadMemory64, {vaddr});
return current_location.EFlag() ? ByteReverseDual(value) : value; return current_location.EFlag() ? ByteReverseDual(value) : value;
} }
void IREmitter::WriteMemory8(const IR::Value& vaddr, const IR::Value& value) { void IREmitter::WriteMemory8(const Value& vaddr, const Value& value) {
Inst(IR::Opcode::WriteMemory8, {vaddr, value}); Inst(Opcode::WriteMemory8, {vaddr, value});
} }
void IREmitter::WriteMemory16(const IR::Value& vaddr, const IR::Value& value) { void IREmitter::WriteMemory16(const Value& vaddr, const Value& value) {
if (current_location.EFlag()) { if (current_location.EFlag()) {
auto v = ByteReverseHalf(value); auto v = ByteReverseHalf(value);
Inst(IR::Opcode::WriteMemory16, {vaddr, v}); Inst(Opcode::WriteMemory16, {vaddr, v});
} else { } else {
Inst(IR::Opcode::WriteMemory16, {vaddr, value}); Inst(Opcode::WriteMemory16, {vaddr, value});
} }
} }
void IREmitter::WriteMemory32(const IR::Value& vaddr, const IR::Value& value) { void IREmitter::WriteMemory32(const Value& vaddr, const Value& value) {
if (current_location.EFlag()) { if (current_location.EFlag()) {
auto v = ByteReverseWord(value); auto v = ByteReverseWord(value);
Inst(IR::Opcode::WriteMemory32, {vaddr, v}); Inst(Opcode::WriteMemory32, {vaddr, v});
} else { } else {
Inst(IR::Opcode::WriteMemory32, {vaddr, value}); Inst(Opcode::WriteMemory32, {vaddr, value});
} }
} }
void IREmitter::WriteMemory64(const IR::Value& vaddr, const IR::Value& value) { void IREmitter::WriteMemory64(const Value& vaddr, const Value& value) {
if (current_location.EFlag()) { if (current_location.EFlag()) {
auto v = ByteReverseDual(value); auto v = ByteReverseDual(value);
Inst(IR::Opcode::WriteMemory64, {vaddr, v}); Inst(Opcode::WriteMemory64, {vaddr, v});
} else { } else {
Inst(IR::Opcode::WriteMemory64, {vaddr, value}); Inst(Opcode::WriteMemory64, {vaddr, value});
} }
} }
IR::Value IREmitter::ExclusiveWriteMemory8(const IR::Value& vaddr, const IR::Value& value) { Value IREmitter::ExclusiveWriteMemory8(const Value& vaddr, const Value& value) {
return Inst(IR::Opcode::ExclusiveWriteMemory8, {vaddr, value}); return Inst(Opcode::ExclusiveWriteMemory8, {vaddr, value});
} }
IR::Value IREmitter::ExclusiveWriteMemory16(const IR::Value& vaddr, const IR::Value& value) { Value IREmitter::ExclusiveWriteMemory16(const Value& vaddr, const Value& value) {
if (current_location.EFlag()) { if (current_location.EFlag()) {
auto v = ByteReverseHalf(value); auto v = ByteReverseHalf(value);
return Inst(IR::Opcode::ExclusiveWriteMemory16, {vaddr, v}); return Inst(Opcode::ExclusiveWriteMemory16, {vaddr, v});
} else { } else {
return Inst(IR::Opcode::ExclusiveWriteMemory16, {vaddr, value}); return Inst(Opcode::ExclusiveWriteMemory16, {vaddr, value});
} }
} }
IR::Value IREmitter::ExclusiveWriteMemory32(const IR::Value& vaddr, const IR::Value& value) { Value IREmitter::ExclusiveWriteMemory32(const Value& vaddr, const Value& value) {
if (current_location.EFlag()) { if (current_location.EFlag()) {
auto v = ByteReverseWord(value); auto v = ByteReverseWord(value);
return Inst(IR::Opcode::ExclusiveWriteMemory32, {vaddr, v}); return Inst(Opcode::ExclusiveWriteMemory32, {vaddr, v});
} else { } else {
return Inst(IR::Opcode::ExclusiveWriteMemory32, {vaddr, value}); return Inst(Opcode::ExclusiveWriteMemory32, {vaddr, value});
} }
} }
IR::Value IREmitter::ExclusiveWriteMemory64(const IR::Value& vaddr, const IR::Value& value_lo, const IR::Value& value_hi) { Value IREmitter::ExclusiveWriteMemory64(const Value& vaddr, const Value& value_lo, const Value& value_hi) {
if (current_location.EFlag()) { if (current_location.EFlag()) {
auto vlo = ByteReverseWord(value_lo); auto vlo = ByteReverseWord(value_lo);
auto vhi = ByteReverseWord(value_hi); auto vhi = ByteReverseWord(value_hi);
return Inst(IR::Opcode::ExclusiveWriteMemory64, {vaddr, vlo, vhi}); return Inst(Opcode::ExclusiveWriteMemory64, {vaddr, vlo, vhi});
} else { } else {
return Inst(IR::Opcode::ExclusiveWriteMemory64, {vaddr, value_lo, value_hi}); return Inst(Opcode::ExclusiveWriteMemory64, {vaddr, value_lo, value_hi});
} }
} }
void IREmitter::Breakpoint() { void IREmitter::Breakpoint() {
Inst(IR::Opcode::Breakpoint, {}); Inst(Opcode::Breakpoint, {});
} }
void IREmitter::SetTerm(const IR::Terminal& terminal) { void IREmitter::SetTerm(const Terminal& terminal) {
block.SetTerminal(terminal); block.SetTerminal(terminal);
} }
IR::Value IREmitter::Inst(IR::Opcode op, std::initializer_list<IR::Value> args) { Value IREmitter::Inst(Opcode op, std::initializer_list<Value> args) {
block.AppendNewInst(op, args); block.AppendNewInst(op, args);
return IR::Value(&block.back()); return Value(&block.back());
} }
} // namespace Arm } // namespace IR
} // namespace Dynarmic } // namespace Dynarmic

View file

@ -23,7 +23,7 @@
// not based on any existing microarchitecture but on ease of implementation. // not based on any existing microarchitecture but on ease of implementation.
namespace Dynarmic { namespace Dynarmic {
namespace Arm { namespace IR {
/** /**
* Convenience class to construct a basic block of the intermediate representation. * Convenience class to construct a basic block of the intermediate representation.
@ -32,147 +32,147 @@ namespace Arm {
*/ */
class IREmitter { class IREmitter {
public: public:
explicit IREmitter(LocationDescriptor descriptor) : block(descriptor), current_location(descriptor) {} explicit IREmitter(Arm::LocationDescriptor descriptor) : block(descriptor), current_location(descriptor) {}
IR::Block block; Block block;
LocationDescriptor current_location; Arm::LocationDescriptor current_location;
struct ResultAndCarry { struct ResultAndCarry {
IR::Value result; Value result;
IR::Value carry; Value carry;
}; };
struct ResultAndCarryAndOverflow { struct ResultAndCarryAndOverflow {
IR::Value result; Value result;
IR::Value carry; Value carry;
IR::Value overflow; Value overflow;
}; };
void Unimplemented(); void Unimplemented();
u32 PC(); u32 PC();
u32 AlignPC(size_t alignment); u32 AlignPC(size_t alignment);
IR::Value Imm1(bool value); Value Imm1(bool value);
IR::Value Imm8(u8 value); Value Imm8(u8 value);
IR::Value Imm32(u32 value); Value Imm32(u32 value);
IR::Value GetRegister(Reg source_reg); Value GetRegister(Arm::Reg source_reg);
IR::Value GetExtendedRegister(ExtReg source_reg); Value GetExtendedRegister(Arm::ExtReg source_reg);
void SetRegister(const Reg dest_reg, const IR::Value& value); void SetRegister(const Arm::Reg dest_reg, const Value& value);
void SetExtendedRegister(const ExtReg dest_reg, const IR::Value& value); void SetExtendedRegister(const Arm::ExtReg dest_reg, const Value& value);
void ALUWritePC(const IR::Value& value); void ALUWritePC(const Value& value);
void BranchWritePC(const IR::Value& value); void BranchWritePC(const Value& value);
void BXWritePC(const IR::Value& value); void BXWritePC(const Value& value);
void LoadWritePC(const IR::Value& value); void LoadWritePC(const Value& value);
void CallSupervisor(const IR::Value& value); void CallSupervisor(const Value& value);
void PushRSB(const LocationDescriptor& return_location); void PushRSB(const Arm::LocationDescriptor& return_location);
IR::Value GetCpsr(); Value GetCpsr();
void SetCpsr(const IR::Value& value); void SetCpsr(const Value& value);
IR::Value GetCFlag(); Value GetCFlag();
void SetNFlag(const IR::Value& value); void SetNFlag(const Value& value);
void SetZFlag(const IR::Value& value); void SetZFlag(const Value& value);
void SetCFlag(const IR::Value& value); void SetCFlag(const Value& value);
void SetVFlag(const IR::Value& value); void SetVFlag(const Value& value);
void OrQFlag(const IR::Value& value); void OrQFlag(const Value& value);
IR::Value Pack2x32To1x64(const IR::Value& lo, const IR::Value& hi); Value Pack2x32To1x64(const Value& lo, const Value& hi);
IR::Value LeastSignificantWord(const IR::Value& value); Value LeastSignificantWord(const Value& value);
ResultAndCarry MostSignificantWord(const IR::Value& value); ResultAndCarry MostSignificantWord(const Value& value);
IR::Value LeastSignificantHalf(const IR::Value& value); Value LeastSignificantHalf(const Value& value);
IR::Value LeastSignificantByte(const IR::Value& value); Value LeastSignificantByte(const Value& value);
IR::Value MostSignificantBit(const IR::Value& value); Value MostSignificantBit(const Value& value);
IR::Value IsZero(const IR::Value& value); Value IsZero(const Value& value);
IR::Value IsZero64(const IR::Value& value); Value IsZero64(const Value& value);
ResultAndCarry LogicalShiftLeft(const IR::Value& value_in, const IR::Value& shift_amount, const IR::Value& carry_in); ResultAndCarry LogicalShiftLeft(const Value& value_in, const Value& shift_amount, const Value& carry_in);
ResultAndCarry LogicalShiftRight(const IR::Value& value_in, const IR::Value& shift_amount, const IR::Value& carry_in); ResultAndCarry LogicalShiftRight(const Value& value_in, const Value& shift_amount, const Value& carry_in);
IR::Value LogicalShiftRight64(const IR::Value& value_in, const IR::Value& shift_amount); Value LogicalShiftRight64(const Value& value_in, const Value& shift_amount);
ResultAndCarry ArithmeticShiftRight(const IR::Value& value_in, const IR::Value& shift_amount, const IR::Value& carry_in); ResultAndCarry ArithmeticShiftRight(const Value& value_in, const Value& shift_amount, const Value& carry_in);
ResultAndCarry RotateRight(const IR::Value& value_in, const IR::Value& shift_amount, const IR::Value& carry_in); ResultAndCarry RotateRight(const Value& value_in, const Value& shift_amount, const Value& carry_in);
ResultAndCarry RotateRightExtended(const IR::Value& value_in, const IR::Value& carry_in); ResultAndCarry RotateRightExtended(const Value& value_in, const Value& carry_in);
ResultAndCarryAndOverflow AddWithCarry(const IR::Value& a, const IR::Value& b, const IR::Value& carry_in); ResultAndCarryAndOverflow AddWithCarry(const Value& a, const Value& b, const Value& carry_in);
IR::Value Add(const IR::Value& a, const IR::Value& b); Value Add(const Value& a, const Value& b);
IR::Value Add64(const IR::Value& a, const IR::Value& b); Value Add64(const Value& a, const Value& b);
ResultAndCarryAndOverflow SubWithCarry(const IR::Value& a, const IR::Value& b, const IR::Value& carry_in); ResultAndCarryAndOverflow SubWithCarry(const Value& a, const Value& b, const Value& carry_in);
IR::Value Sub(const IR::Value& a, const IR::Value& b); Value Sub(const Value& a, const Value& b);
IR::Value Sub64(const IR::Value& a, const IR::Value& b); Value Sub64(const Value& a, const Value& b);
IR::Value Mul(const IR::Value& a, const IR::Value& b); Value Mul(const Value& a, const Value& b);
IR::Value Mul64(const IR::Value& a, const IR::Value& b); Value Mul64(const Value& a, const Value& b);
IR::Value And(const IR::Value& a, const IR::Value& b); Value And(const Value& a, const Value& b);
IR::Value Eor(const IR::Value& a, const IR::Value& b); Value Eor(const Value& a, const Value& b);
IR::Value Or(const IR::Value& a, const IR::Value& b); Value Or(const Value& a, const Value& b);
IR::Value Not(const IR::Value& a); Value Not(const Value& a);
IR::Value SignExtendWordToLong(const IR::Value& a); Value SignExtendWordToLong(const Value& a);
IR::Value SignExtendHalfToWord(const IR::Value& a); Value SignExtendHalfToWord(const Value& a);
IR::Value SignExtendByteToWord(const IR::Value& a); Value SignExtendByteToWord(const Value& a);
IR::Value ZeroExtendWordToLong(const IR::Value& a); Value ZeroExtendWordToLong(const Value& a);
IR::Value ZeroExtendHalfToWord(const IR::Value& a); Value ZeroExtendHalfToWord(const Value& a);
IR::Value ZeroExtendByteToWord(const IR::Value& a); Value ZeroExtendByteToWord(const Value& a);
IR::Value ByteReverseWord(const IR::Value& a); Value ByteReverseWord(const Value& a);
IR::Value ByteReverseHalf(const IR::Value& a); Value ByteReverseHalf(const Value& a);
IR::Value ByteReverseDual(const IR::Value& a); Value ByteReverseDual(const Value& a);
IR::Value PackedSaturatedAddU8(const IR::Value& a, const IR::Value& b); Value PackedSaturatedAddU8(const Value& a, const Value& b);
IR::Value PackedSaturatedAddS8(const IR::Value& a, const IR::Value& b); Value PackedSaturatedAddS8(const Value& a, const Value& b);
IR::Value PackedSaturatedSubU8(const IR::Value& a, const IR::Value& b); Value PackedSaturatedSubU8(const Value& a, const Value& b);
IR::Value PackedSaturatedSubS8(const IR::Value& a, const IR::Value& b); Value PackedSaturatedSubS8(const Value& a, const Value& b);
IR::Value PackedSaturatedAddU16(const IR::Value& a, const IR::Value& b); Value PackedSaturatedAddU16(const Value& a, const Value& b);
IR::Value PackedSaturatedAddS16(const IR::Value& a, const IR::Value& b); Value PackedSaturatedAddS16(const Value& a, const Value& b);
IR::Value PackedSaturatedSubU16(const IR::Value& a, const IR::Value& b); Value PackedSaturatedSubU16(const Value& a, const Value& b);
IR::Value PackedSaturatedSubS16(const IR::Value& a, const IR::Value& b); Value PackedSaturatedSubS16(const Value& a, const Value& b);
IR::Value TransferToFP32(const IR::Value& a); Value TransferToFP32(const Value& a);
IR::Value TransferToFP64(const IR::Value& a); Value TransferToFP64(const Value& a);
IR::Value TransferFromFP32(const IR::Value& a); Value TransferFromFP32(const Value& a);
IR::Value TransferFromFP64(const IR::Value& a); Value TransferFromFP64(const Value& a);
IR::Value FPAbs32(const IR::Value& a); Value FPAbs32(const Value& a);
IR::Value FPAbs64(const IR::Value& a); Value FPAbs64(const Value& a);
IR::Value FPAdd32(const IR::Value& a, const IR::Value& b, bool fpscr_controlled); Value FPAdd32(const Value& a, const Value& b, bool fpscr_controlled);
IR::Value FPAdd64(const IR::Value& a, const IR::Value& b, bool fpscr_controlled); Value FPAdd64(const Value& a, const Value& b, bool fpscr_controlled);
IR::Value FPDiv32(const IR::Value& a, const IR::Value& b, bool fpscr_controlled); Value FPDiv32(const Value& a, const Value& b, bool fpscr_controlled);
IR::Value FPDiv64(const IR::Value& a, const IR::Value& b, bool fpscr_controlled); Value FPDiv64(const Value& a, const Value& b, bool fpscr_controlled);
IR::Value FPMul32(const IR::Value& a, const IR::Value& b, bool fpscr_controlled); Value FPMul32(const Value& a, const Value& b, bool fpscr_controlled);
IR::Value FPMul64(const IR::Value& a, const IR::Value& b, bool fpscr_controlled); Value FPMul64(const Value& a, const Value& b, bool fpscr_controlled);
IR::Value FPNeg32(const IR::Value& a); Value FPNeg32(const Value& a);
IR::Value FPNeg64(const IR::Value& a); Value FPNeg64(const Value& a);
IR::Value FPSqrt32(const IR::Value& a); Value FPSqrt32(const Value& a);
IR::Value FPSqrt64(const IR::Value& a); Value FPSqrt64(const Value& a);
IR::Value FPSub32(const IR::Value& a, const IR::Value& b, bool fpscr_controlled); Value FPSub32(const Value& a, const Value& b, bool fpscr_controlled);
IR::Value FPSub64(const IR::Value& a, const IR::Value& b, bool fpscr_controlled); Value FPSub64(const Value& a, const Value& b, bool fpscr_controlled);
IR::Value FPDoubleToSingle(const IR::Value& a, bool fpscr_controlled); Value FPDoubleToSingle(const Value& a, bool fpscr_controlled);
IR::Value FPSingleToDouble(const IR::Value& a, bool fpscr_controlled); Value FPSingleToDouble(const Value& a, bool fpscr_controlled);
IR::Value FPSingleToS32(const IR::Value& a, bool round_towards_zero, bool fpscr_controlled); Value FPSingleToS32(const Value& a, bool round_towards_zero, bool fpscr_controlled);
IR::Value FPSingleToU32(const IR::Value& a, bool round_towards_zero, bool fpscr_controlled); Value FPSingleToU32(const Value& a, bool round_towards_zero, bool fpscr_controlled);
IR::Value FPDoubleToS32(const IR::Value& a, bool round_towards_zero, bool fpscr_controlled); Value FPDoubleToS32(const Value& a, bool round_towards_zero, bool fpscr_controlled);
IR::Value FPDoubleToU32(const IR::Value& a, bool round_towards_zero, bool fpscr_controlled); Value FPDoubleToU32(const Value& a, bool round_towards_zero, bool fpscr_controlled);
IR::Value FPS32ToSingle(const IR::Value& a, bool round_to_nearest, bool fpscr_controlled); Value FPS32ToSingle(const Value& a, bool round_to_nearest, bool fpscr_controlled);
IR::Value FPU32ToSingle(const IR::Value& a, bool round_to_nearest, bool fpscr_controlled); Value FPU32ToSingle(const Value& a, bool round_to_nearest, bool fpscr_controlled);
IR::Value FPS32ToDouble(const IR::Value& a, bool round_to_nearest, bool fpscr_controlled); Value FPS32ToDouble(const Value& a, bool round_to_nearest, bool fpscr_controlled);
IR::Value FPU32ToDouble(const IR::Value& a, bool round_to_nearest, bool fpscr_controlled); Value FPU32ToDouble(const Value& a, bool round_to_nearest, bool fpscr_controlled);
void ClearExlcusive(); void ClearExlcusive();
void SetExclusive(const IR::Value& vaddr, size_t byte_size); void SetExclusive(const Value& vaddr, size_t byte_size);
IR::Value ReadMemory8(const IR::Value& vaddr); Value ReadMemory8(const Value& vaddr);
IR::Value ReadMemory16(const IR::Value& vaddr); Value ReadMemory16(const Value& vaddr);
IR::Value ReadMemory32(const IR::Value& vaddr); Value ReadMemory32(const Value& vaddr);
IR::Value ReadMemory64(const IR::Value& vaddr); Value ReadMemory64(const Value& vaddr);
void WriteMemory8(const IR::Value& vaddr, const IR::Value& value); void WriteMemory8(const Value& vaddr, const Value& value);
void WriteMemory16(const IR::Value& vaddr, const IR::Value& value); void WriteMemory16(const Value& vaddr, const Value& value);
void WriteMemory32(const IR::Value& vaddr, const IR::Value& value); void WriteMemory32(const Value& vaddr, const Value& value);
void WriteMemory64(const IR::Value& vaddr, const IR::Value& value); void WriteMemory64(const Value& vaddr, const Value& value);
IR::Value ExclusiveWriteMemory8(const IR::Value& vaddr, const IR::Value& value); Value ExclusiveWriteMemory8(const Value& vaddr, const Value& value);
IR::Value ExclusiveWriteMemory16(const IR::Value& vaddr, const IR::Value& value); Value ExclusiveWriteMemory16(const Value& vaddr, const Value& value);
IR::Value ExclusiveWriteMemory32(const IR::Value& vaddr, const IR::Value& value); Value ExclusiveWriteMemory32(const Value& vaddr, const Value& value);
IR::Value ExclusiveWriteMemory64(const IR::Value& vaddr, const IR::Value& value_lo, const IR::Value& value_hi); Value ExclusiveWriteMemory64(const Value& vaddr, const Value& value_lo, const Value& value_hi);
void Breakpoint(); void Breakpoint();
void SetTerm(const IR::Terminal& terminal); void SetTerm(const Terminal& terminal);
private: private:
IR::Value Inst(IR::Opcode op, std::initializer_list<IR::Value> args); Value Inst(Opcode op, std::initializer_list<Value> args);
}; };
} // namespace Arm } // namespace IR
} // namespace Dynarmic } // namespace Dynarmic

View file

@ -17,7 +17,7 @@
namespace Dynarmic { namespace Dynarmic {
namespace Arm { namespace Arm {
static bool CondCanContinue(ConditionalState cond_state, IREmitter& ir) { static bool CondCanContinue(ConditionalState cond_state, IR::IREmitter& ir) {
ASSERT_MSG(cond_state != ConditionalState::Break, "Should never happen."); ASSERT_MSG(cond_state != ConditionalState::Break, "Should never happen.");
if (cond_state == ConditionalState::None) if (cond_state == ConditionalState::None)
@ -124,7 +124,7 @@ bool ArmTranslatorVisitor::LinkToNextInstruction() {
return false; return false;
} }
IREmitter::ResultAndCarry ArmTranslatorVisitor::EmitImmShift(IR::Value value, ShiftType type, Imm5 imm5, IR::Value carry_in) { IR::IREmitter::ResultAndCarry ArmTranslatorVisitor::EmitImmShift(IR::Value value, ShiftType type, Imm5 imm5, IR::Value carry_in) {
switch (type) { switch (type) {
case ShiftType::LSL: case ShiftType::LSL:
return ir.LogicalShiftLeft(value, ir.Imm8(imm5), carry_in); return ir.LogicalShiftLeft(value, ir.Imm8(imm5), carry_in);
@ -144,7 +144,7 @@ IREmitter::ResultAndCarry ArmTranslatorVisitor::EmitImmShift(IR::Value value, Sh
return {}; return {};
} }
IREmitter::ResultAndCarry ArmTranslatorVisitor::EmitRegShift(IR::Value value, ShiftType type, IR::Value amount, IR::Value carry_in) { IR::IREmitter::ResultAndCarry ArmTranslatorVisitor::EmitRegShift(IR::Value value, ShiftType type, IR::Value amount, IR::Value carry_in) {
switch (type) { switch (type) {
case ShiftType::LSL: case ShiftType::LSL:
return ir.LogicalShiftLeft(value, amount, carry_in); return ir.LogicalShiftLeft(value, amount, carry_in);

View file

@ -41,7 +41,7 @@ bool ArmTranslatorVisitor::arm_STRT() {
ASSERT_MSG(false, "System instructions unimplemented"); ASSERT_MSG(false, "System instructions unimplemented");
} }
static IR::Value GetAddressingMode(IREmitter& ir, bool P, bool U, bool W, Reg n, IR::Value index) { static IR::Value GetAddressingMode(IR::IREmitter& ir, bool P, bool U, bool W, Reg n, IR::Value index) {
IR::Value address; IR::Value address;
if (P) { if (P) {
// Pre-indexed addressing // Pre-indexed addressing
@ -637,7 +637,7 @@ bool ArmTranslatorVisitor::arm_STRH_reg(Cond cond, bool P, bool U, bool W, Reg n
return true; return true;
} }
static bool LDMHelper(IREmitter& ir, bool W, Reg n, RegList list, IR::Value start_address, IR::Value writeback_address) { static bool LDMHelper(IR::IREmitter& ir, bool W, Reg n, RegList list, IR::Value start_address, IR::Value writeback_address) {
auto address = start_address; auto address = start_address;
for (size_t i = 0; i <= 14; i++) { for (size_t i = 0; i <= 14; i++) {
if (Common::Bit(i, list)) { if (Common::Bit(i, list)) {
@ -715,7 +715,7 @@ bool ArmTranslatorVisitor::arm_LDM_eret() {
return InterpretThisInstruction(); return InterpretThisInstruction();
} }
static bool STMHelper(IREmitter& ir, bool W, Reg n, RegList list, IR::Value start_address, IR::Value writeback_address) { static bool STMHelper(IR::IREmitter& ir, bool W, Reg n, RegList list, IR::Value start_address, IR::Value writeback_address) {
auto address = start_address; auto address = start_address;
for (size_t i = 0; i <= 14; i++) { for (size_t i = 0; i <= 14; i++) {
if (Common::Bit(i, list)) { if (Common::Bit(i, list)) {

View file

@ -27,7 +27,7 @@ struct ArmTranslatorVisitor final {
ASSERT_MSG(!descriptor.TFlag(), "The processor must be in Arm mode"); ASSERT_MSG(!descriptor.TFlag(), "The processor must be in Arm mode");
} }
IREmitter ir; IR::IREmitter ir;
ConditionalState cond_state = ConditionalState::None; ConditionalState cond_state = ConditionalState::None;
bool ConditionPassed(Cond cond); bool ConditionPassed(Cond cond);
@ -60,8 +60,8 @@ struct ArmTranslatorVisitor final {
return {imm32, carry_out}; return {imm32, carry_out};
} }
IREmitter::ResultAndCarry EmitImmShift(IR::Value value, ShiftType type, Imm5 imm5, IR::Value carry_in); IR::IREmitter::ResultAndCarry EmitImmShift(IR::Value value, ShiftType type, Imm5 imm5, IR::Value carry_in);
IREmitter::ResultAndCarry EmitRegShift(IR::Value value, ShiftType type, IR::Value amount, IR::Value carry_in); IR::IREmitter::ResultAndCarry EmitRegShift(IR::Value value, ShiftType type, IR::Value amount, IR::Value carry_in);
IR::Value SignZeroExtendRor(Reg m, SignExtendRotation rotate); IR::Value SignZeroExtendRor(Reg m, SignExtendRotation rotate);
// Branch instructions // Branch instructions

View file

@ -24,7 +24,7 @@ struct ThumbTranslatorVisitor final {
ASSERT_MSG(descriptor.TFlag(), "The processor must be in Thumb mode"); ASSERT_MSG(descriptor.TFlag(), "The processor must be in Thumb mode");
} }
IREmitter ir; IR::IREmitter ir;
bool InterpretThisInstruction() { bool InterpretThisInstruction() {
ir.SetTerm(IR::Term::Interpret(ir.current_location)); ir.SetTerm(IR::Term::Interpret(ir.current_location));