emit_x64_floating_point: Hardware FMA implementation of FPRSqrtStepFused
This commit is contained in:
parent
344ee76aba
commit
3caeb62ef1
3 changed files with 76 additions and 3 deletions
|
@ -873,8 +873,58 @@ void EmitX64::EmitFPRSqrtEstimate64(EmitContext& ctx, IR::Inst* inst) {
|
||||||
EmitFPRSqrtEstimate<u64>(code, ctx, inst);
|
EmitFPRSqrtEstimate<u64>(code, ctx, inst);
|
||||||
}
|
}
|
||||||
|
|
||||||
template<typename FPT>
|
template<size_t fsize>
|
||||||
static void EmitFPRSqrtStepFused(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst) {
|
static void EmitFPRSqrtStepFused(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst) {
|
||||||
|
using FPT = mp::unsigned_integer_of_size<fsize>;
|
||||||
|
|
||||||
|
if (code.DoesCpuSupport(Xbyak::util::Cpu::tFMA) && code.DoesCpuSupport(Xbyak::util::Cpu::tAVX)) {
|
||||||
|
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
|
||||||
|
|
||||||
|
Xbyak::Label end, fallback;
|
||||||
|
|
||||||
|
const Xbyak::Xmm operand1 = ctx.reg_alloc.UseXmm(args[0]);
|
||||||
|
const Xbyak::Xmm operand2 = ctx.reg_alloc.UseXmm(args[1]);
|
||||||
|
const Xbyak::Xmm result = ctx.reg_alloc.ScratchXmm();
|
||||||
|
|
||||||
|
code.vmovaps(result, code.MConst(xword, FP::FPValue<FPT, false, 0, 3>()));
|
||||||
|
FCODE(vfnmadd231s)(result, operand1, operand2);
|
||||||
|
|
||||||
|
// Detect if the intermediate result is infinity or NaN or nearly an infinity.
|
||||||
|
// Why do we need to care about infinities? This is because x86 doesn't allow us
|
||||||
|
// to fuse the divide-by-two with the rest of the FMA operation. Therefore the
|
||||||
|
// intermediate value may overflow and we would like to handle this case.
|
||||||
|
const Xbyak::Reg32 tmp = ctx.reg_alloc.ScratchGpr().cvt32();
|
||||||
|
code.vpextrw(tmp, result, fsize == 32 ? 1 : 3);
|
||||||
|
code.and_(tmp.cvt16(), fsize == 32 ? 0x7f80 : 0x7ff0);
|
||||||
|
code.cmp(tmp.cvt16(), fsize == 32 ? 0x7f00 : 0x7fe0);
|
||||||
|
ctx.reg_alloc.Release(tmp);
|
||||||
|
|
||||||
|
code.jae(fallback, code.T_NEAR);
|
||||||
|
|
||||||
|
FCODE(vmuls)(result, result, code.MConst(xword, FP::FPValue<FPT, false, -1, 1>()));
|
||||||
|
code.L(end);
|
||||||
|
|
||||||
|
code.SwitchToFarCode();
|
||||||
|
code.L(fallback);
|
||||||
|
|
||||||
|
code.sub(rsp, 8);
|
||||||
|
ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, HostLocXmmIdx(result.getIdx()));
|
||||||
|
code.movq(code.ABI_PARAM1, operand1);
|
||||||
|
code.movq(code.ABI_PARAM2, operand2);
|
||||||
|
code.mov(code.ABI_PARAM3.cvt32(), ctx.FPCR());
|
||||||
|
code.lea(code.ABI_PARAM4, code.ptr[code.r15 + code.GetJitStateInfo().offsetof_fpsr_exc]);
|
||||||
|
code.CallFunction(&FP::FPRSqrtStepFused<FPT>);
|
||||||
|
code.movq(result, code.ABI_RETURN);
|
||||||
|
ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, HostLocXmmIdx(result.getIdx()));
|
||||||
|
code.add(rsp, 8);
|
||||||
|
|
||||||
|
code.jmp(end, code.T_NEAR);
|
||||||
|
code.SwitchToNearCode();
|
||||||
|
|
||||||
|
ctx.reg_alloc.DefineValue(inst, result);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
|
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
|
||||||
ctx.reg_alloc.HostCall(inst, args[0], args[1]);
|
ctx.reg_alloc.HostCall(inst, args[0], args[1]);
|
||||||
code.mov(code.ABI_PARAM3.cvt32(), ctx.FPCR());
|
code.mov(code.ABI_PARAM3.cvt32(), ctx.FPCR());
|
||||||
|
@ -883,11 +933,11 @@ static void EmitFPRSqrtStepFused(BlockOfCode& code, EmitContext& ctx, IR::Inst*
|
||||||
}
|
}
|
||||||
|
|
||||||
void EmitX64::EmitFPRSqrtStepFused32(EmitContext& ctx, IR::Inst* inst) {
|
void EmitX64::EmitFPRSqrtStepFused32(EmitContext& ctx, IR::Inst* inst) {
|
||||||
EmitFPRSqrtStepFused<u32>(code, ctx, inst);
|
EmitFPRSqrtStepFused<32>(code, ctx, inst);
|
||||||
}
|
}
|
||||||
|
|
||||||
void EmitX64::EmitFPRSqrtStepFused64(EmitContext& ctx, IR::Inst* inst) {
|
void EmitX64::EmitFPRSqrtStepFused64(EmitContext& ctx, IR::Inst* inst) {
|
||||||
EmitFPRSqrtStepFused<u64>(code, ctx, inst);
|
EmitFPRSqrtStepFused<64>(code, ctx, inst);
|
||||||
}
|
}
|
||||||
|
|
||||||
void EmitX64::EmitFPSqrt32(EmitContext& ctx, IR::Inst* inst) {
|
void EmitX64::EmitFPSqrt32(EmitContext& ctx, IR::Inst* inst) {
|
||||||
|
|
|
@ -472,3 +472,25 @@ TEST_CASE("A64: FNEG failed to zero upper", "[a64]") {
|
||||||
REQUIRE(jit.GetVector(28) == Vector{0x79ee7a03980db670, 0});
|
REQUIRE(jit.GetVector(28) == Vector{0x79ee7a03980db670, 0});
|
||||||
REQUIRE(FP::FPSR{jit.GetFpsr()}.QC() == false);
|
REQUIRE(FP::FPSR{jit.GetFpsr()}.QC() == false);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
TEST_CASE("A64: FRSQRTS", "[a64]") {
|
||||||
|
A64TestEnv env;
|
||||||
|
Dynarmic::A64::Jit jit{Dynarmic::A64::UserConfig{&env}};
|
||||||
|
|
||||||
|
env.code_mem.emplace_back(0x5eb8fcad); // FRSQRTS S13, S5, S24
|
||||||
|
env.code_mem.emplace_back(0x14000000); // B .
|
||||||
|
|
||||||
|
// These particular values result in an intermediate value during
|
||||||
|
// the calculation that is close to infinity. We want to verify
|
||||||
|
// that this special case is handled appropriately.
|
||||||
|
|
||||||
|
jit.SetPC(0);
|
||||||
|
jit.SetVector(5, {0xfc6a0206, 0});
|
||||||
|
jit.SetVector(24, {0xfc6a0206, 0});
|
||||||
|
jit.SetFpcr(0x00400000);
|
||||||
|
|
||||||
|
env.ticks_left = 2;
|
||||||
|
jit.Run();
|
||||||
|
|
||||||
|
REQUIRE(jit.GetVector(13) == Vector{0xff7fffff, 0});
|
||||||
|
}
|
||||||
|
|
|
@ -13,3 +13,4 @@ static_assert(FPValue<u32, false, -1, 3>() == 0x3fc00000);
|
||||||
static_assert(FPValue<u32, false, 0, 12739812>() == 0x4b4264e4);
|
static_assert(FPValue<u32, false, 0, 12739812>() == 0x4b4264e4);
|
||||||
static_assert(FPValue<u32, false, -8, 100>() == 0x3ec80000);
|
static_assert(FPValue<u32, false, -8, 100>() == 0x3ec80000);
|
||||||
static_assert(FPValue<u32, true, 0, 1>() == 0xbf800000);
|
static_assert(FPValue<u32, true, 0, 1>() == 0xbf800000);
|
||||||
|
static_assert(FPValue<u32, false, -1, 1>() == 0x3f000000);
|
||||||
|
|
Loading…
Reference in a new issue