More Speed

This commit is contained in:
MerryMage 2016-07-22 23:55:00 +01:00
parent 5fbfc6c155
commit 51448aa06d
16 changed files with 1066 additions and 955 deletions

View file

@ -7,11 +7,13 @@ option(DYNARMIC_USE_SYSTEM_BOOST "Use the system boost libraries" ON)
# Compiler flags # Compiler flags
if (NOT MSVC) if (NOT MSVC)
add_compile_options(--std=c++14 -Wall -Werror -Wextra -pedantic -Wfatal-errors -Wno-unused-parameter -Wno-missing-braces) add_compile_options(--std=c++14 -Wall -Werror -Wextra -pedantic -Wfatal-errors -Wno-unused-parameter -Wno-missing-braces)
add_compile_options(-DBOOST_SYSTEM_NO_DEPRECATED)
if (ARCHITECTURE_x86_64) if (ARCHITECTURE_x86_64)
add_compile_options(-msse4.1) add_compile_options(-msse4.1)
endif() endif()
else() else()
add_compile_options(/W3 /MP /Zi /Zo /EHsc /WX) add_compile_options(/W3 /MP /Zi /Zo /EHsc /WX)
add_compile_options(/DBOOST_SYSTEM_NO_DEPRECATED)
endif() endif()
# This function should be passed a list of all files in a target. It will automatically generate # This function should be passed a list of all files in a target. It will automatically generate

File diff suppressed because it is too large Load diff

View file

@ -23,7 +23,7 @@ public:
EmitX64(Gen::XEmitter* code, Routines* routines, UserCallbacks cb, Jit* jit_interface) EmitX64(Gen::XEmitter* code, Routines* routines, UserCallbacks cb, Jit* jit_interface)
: reg_alloc(code), code(code), routines(routines), cb(cb), jit_interface(jit_interface) {} : reg_alloc(code), code(code), routines(routines), cb(cb), jit_interface(jit_interface) {}
CodePtr Emit(const Arm::LocationDescriptor descriptor, const IR::Block& ir); CodePtr Emit(const Arm::LocationDescriptor descriptor, IR::Block& ir);
CodePtr GetBasicBlock(Arm::LocationDescriptor descriptor) { CodePtr GetBasicBlock(Arm::LocationDescriptor descriptor) {
auto iter = basic_blocks.find(descriptor); auto iter = basic_blocks.find(descriptor);
@ -34,53 +34,49 @@ public:
private: private:
// Microinstruction emitters // Microinstruction emitters
void EmitImmU1(IR::Value* value); void EmitGetRegister(IR::Block& block, IR::Inst* inst);
void EmitImmU8(IR::Value* value); void EmitSetRegister(IR::Block& block, IR::Inst* inst);
void EmitImmU32(IR::Value* value); void EmitGetNFlag(IR::Block& block, IR::Inst* inst);
void EmitImmRegRef(IR::Value* value); void EmitSetNFlag(IR::Block& block, IR::Inst* inst);
void EmitGetRegister(IR::Value* value); void EmitGetZFlag(IR::Block& block, IR::Inst* inst);
void EmitSetRegister(IR::Value* value); void EmitSetZFlag(IR::Block& block, IR::Inst* inst);
void EmitGetNFlag(IR::Value* value); void EmitGetCFlag(IR::Block& block, IR::Inst* inst);
void EmitSetNFlag(IR::Value* value); void EmitSetCFlag(IR::Block& block, IR::Inst* inst);
void EmitGetZFlag(IR::Value* value); void EmitGetVFlag(IR::Block& block, IR::Inst* inst);
void EmitSetZFlag(IR::Value* value); void EmitSetVFlag(IR::Block& block, IR::Inst* inst);
void EmitGetCFlag(IR::Value* value); void EmitBXWritePC(IR::Block& block, IR::Inst* inst);
void EmitSetCFlag(IR::Value* value); void EmitCallSupervisor(IR::Block& block, IR::Inst* inst);
void EmitGetVFlag(IR::Value* value); void EmitGetCarryFromOp(IR::Block& block, IR::Inst* inst);
void EmitSetVFlag(IR::Value* value); void EmitGetOverflowFromOp(IR::Block& block, IR::Inst* inst);
void EmitBXWritePC(IR::Value* value); void EmitLeastSignificantHalf(IR::Block& block, IR::Inst* inst);
void EmitCallSupervisor(IR::Value* value); void EmitLeastSignificantByte(IR::Block& block, IR::Inst* inst);
void EmitGetCarryFromOp(IR::Value* value); void EmitMostSignificantBit(IR::Block& block, IR::Inst* inst);
void EmitGetOverflowFromOp(IR::Value* value); void EmitIsZero(IR::Block& block, IR::Inst* inst);
void EmitLeastSignificantHalf(IR::Value* value); void EmitLogicalShiftLeft(IR::Block& block, IR::Inst* inst);
void EmitLeastSignificantByte(IR::Value* value); void EmitLogicalShiftRight(IR::Block& block, IR::Inst* inst);
void EmitMostSignificantBit(IR::Value* value); void EmitArithmeticShiftRight(IR::Block& block, IR::Inst* inst);
void EmitIsZero(IR::Value* value); void EmitRotateRight(IR::Block& block, IR::Inst* inst);
void EmitLogicalShiftLeft(IR::Value* value); void EmitAddWithCarry(IR::Block& block, IR::Inst* inst);
void EmitLogicalShiftRight(IR::Value* value); void EmitSubWithCarry(IR::Block& block, IR::Inst* inst);
void EmitArithmeticShiftRight(IR::Value* value); void EmitAnd(IR::Block& block, IR::Inst* inst);
void EmitRotateRight(IR::Value* value); void EmitEor(IR::Block& block, IR::Inst* inst);
void EmitAddWithCarry(IR::Value* value); void EmitOr(IR::Block& block, IR::Inst* inst);
void EmitSubWithCarry(IR::Value* value); void EmitNot(IR::Block& block, IR::Inst* inst);
void EmitAnd(IR::Value* value); void EmitSignExtendHalfToWord(IR::Block& block, IR::Inst* inst);
void EmitEor(IR::Value* value); void EmitSignExtendByteToWord(IR::Block& block, IR::Inst* inst);
void EmitOr(IR::Value* value); void EmitZeroExtendHalfToWord(IR::Block& block, IR::Inst* inst);
void EmitNot(IR::Value* value); void EmitZeroExtendByteToWord(IR::Block& block, IR::Inst* inst);
void EmitSignExtendHalfToWord(IR::Value* value); void EmitByteReverseWord(IR::Block& block, IR::Inst* inst);
void EmitSignExtendByteToWord(IR::Value* value); void EmitByteReverseHalf(IR::Block& block, IR::Inst* inst);
void EmitZeroExtendHalfToWord(IR::Value* value); void EmitByteReverseDual(IR::Block& block, IR::Inst* inst);
void EmitZeroExtendByteToWord(IR::Value* value); void EmitReadMemory8(IR::Block& block, IR::Inst* inst);
void EmitByteReverseWord(IR::Value* value); void EmitReadMemory16(IR::Block& block, IR::Inst* inst);
void EmitByteReverseHalf(IR::Value* value); void EmitReadMemory32(IR::Block& block, IR::Inst* inst);
void EmitByteReverseDual(IR::Value* value); void EmitReadMemory64(IR::Block& block, IR::Inst* inst);
void EmitReadMemory8(IR::Value* value); void EmitWriteMemory8(IR::Block& block, IR::Inst* inst);
void EmitReadMemory16(IR::Value* value); void EmitWriteMemory16(IR::Block& block, IR::Inst* inst);
void EmitReadMemory32(IR::Value* value); void EmitWriteMemory32(IR::Block& block, IR::Inst* inst);
void EmitReadMemory64(IR::Value* value); void EmitWriteMemory64(IR::Block& block, IR::Inst* inst);
void EmitWriteMemory8(IR::Value* value);
void EmitWriteMemory16(IR::Value* value);
void EmitWriteMemory32(IR::Value* value);
void EmitWriteMemory64(IR::Value* value);
// Helpers // Helpers
void EmitAddCycles(size_t cycles); void EmitAddCycles(size_t cycles);

View file

@ -14,36 +14,22 @@
namespace Dynarmic { namespace Dynarmic {
namespace BackendX64 { namespace BackendX64 {
// TODO: Just turn this into a function that indexes a std::array. static Gen::X64Reg HostLocToX64(HostLoc loc) {
const static std::map<HostLoc, Gen::X64Reg> hostloc_to_x64 = { DEBUG_ASSERT(HostLocIsRegister(loc));
{ HostLoc::RAX, Gen::RAX }, // HostLoc is ordered such that the numbers line up.
{ HostLoc::RBX, Gen::RBX }, return static_cast<Gen::X64Reg>(loc);
{ HostLoc::RCX, Gen::RCX }, }
{ HostLoc::RDX, Gen::RDX },
{ HostLoc::RSI, Gen::RSI },
{ HostLoc::RDI, Gen::RDI },
{ HostLoc::RBP, Gen::RBP },
{ HostLoc::RSP, Gen::RSP },
{ HostLoc::R8, Gen::R8 },
{ HostLoc::R9, Gen::R9 },
{ HostLoc::R10, Gen::R10 },
{ HostLoc::R11, Gen::R11 },
{ HostLoc::R12, Gen::R12 },
{ HostLoc::R13, Gen::R13 },
{ HostLoc::R14, Gen::R14 },
};
static Gen::OpArg SpillToOpArg(HostLoc loc) { static Gen::OpArg SpillToOpArg(HostLoc loc) {
ASSERT(HostLocIsSpill(loc)); DEBUG_ASSERT(HostLocIsSpill(loc));
size_t i = static_cast<size_t>(loc) - static_cast<size_t>(HostLoc::FirstSpill); size_t i = static_cast<size_t>(loc) - static_cast<size_t>(HostLoc::FirstSpill);
return Gen::MDisp(Gen::R15, static_cast<int>(offsetof(JitState, Spill) + i * sizeof(u32))); return Gen::MDisp(Gen::R15, static_cast<int>(offsetof(JitState, Spill) + i * sizeof(u32)));
} }
Gen::X64Reg RegAlloc::DefRegister(IR::Value* def_value, std::initializer_list<HostLoc> desired_locations) { Gen::X64Reg RegAlloc::DefRegister(IR::Inst* def_inst, std::initializer_list<HostLoc> desired_locations) {
ASSERT(std::all_of(desired_locations.begin(), desired_locations.end(), HostLocIsRegister)); DEBUG_ASSERT(std::all_of(desired_locations.begin(), desired_locations.end(), HostLocIsRegister));
ASSERT_MSG(remaining_uses.find(def_value) == remaining_uses.end(), "def_value has already been defined"); DEBUG_ASSERT_MSG(ValueLocations(def_inst).empty(), "def_inst has already been defined");
ASSERT_MSG(ValueLocations(def_value).empty(), "def_value has already been defined");
HostLoc location = SelectARegister(desired_locations); HostLoc location = SelectARegister(desired_locations);
@ -52,43 +38,54 @@ Gen::X64Reg RegAlloc::DefRegister(IR::Value* def_value, std::initializer_list<Ho
} }
// Update state // Update state
hostloc_state[location] = HostLocState::Def; hostloc_state[static_cast<size_t>(location)] = HostLocState::Def;
hostloc_to_value[location] = def_value; hostloc_to_inst[static_cast<size_t>(location)] = def_inst;
remaining_uses[def_value] = def_value->NumUses();
return hostloc_to_x64.at(location); return HostLocToX64(location);
} }
Gen::X64Reg RegAlloc::UseDefRegister(IR::Value* use_value, IR::Value* def_value, std::initializer_list<HostLoc> desired_locations) { Gen::X64Reg RegAlloc::UseDefRegister(IR::Value use_value, IR::Inst* def_inst, std::initializer_list<HostLoc> desired_locations) {
ASSERT(std::all_of(desired_locations.begin(), desired_locations.end(), HostLocIsRegister)); if (!use_value.IsImmediate()) {
ASSERT_MSG(remaining_uses.find(def_value) == remaining_uses.end(), "def_value has already been defined"); return UseDefRegister(use_value.GetInst(), def_inst, desired_locations);
ASSERT_MSG(ValueLocations(def_value).empty(), "def_value has already been defined"); }
ASSERT_MSG(remaining_uses.find(use_value) != remaining_uses.end(), "use_value has not been defined");
ASSERT_MSG(!ValueLocations(use_value).empty(), "use_value has not been defined");
// TODO: Optimize the case when this is the last use_value use. return LoadImmediateIntoRegister(use_value, DefRegister(def_inst, desired_locations));
Gen::X64Reg use_reg = UseRegister(use_value); }
Gen::X64Reg def_reg = DefRegister(def_value, desired_locations);
Gen::X64Reg RegAlloc::UseDefRegister(IR::Inst* use_inst, IR::Inst* def_inst, std::initializer_list<HostLoc> desired_locations) {
DEBUG_ASSERT(std::all_of(desired_locations.begin(), desired_locations.end(), HostLocIsRegister));
DEBUG_ASSERT_MSG(ValueLocations(def_inst).empty(), "def_inst has already been defined");
DEBUG_ASSERT_MSG(!ValueLocations(use_inst).empty(), "use_inst has not been defined");
// TODO: Optimize the case when this is the last use_inst use.
Gen::X64Reg use_reg = UseRegister(use_inst);
Gen::X64Reg def_reg = DefRegister(def_inst, desired_locations);
code->MOV(32, Gen::R(def_reg), Gen::R(use_reg)); code->MOV(32, Gen::R(def_reg), Gen::R(use_reg));
return def_reg; return def_reg;
} }
Gen::X64Reg RegAlloc::UseRegister(IR::Value* use_value, std::initializer_list<HostLoc> desired_locations) { Gen::X64Reg RegAlloc::UseRegister(IR::Value use_value, std::initializer_list<HostLoc> desired_locations) {
ASSERT(std::all_of(desired_locations.begin(), desired_locations.end(), HostLocIsRegister)); if (!use_value.IsImmediate()) {
ASSERT_MSG(remaining_uses.find(use_value) != remaining_uses.end(), "use_value has not been defined"); return UseRegister(use_value.GetInst(), desired_locations);
ASSERT_MSG(!ValueLocations(use_value).empty(), "use_value has not been defined"); }
ASSERT_MSG(remaining_uses[use_value] != 0, "use_value ran out of uses. (Use-d an IR::Value* too many times)");
HostLoc current_location = ValueLocations(use_value).front(); return LoadImmediateIntoRegister(use_value, ScratchRegister(desired_locations));
}
Gen::X64Reg RegAlloc::UseRegister(IR::Inst* use_inst, std::initializer_list<HostLoc> desired_locations) {
DEBUG_ASSERT(std::all_of(desired_locations.begin(), desired_locations.end(), HostLocIsRegister));
DEBUG_ASSERT_MSG(!ValueLocations(use_inst).empty(), "use_inst has not been defined");
HostLoc current_location = ValueLocations(use_inst).front();
auto iter = std::find(desired_locations.begin(), desired_locations.end(), current_location); auto iter = std::find(desired_locations.begin(), desired_locations.end(), current_location);
if (iter != desired_locations.end()) { if (iter != desired_locations.end()) {
ASSERT(hostloc_state[current_location] == HostLocState::Idle || hostloc_state[current_location] == HostLocState::Use); ASSERT(hostloc_state[static_cast<size_t>(current_location)] == HostLocState::Idle || hostloc_state[static_cast<size_t>(current_location)] == HostLocState::Use);
// Update state // Update state
hostloc_state[current_location] = HostLocState::Use; hostloc_state[static_cast<size_t>(current_location)] = HostLocState::Use;
remaining_uses[use_value]--; DecrementRemainingUses(use_inst);
return hostloc_to_x64.at(current_location); return HostLocToX64(current_location);
} }
HostLoc new_location = SelectARegister(desired_locations); HostLoc new_location = SelectARegister(desired_locations);
@ -98,33 +95,40 @@ Gen::X64Reg RegAlloc::UseRegister(IR::Value* use_value, std::initializer_list<Ho
SpillRegister(new_location); SpillRegister(new_location);
} }
code->MOV(32, Gen::R(hostloc_to_x64.at(new_location)), SpillToOpArg(current_location)); code->MOV(32, Gen::R(HostLocToX64(new_location)), SpillToOpArg(current_location));
hostloc_state[new_location] = HostLocState::Use; hostloc_state[static_cast<size_t>(new_location)] = HostLocState::Use;
std::swap(hostloc_to_value[new_location], hostloc_to_value[current_location]); std::swap(hostloc_to_inst[static_cast<size_t>(new_location)], hostloc_to_inst[static_cast<size_t>(current_location)]);
remaining_uses[use_value]--; DecrementRemainingUses(use_inst);
} else if (HostLocIsRegister(current_location)) { } else if (HostLocIsRegister(current_location)) {
ASSERT(hostloc_state[current_location] == HostLocState::Idle); ASSERT(hostloc_state[static_cast<size_t>(current_location)] == HostLocState::Idle);
code->XCHG(32, Gen::R(hostloc_to_x64.at(new_location)), Gen::R(hostloc_to_x64.at(current_location))); code->XCHG(32, Gen::R(HostLocToX64(new_location)), Gen::R(HostLocToX64(current_location)));
hostloc_state[new_location] = HostLocState::Use; hostloc_state[static_cast<size_t>(new_location)] = HostLocState::Use;
std::swap(hostloc_to_value[new_location], hostloc_to_value[current_location]); std::swap(hostloc_to_inst[static_cast<size_t>(new_location)], hostloc_to_inst[static_cast<size_t>(current_location)]);
remaining_uses[use_value]--; DecrementRemainingUses(use_inst);
} else { } else {
ASSERT_MSG(0, "Invalid current_location"); ASSERT_MSG(0, "Invalid current_location");
} }
return hostloc_to_x64.at(new_location); return HostLocToX64(new_location);
} }
Gen::X64Reg RegAlloc::UseScratchRegister(IR::Value* use_value, std::initializer_list<HostLoc> desired_locations) { Gen::X64Reg RegAlloc::UseScratchRegister(IR::Value use_value, std::initializer_list<HostLoc> desired_locations) {
ASSERT(std::all_of(desired_locations.begin(), desired_locations.end(), HostLocIsRegister)); if (!use_value.IsImmediate()) {
ASSERT_MSG(remaining_uses.find(use_value) != remaining_uses.end(), "use_value has not been defined"); return UseScratchRegister(use_value.GetInst(), desired_locations);
ASSERT_MSG(!ValueLocations(use_value).empty(), "use_value has not been defined"); }
ASSERT_MSG(remaining_uses[use_value] != 0, "use_value ran out of uses. (Use-d an IR::Value* too many times)");
HostLoc current_location = ValueLocations(use_value).front(); return LoadImmediateIntoRegister(use_value, ScratchRegister(desired_locations));
}
Gen::X64Reg RegAlloc::UseScratchRegister(IR::Inst* use_inst, std::initializer_list<HostLoc> desired_locations) {
DEBUG_ASSERT(std::all_of(desired_locations.begin(), desired_locations.end(), HostLocIsRegister));
DEBUG_ASSERT_MSG(!ValueLocations(use_inst).empty(), "use_inst has not been defined");
ASSERT_MSG(use_inst->use_count != 0, "use_inst ran out of uses. (Use-d an IR::Inst* too many times)");
HostLoc current_location = ValueLocations(use_inst).front();
HostLoc new_location = SelectARegister(desired_locations); HostLoc new_location = SelectARegister(desired_locations);
if (HostLocIsSpill(current_location)) { if (HostLocIsSpill(current_location)) {
@ -132,34 +136,34 @@ Gen::X64Reg RegAlloc::UseScratchRegister(IR::Value* use_value, std::initializer_
SpillRegister(new_location); SpillRegister(new_location);
} }
code->MOV(32, Gen::R(hostloc_to_x64.at(new_location)), SpillToOpArg(current_location)); code->MOV(32, Gen::R(HostLocToX64(new_location)), SpillToOpArg(current_location));
hostloc_state[new_location] = HostLocState::Scratch; hostloc_state[static_cast<size_t>(new_location)] = HostLocState::Scratch;
remaining_uses[use_value]--; DecrementRemainingUses(use_inst);
} else if (HostLocIsRegister(current_location)) { } else if (HostLocIsRegister(current_location)) {
ASSERT(hostloc_state[current_location] == HostLocState::Idle); ASSERT(hostloc_state[static_cast<size_t>(current_location)] == HostLocState::Idle);
if (IsRegisterOccupied(new_location)) { if (IsRegisterOccupied(new_location)) {
SpillRegister(new_location); SpillRegister(new_location);
if (current_location != new_location) { if (current_location != new_location) {
code->MOV(32, Gen::R(hostloc_to_x64.at(new_location)), Gen::R(hostloc_to_x64.at(current_location))); code->MOV(32, Gen::R(HostLocToX64(new_location)), Gen::R(HostLocToX64(current_location)));
} }
} else { } else {
code->MOV(32, Gen::R(hostloc_to_x64.at(new_location)), Gen::R(hostloc_to_x64.at(current_location))); code->MOV(32, Gen::R(HostLocToX64(new_location)), Gen::R(HostLocToX64(current_location)));
} }
hostloc_state[new_location] = HostLocState::Scratch; hostloc_state[static_cast<size_t>(new_location)] = HostLocState::Scratch;
remaining_uses[use_value]--; DecrementRemainingUses(use_inst);
} else { } else {
ASSERT_MSG(0, "Invalid current_location"); ASSERT_MSG(0, "Invalid current_location");
} }
return hostloc_to_x64.at(new_location); return HostLocToX64(new_location);
} }
Gen::X64Reg RegAlloc::ScratchRegister(std::initializer_list<HostLoc> desired_locations) { Gen::X64Reg RegAlloc::ScratchRegister(std::initializer_list<HostLoc> desired_locations) {
ASSERT(std::all_of(desired_locations.begin(), desired_locations.end(), HostLocIsRegister)); DEBUG_ASSERT(std::all_of(desired_locations.begin(), desired_locations.end(), HostLocIsRegister));
HostLoc location = SelectARegister(desired_locations); HostLoc location = SelectARegister(desired_locations);
@ -168,12 +172,32 @@ Gen::X64Reg RegAlloc::ScratchRegister(std::initializer_list<HostLoc> desired_loc
} }
// Update state // Update state
hostloc_state[location] = HostLocState::Scratch; hostloc_state[static_cast<size_t>(location)] = HostLocState::Scratch;
return hostloc_to_x64.at(location); return HostLocToX64(location);
} }
void RegAlloc::HostCall(IR::Value* result_def, IR::Value* arg0_use, IR::Value* arg1_use, IR::Value* arg2_use, IR::Value* arg3_use) { Gen::X64Reg RegAlloc::LoadImmediateIntoRegister(IR::Value imm, Gen::X64Reg reg) {
ASSERT_MSG(imm.IsImmediate(), "imm is not an immediate");
switch (imm.GetType()) {
case IR::Type::U1:
code->MOV(32, R(reg), Gen::Imm32(imm.GetU1()));
break;
case IR::Type::U8:
code->MOV(32, R(reg), Gen::Imm32(imm.GetU8()));
break;
case IR::Type::U32:
code->MOV(32, R(reg), Gen::Imm32(imm.GetU32()));
break;
default:
ASSERT_MSG(false, "This should never happen.");
}
return reg;
}
void RegAlloc::HostCall(IR::Inst* result_def, IR::Value arg0_use, IR::Value arg1_use, IR::Value arg2_use, IR::Value arg3_use) {
constexpr HostLoc AbiReturn = HostLoc::RAX; constexpr HostLoc AbiReturn = HostLoc::RAX;
#ifdef _WIN32 #ifdef _WIN32
constexpr std::array<HostLoc, 4> AbiArgs = { HostLoc::RCX, HostLoc::RDX, HostLoc::R8, HostLoc::R9 }; constexpr std::array<HostLoc, 4> AbiArgs = { HostLoc::RCX, HostLoc::RDX, HostLoc::R8, HostLoc::R9 };
@ -185,7 +209,7 @@ void RegAlloc::HostCall(IR::Value* result_def, IR::Value* arg0_use, IR::Value* a
constexpr std::array<HostLoc, 4> OtherCallerSave = { HostLoc::R8, HostLoc::R9, HostLoc::R10, HostLoc::R11 }; constexpr std::array<HostLoc, 4> OtherCallerSave = { HostLoc::R8, HostLoc::R9, HostLoc::R10, HostLoc::R11 };
#endif #endif
const std::array<IR::Value*, 4> args = {arg0_use, arg1_use, arg2_use, arg3_use}; const std::array<IR::Value*, 4> args = {&arg0_use, &arg1_use, &arg2_use, &arg3_use};
// TODO: This works but almost certainly leads to suboptimal generated code. // TODO: This works but almost certainly leads to suboptimal generated code.
@ -200,8 +224,8 @@ void RegAlloc::HostCall(IR::Value* result_def, IR::Value* arg0_use, IR::Value* a
} }
for (size_t i = 0; i < AbiArgs.size(); i++) { for (size_t i = 0; i < AbiArgs.size(); i++) {
if (args[i]) { if (!args[i]->IsEmpty()) {
UseScratchRegister(args[i], {AbiArgs[i]}); UseScratchRegister(*args[i], {AbiArgs[i]});
} else { } else {
ScratchRegister({AbiArgs[i]}); ScratchRegister({AbiArgs[i]});
} }
@ -231,36 +255,36 @@ HostLoc RegAlloc::SelectARegister(std::initializer_list<HostLoc> desired_locatio
return candidates.front(); return candidates.front();
} }
std::vector<HostLoc> RegAlloc::ValueLocations(IR::Value* value) const { std::vector<HostLoc> RegAlloc::ValueLocations(IR::Inst* value) const {
std::vector<HostLoc> locations; std::vector<HostLoc> locations;
for (const auto& iter : hostloc_to_value) for (size_t i = 0; i < HostLocCount; i++)
if (iter.second == value) if (hostloc_to_inst[i] == value)
locations.emplace_back(iter.first); locations.emplace_back(static_cast<HostLoc>(i));
return locations; return locations;
} }
bool RegAlloc::IsRegisterOccupied(HostLoc loc) const { bool RegAlloc::IsRegisterOccupied(HostLoc loc) const {
return hostloc_to_value.find(loc) != hostloc_to_value.end() && hostloc_to_value.at(loc) != nullptr; return hostloc_to_inst.at(static_cast<size_t>(loc)) != nullptr;
} }
bool RegAlloc::IsRegisterAllocated(HostLoc loc) const { bool RegAlloc::IsRegisterAllocated(HostLoc loc) const {
return hostloc_state.find(loc) != hostloc_state.end() && hostloc_state.at(loc) != HostLocState::Idle; return hostloc_state.at(static_cast<size_t>(loc)) != HostLocState::Idle;
} }
void RegAlloc::SpillRegister(HostLoc loc) { void RegAlloc::SpillRegister(HostLoc loc) {
ASSERT_MSG(HostLocIsRegister(loc), "Only registers can be spilled"); ASSERT_MSG(HostLocIsRegister(loc), "Only registers can be spilled");
ASSERT_MSG(hostloc_state[loc] == HostLocState::Idle, "Allocated registers cannot be spilled"); ASSERT_MSG(hostloc_state[static_cast<size_t>(loc)] == HostLocState::Idle, "Allocated registers cannot be spilled");
ASSERT_MSG(IsRegisterOccupied(loc), "There is no need to spill unoccupied registers"); ASSERT_MSG(IsRegisterOccupied(loc), "There is no need to spill unoccupied registers");
ASSERT_MSG(!IsRegisterAllocated(loc), "Registers that have been allocated must not be spilt"); ASSERT_MSG(!IsRegisterAllocated(loc), "Registers that have been allocated must not be spilt");
HostLoc new_loc = FindFreeSpill(); HostLoc new_loc = FindFreeSpill();
code->MOV(32, SpillToOpArg(new_loc), Gen::R(hostloc_to_x64.at(loc))); code->MOV(32, SpillToOpArg(new_loc), Gen::R(HostLocToX64(loc)));
hostloc_to_value[new_loc] = hostloc_to_value[loc]; hostloc_to_inst[static_cast<size_t>(new_loc)] = hostloc_to_inst[static_cast<size_t>(loc)];
hostloc_to_value[loc] = nullptr; hostloc_to_inst[static_cast<size_t>(loc)] = nullptr;
} }
HostLoc RegAlloc::FindFreeSpill() const { HostLoc RegAlloc::FindFreeSpill() const {
@ -272,27 +296,25 @@ HostLoc RegAlloc::FindFreeSpill() const {
} }
void RegAlloc::EndOfAllocScope() { void RegAlloc::EndOfAllocScope() {
hostloc_state.clear(); hostloc_state.fill(HostLocState::Idle);
for (auto& iter : hostloc_to_value) for (auto& iter : hostloc_to_inst)
if (iter.second && remaining_uses[iter.second] == 0) if (iter && iter->use_count == 0)
iter.second = nullptr; iter = nullptr;
} }
void RegAlloc::DecrementRemainingUses(IR::Value* value) { void RegAlloc::DecrementRemainingUses(IR::Inst* value) {
ASSERT_MSG(remaining_uses.find(value) != remaining_uses.end(), "value does not exist"); ASSERT_MSG(value->use_count > 0, "value doesn't have any remaining uses");
ASSERT_MSG(remaining_uses[value] > 0, "value doesn't have any remaining uses"); value->use_count--;
remaining_uses[value]--;
} }
void RegAlloc::AssertNoMoreUses() { void RegAlloc::AssertNoMoreUses() {
ASSERT(std::all_of(hostloc_to_value.begin(), hostloc_to_value.end(), [](const auto& pair){ return !pair.second; })); ASSERT(std::all_of(hostloc_to_inst.begin(), hostloc_to_inst.end(), [](const auto& inst){ return !inst; }));
} }
void RegAlloc::Reset() { void RegAlloc::Reset() {
hostloc_to_value.clear(); hostloc_to_inst.fill(nullptr);
hostloc_state.clear(); hostloc_state.fill(HostLocState::Idle);
remaining_uses.clear();
} }
} // namespace BackendX64 } // namespace BackendX64

View file

@ -17,11 +17,14 @@ namespace Dynarmic {
namespace BackendX64 { namespace BackendX64 {
enum class HostLoc { enum class HostLoc {
RAX, RBX, RCX, RDX, RSI, RDI, RBP, RSP, R8, R9, R10, R11, R12, R13, R14, // Ordering of the registers is intentional. See also: HostLocToX64.
RAX, RCX, RDX, RBX, RSP, RBP, RSI, RDI, R8, R9, R10, R11, R12, R13, R14,
CF, PF, AF, ZF, SF, OF, CF, PF, AF, ZF, SF, OF,
FirstSpill, FirstSpill,
}; };
constexpr size_t HostLocCount = static_cast<size_t>(HostLoc::FirstSpill) + SpillCount;
enum class HostLocState { enum class HostLocState {
Idle, Def, Use, Scratch Idle, Def, Use, Scratch
}; };
@ -66,22 +69,26 @@ public:
RegAlloc(Gen::XEmitter* code) : code(code) {} RegAlloc(Gen::XEmitter* code) : code(code) {}
/// Late-def /// Late-def
Gen::X64Reg DefRegister(IR::Value* def_value, std::initializer_list<HostLoc> desired_locations = hostloc_any_register); Gen::X64Reg DefRegister(IR::Inst* def_inst, std::initializer_list<HostLoc> desired_locations = hostloc_any_register);
/// Early-use, Late-def /// Early-use, Late-def
Gen::X64Reg UseDefRegister(IR::Value* use_value, IR::Value* def_value, std::initializer_list<HostLoc> desired_locations = hostloc_any_register); Gen::X64Reg UseDefRegister(IR::Value use_value, IR::Inst* def_inst, std::initializer_list<HostLoc> desired_locations = hostloc_any_register);
Gen::X64Reg UseDefRegister(IR::Inst* use_inst, IR::Inst* def_inst, std::initializer_list<HostLoc> desired_locations = hostloc_any_register);
/// Early-use /// Early-use
Gen::X64Reg UseRegister(IR::Value* use_value, std::initializer_list<HostLoc> desired_locations = hostloc_any_register); Gen::X64Reg UseRegister(IR::Value use_value, std::initializer_list<HostLoc> desired_locations = hostloc_any_register);
Gen::X64Reg UseRegister(IR::Inst* use_inst, std::initializer_list<HostLoc> desired_locations = hostloc_any_register);
/// Early-use, Destroyed /// Early-use, Destroyed
Gen::X64Reg UseScratchRegister(IR::Value* use_value, std::initializer_list<HostLoc> desired_locations = hostloc_any_register); Gen::X64Reg UseScratchRegister(IR::Value use_value, std::initializer_list<HostLoc> desired_locations = hostloc_any_register);
Gen::X64Reg UseScratchRegister(IR::Inst* use_inst, std::initializer_list<HostLoc> desired_locations = hostloc_any_register);
/// Early-def, Late-use, single-use /// Early-def, Late-use, single-use
Gen::X64Reg ScratchRegister(std::initializer_list<HostLoc> desired_locations = hostloc_any_register); Gen::X64Reg ScratchRegister(std::initializer_list<HostLoc> desired_locations = hostloc_any_register);
Gen::X64Reg LoadImmediateIntoRegister(IR::Value imm, Gen::X64Reg reg);
/// Late-def for result register, Early-use for all arguments, Each value is placed into registers according to host ABI. /// Late-def for result register, Early-use for all arguments, Each value is placed into registers according to host ABI.
void HostCall(IR::Value* result_def = nullptr, IR::Value* arg0_use = nullptr, IR::Value* arg1_use = nullptr, IR::Value* arg2_use = nullptr, IR::Value* arg3_use = nullptr); void HostCall(IR::Inst* result_def = nullptr, IR::Value arg0_use = {}, IR::Value arg1_use = {}, IR::Value arg2_use = {}, IR::Value arg3_use = {});
// TODO: Values in host flags // TODO: Values in host flags
void DecrementRemainingUses(IR::Value* value); void DecrementRemainingUses(IR::Inst* value);
void EndOfAllocScope(); void EndOfAllocScope();
@ -91,7 +98,7 @@ public:
private: private:
HostLoc SelectARegister(std::initializer_list<HostLoc> desired_locations) const; HostLoc SelectARegister(std::initializer_list<HostLoc> desired_locations) const;
std::vector<HostLoc> ValueLocations(IR::Value* value) const; std::vector<HostLoc> ValueLocations(IR::Inst* value) const;
bool IsRegisterOccupied(HostLoc loc) const; bool IsRegisterOccupied(HostLoc loc) const;
bool IsRegisterAllocated(HostLoc loc) const; bool IsRegisterAllocated(HostLoc loc) const;
@ -100,10 +107,9 @@ private:
Gen::XEmitter* code = nullptr; Gen::XEmitter* code = nullptr;
using mapping_map_t = std::map<HostLoc, IR::Value*>; using mapping_map_t = std::array<IR::Inst*, HostLocCount>;
mapping_map_t hostloc_to_value; mapping_map_t hostloc_to_inst;
std::map<HostLoc, HostLocState> hostloc_state; std::array<HostLocState, HostLocCount> hostloc_state;
std::map<IR::Value*, size_t> remaining_uses;
}; };
} // namespace BackendX64 } // namespace BackendX64

View file

@ -45,7 +45,7 @@ static void assert_noinline_call(const Fn& fn) {
#define DEBUG_ASSERT_MSG(_a_, ...) ASSERT_MSG(_a_, __VA_ARGS__) #define DEBUG_ASSERT_MSG(_a_, ...) ASSERT_MSG(_a_, __VA_ARGS__)
#else // not debug #else // not debug
#define DEBUG_ASSERT(_a_) #define DEBUG_ASSERT(_a_)
#define DEBUG_ASSERT_MSG(_a_, _desc_, ...) #define DEBUG_ASSERT_MSG(_a_, ...)
#endif #endif
#define UNIMPLEMENTED() DEBUG_ASSERT_MSG(false, "Unimplemented code!") #define UNIMPLEMENTED() DEBUG_ASSERT_MSG(false, "Unimplemented code!")

View file

@ -52,94 +52,69 @@ const char* GetNameOf(Opcode op) {
// Value class member definitions // Value class member definitions
void Value::ReplaceUsesWith(ValuePtr replacement) { Type Value::GetType() const {
while (!uses.empty()) { return IsImmediate() ? type : inner.inst->GetType();
auto use = uses.front();
use.use_owner.lock()->ReplaceUseOfXWithY(use.value.lock(), replacement);
}
}
std::vector<ValuePtr> Value::GetUses() const {
std::vector<ValuePtr> result(uses.size());
std::transform(uses.begin(), uses.end(), result.begin(), [](const auto& use){ return use.use_owner.lock(); });
return result;
}
void Value::AddUse(ValuePtr owner) {
// There can be multiple uses from the same owner.
uses.push_back({ shared_from_this(), owner });
}
void Value::RemoveUse(ValuePtr owner) {
// Remove only one use.
auto iter = std::find_if(uses.begin(), uses.end(), [&owner](auto use) { return use.use_owner.lock() == owner; });
ASSERT_MSG(iter != uses.end(), "RemoveUse without associated AddUse. Bug in use management code.");
uses.erase(iter);
}
void Value::ReplaceUseOfXWithY(ValuePtr x, ValuePtr y) {
// This should never be called. Use management is incorrect if this is ever called.
ASSERT_MSG(false, "This Value type doesn't use any values. Bug in use management code.");
}
void Value::AssertValid() {
ASSERT(std::all_of(uses.begin(), uses.end(), [](const auto& use) { return !use.use_owner.expired(); }));
} }
// Inst class member definitions // Inst class member definitions
Inst::Inst(Opcode op_) : Value(op_) { Value Inst::GetArg(size_t index) const {
args.resize(GetNumArgsOf(op)); DEBUG_ASSERT(index < GetNumArgsOf(op));
DEBUG_ASSERT(!args[index].IsEmpty());
return args[index];
} }
void Inst::SetArg(size_t index, ValuePtr value) { void Inst::SetArg(size_t index, Value value) {
auto this_ = shared_from_this(); DEBUG_ASSERT(index < GetNumArgsOf(op));
DEBUG_ASSERT(value.GetType() == GetArgTypeOf(op, index));
if (auto prev_value = args.at(index).lock()) { if (!args[index].IsImmediate()) {
prev_value->RemoveUse(this_); UndoUse(args[index]);
}
if (!value.IsImmediate()) {
Use(value);
} }
ASSERT(value->GetType() == GetArgTypeOf(op, index)); args[index] = value;
args.at(index) = value;
value->AddUse(this_);
}
ValuePtr Inst::GetArg(size_t index) const {
ASSERT_MSG(!args.at(index).expired(), "This should never happen. All Values should be owned by a MicroBlock.");
return args.at(index).lock();
} }
void Inst::Invalidate() { void Inst::Invalidate() {
AssertValid(); for (auto& value : args) {
ASSERT(!HasUses()); if (!value.IsImmediate()) {
UndoUse(value);
auto this_ = shared_from_this();
for (auto& arg : args) {
arg.lock()->RemoveUse(this_);
}
}
void Inst::AssertValid() {
ASSERT(std::all_of(args.begin(), args.end(), [](const auto& arg) { return !arg.expired(); }));
Value::AssertValid();
}
void Inst::ReplaceUseOfXWithY(ValuePtr x, ValuePtr y) {
bool has_use = false;
auto this_ = shared_from_this();
// Note that there may be multiple uses of x.
for (auto& arg : args) {
if (arg.lock() == x) {
arg = y;
has_use = true;
x->RemoveUse(this_);
y->AddUse(this_);
} }
} }
}
ASSERT_MSG(has_use, "This Inst doesn't have x. Bug in use management code."); void Inst::Use(Value& value) {
value.GetInst()->use_count++;
switch (op){
case Opcode::GetCarryFromOp:
value.GetInst()->carry_inst = this;
break;
case Opcode::GetOverflowFromOp:
value.GetInst()->overflow_inst = this;
break;
default:
break;
}
}
void Inst::UndoUse(Value& value) {
value.GetInst()->use_count--;
switch (op){
case Opcode::GetCarryFromOp:
value.GetInst()->carry_inst = nullptr;
break;
case Opcode::GetOverflowFromOp:
value.GetInst()->overflow_inst = nullptr;
break;
default:
break;
}
} }
std::string DumpBlock(const IR::Block& block) { std::string DumpBlock(const IR::Block& block) {
@ -160,65 +135,48 @@ std::string DumpBlock(const IR::Block& block) {
} }
ret += "\n"; ret += "\n";
std::map<IR::Value*, size_t> value_to_index; std::map<const IR::Inst*, size_t> inst_to_index;
size_t index = 0; size_t index = 0;
const auto arg_to_string = [&value_to_index](IR::ValuePtr arg) -> std::string { const auto arg_to_string = [&inst_to_index](const IR::Value& arg) -> std::string {
if (!arg) { if (arg.IsEmpty()) {
return "<null>"; return "<null>";
} else if (!arg.IsImmediate()) {
return Common::StringFromFormat("%%%zu", inst_to_index.at(arg.GetInst()));
} }
switch (arg->GetOpcode()) { switch (arg.GetType()) {
case Opcode::ImmU1: { case Type::U1:
auto inst = reinterpret_cast<ImmU1*>(arg.get()); return Common::StringFromFormat("#%s", arg.GetU1() ? "1" : "0");
return Common::StringFromFormat("#%s", inst->value ? "1" : "0"); case Type::U8:
} return Common::StringFromFormat("#%u", arg.GetU8());
case Opcode::ImmU8: { case Type::U32:
auto inst = reinterpret_cast<ImmU8*>(arg.get()); return Common::StringFromFormat("#%#x", arg.GetU32());
return Common::StringFromFormat("#%u", inst->value); case Type::RegRef:
} return Arm::RegToString(arg.GetRegRef());
case Opcode::ImmU32: { default:
auto inst = reinterpret_cast<ImmU32*>(arg.get()); return "<unknown immediate type>";
return Common::StringFromFormat("#%#x", inst->value);
}
case Opcode::ImmRegRef: {
auto inst = reinterpret_cast<ImmRegRef*>(arg.get());
return Arm::RegToString(inst->value);
}
default: {
return Common::StringFromFormat("%%%zu", value_to_index.at(arg.get()));
}
} }
}; };
for (const auto& inst_ptr : block.instructions) { for (auto inst = block.instructions.begin(); inst != block.instructions.end(); ++inst) {
const Opcode op = inst_ptr->GetOpcode(); const Opcode op = inst->GetOpcode();
switch (op) {
case Opcode::ImmU1:
case Opcode::ImmU8:
case Opcode::ImmU32:
case Opcode::ImmRegRef:
break;
default: {
if (GetTypeOf(op) != Type::Void) {
ret += Common::StringFromFormat("%%%-5zu = ", index);
} else {
ret += " "; // '%00000 = ' -> 1 + 5 + 3 = 9 spaces
}
ret += GetNameOf(op); if (GetTypeOf(op) != Type::Void) {
ret += Common::StringFromFormat("%%%-5zu = ", index);
const size_t arg_count = GetNumArgsOf(op); } else {
const auto inst = reinterpret_cast<Inst*>(inst_ptr.get()); ret += " "; // '%00000 = ' -> 1 + 5 + 3 = 9 spaces
for (size_t arg_index = 0; arg_index < arg_count; arg_index++) {
ret += arg_index != 0 ? ", " : " ";
ret += arg_to_string(inst->GetArg(arg_index));
}
ret += "\n";
value_to_index[inst_ptr.get()] = index++;
break;
}
} }
ret += GetNameOf(op);
const size_t arg_count = GetNumArgsOf(op);
for (size_t arg_index = 0; arg_index < arg_count; arg_index++) {
ret += arg_index != 0 ? ", " : " ";
ret += arg_to_string(inst->GetArg(arg_index));
}
ret += "\n";
inst_to_index.at(&*inst) = index++;
} }
return ret; return ret;

View file

@ -10,9 +10,12 @@
#include <memory> #include <memory>
#include <vector> #include <vector>
#include <boost/variant.hpp> #include <boost/pool/pool.hpp>
#include <boost/intrusive/list.hpp>
#include <boost/optional.hpp> #include <boost/optional.hpp>
#include <boost/variant.hpp>
#include "common/assert.h"
#include "common/common_types.h" #include "common/common_types.h"
#include "frontend/arm_types.h" #include "frontend/arm_types.h"
#include "frontend/ir/opcodes.h" #include "frontend/ir/opcodes.h"
@ -47,22 +50,91 @@ const char* GetNameOf(Opcode op);
// Type declarations // Type declarations
/// Base class for microinstructions to derive from. /**
* A representation of a microinstruction. A single ARM/Thumb instruction may be
* converted into zero or more microinstructions.
*/
class Value; struct Value;
using ValuePtr = std::shared_ptr<Value>; class Inst;
using ValueWeakPtr = std::weak_ptr<Value>;
class Value : public std::enable_shared_from_this<Value> { struct Value final {
public: public:
virtual ~Value() = default; Value() : type(Type::Void) {}
bool HasUses() const { return !uses.empty(); } explicit Value(Inst* value) : type(Type::Opaque) {
bool HasOneUse() const { return uses.size() == 1; } inner.inst = value;
bool HasManyUses() const { return uses.size() > 1; } }
/// Replace all uses of this Value with `replacement`. explicit Value(Arm::Reg value) : type(Type::RegRef) {
void ReplaceUsesWith(ValuePtr replacement); inner.imm_regref = value;
}
explicit Value(bool value) : type(Type::U1) {
inner.imm_u1 = value;
}
explicit Value(u8 value) : type(Type::U8) {
inner.imm_u8 = value;
}
explicit Value(u32 value) : type(Type::U32) {
inner.imm_u32 = value;
}
bool IsEmpty() const {
return type == Type::Void;
}
bool IsImmediate() const {
return type != Type::Opaque;
}
Type GetType() const;
Inst* GetInst() const {
DEBUG_ASSERT(type == Type::Opaque);
return inner.inst;
}
Arm::Reg GetRegRef() const {
DEBUG_ASSERT(type == Type::RegRef);
return inner.imm_regref;
}
bool GetU1() const {
DEBUG_ASSERT(type == Type::U1);
return inner.imm_u1;
}
u8 GetU8() const {
DEBUG_ASSERT(type == Type::U8);
return inner.imm_u8;
}
u32 GetU32() const {
DEBUG_ASSERT(type == Type::U32);
return inner.imm_u32;
}
private:
Type type;
union {
Inst* inst; // type == Type::Opaque
Arm::Reg imm_regref;
bool imm_u1;
u8 imm_u8;
u32 imm_u32;
} inner;
};
using InstListLinkMode = boost::intrusive::link_mode<boost::intrusive::normal_link>;
class Inst final : public boost::intrusive::list_base_hook<InstListLinkMode> {
public:
Inst(Opcode op) : op(op) {}
bool HasUses() const { return use_count > 0; }
/// Get the microop this microinstruction represents. /// Get the microop this microinstruction represents.
Opcode GetOpcode() const { return op; } Opcode GetOpcode() const { return op; }
@ -70,99 +142,22 @@ public:
Type GetType() const { return GetTypeOf(op); } Type GetType() const { return GetTypeOf(op); }
/// Get the number of arguments this instruction has. /// Get the number of arguments this instruction has.
size_t NumArgs() const { return GetNumArgsOf(op); } size_t NumArgs() const { return GetNumArgsOf(op); }
/// Get the number of uses this instruction has.
size_t NumUses() const { return uses.size(); }
std::vector<ValuePtr> GetUses() const; Value GetArg(size_t index) const;
void SetArg(size_t index, Value value);
/// Prepare this Value for removal from the instruction stream. void Invalidate();
virtual void Invalidate() {}
/// Assert that this Value is valid.
virtual void AssertValid();
intptr_t GetTag() const { return tag; } size_t use_count = 0;
void SetTag(intptr_t tag_) { tag = tag_; } Inst* carry_inst = nullptr;
Inst* overflow_inst = nullptr;
protected:
friend class Inst;
explicit Value(Opcode op_) : op(op_) {}
void AddUse(ValuePtr owner);
void RemoveUse(ValuePtr owner);
virtual void ReplaceUseOfXWithY(ValuePtr x, ValuePtr y);
private: private:
void Use(Value& value);
void UndoUse(Value& value);
Opcode op; Opcode op;
std::array<Value, 3> args;
struct Use {
/// The instruction which is being used.
ValueWeakPtr value;
/// The instruction which is using `value`.
ValueWeakPtr use_owner;
};
std::list<Use> uses;
intptr_t tag = 0;
};
/// Representation of a u1 immediate.
class ImmU1 final : public Value {
public:
explicit ImmU1(bool value_) : Value(Opcode::ImmU1), value(value_) {}
~ImmU1() override = default;
const bool value; ///< Literal value to load
};
/// Representation of a u8 immediate.
class ImmU8 final : public Value {
public:
explicit ImmU8(u8 value_) : Value(Opcode::ImmU8), value(value_) {}
~ImmU8() override = default;
const u8 value; ///< Literal value to load
};
/// Representation of a u32 immediate.
class ImmU32 final : public Value {
public:
explicit ImmU32(u32 value_) : Value(Opcode::ImmU32), value(value_) {}
~ImmU32() override = default;
const u32 value; ///< Literal value to load
};
/// Representation of a GPR reference.
class ImmRegRef final : public Value {
public:
explicit ImmRegRef(Arm::Reg value_) : Value(Opcode::ImmRegRef), value(value_) {}
~ImmRegRef() override = default;
const Arm::Reg value; ///< Literal value to load
};
/**
* A representation of a microinstruction. A single ARM/Thumb instruction may be
* converted into zero or more microinstructions.
*/
class Inst final : public Value {
public:
explicit Inst(Opcode op);
~Inst() override = default;
/// Set argument number `index` to `value`.
void SetArg(size_t index, ValuePtr value);
/// Get argument number `index`.
ValuePtr GetArg(size_t index) const;
void Invalidate() override;
void AssertValid() override;
protected:
void ReplaceUseOfXWithY(ValuePtr x, ValuePtr y) override;
private:
std::vector<ValueWeakPtr> args;
}; };
namespace Term { namespace Term {
@ -261,7 +256,9 @@ public:
boost::optional<Arm::LocationDescriptor> cond_failed = {}; boost::optional<Arm::LocationDescriptor> cond_failed = {};
/// List of instructions in this block. /// List of instructions in this block.
std::list<ValuePtr> instructions; boost::intrusive::list<Inst, InstListLinkMode> instructions;
/// Memory pool for instruction list
std::unique_ptr<boost::pool<>> instruction_alloc_pool = std::make_unique<boost::pool<>>(sizeof(Inst));
/// Terminal instruction of this block. /// Terminal instruction of this block.
Terminal terminal = Term::Invalid{}; Terminal terminal = Term::Invalid{};

View file

@ -24,138 +24,132 @@ u32 IREmitter::AlignPC(size_t alignment) {
return static_cast<u32>(pc - pc % alignment); return static_cast<u32>(pc - pc % alignment);
} }
IR::ValuePtr IREmitter::Imm1(bool value) { IR::Value IREmitter::Imm1(bool imm1) {
auto imm1 = std::make_shared<IR::ImmU1>(value); return IR::Value(imm1);
AddToBlock(imm1);
return imm1;
} }
IR::ValuePtr IREmitter::Imm8(u8 i) { IR::Value IREmitter::Imm8(u8 imm8) {
auto imm8 = std::make_shared<IR::ImmU8>(i); return IR::Value(imm8);
AddToBlock(imm8);
return imm8;
} }
IR::ValuePtr IREmitter::Imm32(u32 i) { IR::Value IREmitter::Imm32(u32 imm32) {
auto imm32 = std::make_shared<IR::ImmU32>(i); return IR::Value(imm32);
AddToBlock(imm32);
return imm32;
} }
IR::ValuePtr IREmitter::GetRegister(Reg reg) { IR::Value IREmitter::GetRegister(Reg reg) {
if (reg == Reg::PC) { if (reg == Reg::PC) {
return Imm32(PC()); return Imm32(PC());
} }
return Inst(IR::Opcode::GetRegister, { RegRef(reg) }); return Inst(IR::Opcode::GetRegister, { IR::Value(reg) });
} }
void IREmitter::SetRegister(const Reg reg, IR::ValuePtr value) { void IREmitter::SetRegister(const Reg reg, const IR::Value& value) {
ASSERT(reg != Reg::PC); ASSERT(reg != Reg::PC);
Inst(IR::Opcode::SetRegister, { RegRef(reg), value }); Inst(IR::Opcode::SetRegister, { IR::Value(reg), value });
} }
void IREmitter::ALUWritePC(IR::ValuePtr value) { void IREmitter::ALUWritePC(const IR::Value& value) {
// This behaviour is ARM version-dependent. // This behaviour is ARM version-dependent.
// The below implementation is for ARMv6k // The below implementation is for ARMv6k
BranchWritePC(value); BranchWritePC(value);
} }
void IREmitter::BranchWritePC(IR::ValuePtr value) { void IREmitter::BranchWritePC(const IR::Value& value) {
if (!current_location.TFlag) { if (!current_location.TFlag) {
auto new_pc = And(value, Imm32(0xFFFFFFFC)); auto new_pc = And(value, Imm32(0xFFFFFFFC));
Inst(IR::Opcode::SetRegister, { RegRef(Reg::PC), new_pc }); Inst(IR::Opcode::SetRegister, { IR::Value(Reg::PC), new_pc });
} else { } else {
auto new_pc = And(value, Imm32(0xFFFFFFFE)); auto new_pc = And(value, Imm32(0xFFFFFFFE));
Inst(IR::Opcode::SetRegister, { RegRef(Reg::PC), new_pc }); Inst(IR::Opcode::SetRegister, { IR::Value(Reg::PC), new_pc });
} }
} }
void IREmitter::BXWritePC(IR::ValuePtr value) { void IREmitter::BXWritePC(const IR::Value& value) {
Inst(IR::Opcode::BXWritePC, {value}); Inst(IR::Opcode::BXWritePC, {value});
} }
void IREmitter::LoadWritePC(IR::ValuePtr value) { void IREmitter::LoadWritePC(const IR::Value& value) {
// This behaviour is ARM version-dependent. // This behaviour is ARM version-dependent.
// The below implementation is for ARMv6k // The below implementation is for ARMv6k
BXWritePC(value); BXWritePC(value);
} }
void IREmitter::CallSupervisor(IR::ValuePtr value) { void IREmitter::CallSupervisor(const IR::Value& value) {
Inst(IR::Opcode::CallSupervisor, {value}); Inst(IR::Opcode::CallSupervisor, {value});
} }
IR::ValuePtr IREmitter::GetCFlag() { IR::Value IREmitter::GetCFlag() {
return Inst(IR::Opcode::GetCFlag, {}); return Inst(IR::Opcode::GetCFlag, {});
} }
void IREmitter::SetNFlag(IR::ValuePtr value) { void IREmitter::SetNFlag(const IR::Value& value) {
Inst(IR::Opcode::SetNFlag, {value}); Inst(IR::Opcode::SetNFlag, {value});
} }
void IREmitter::SetZFlag(IR::ValuePtr value) { void IREmitter::SetZFlag(const IR::Value& value) {
Inst(IR::Opcode::SetZFlag, {value}); Inst(IR::Opcode::SetZFlag, {value});
} }
void IREmitter::SetCFlag(IR::ValuePtr value) { void IREmitter::SetCFlag(const IR::Value& value) {
Inst(IR::Opcode::SetCFlag, {value}); Inst(IR::Opcode::SetCFlag, {value});
} }
void IREmitter::SetVFlag(IR::ValuePtr value) { void IREmitter::SetVFlag(const IR::Value& value) {
Inst(IR::Opcode::SetVFlag, {value}); Inst(IR::Opcode::SetVFlag, {value});
} }
IR::ValuePtr IREmitter::LeastSignificantHalf(IR::ValuePtr value) { IR::Value IREmitter::LeastSignificantHalf(const IR::Value& value) {
return Inst(IR::Opcode::LeastSignificantHalf, {value}); return Inst(IR::Opcode::LeastSignificantHalf, {value});
} }
IR::ValuePtr IREmitter::LeastSignificantByte(IR::ValuePtr value) { IR::Value IREmitter::LeastSignificantByte(const IR::Value& value) {
return Inst(IR::Opcode::LeastSignificantByte, {value}); return Inst(IR::Opcode::LeastSignificantByte, {value});
} }
IR::ValuePtr IREmitter::MostSignificantBit(IR::ValuePtr value) { IR::Value IREmitter::MostSignificantBit(const IR::Value& value) {
return Inst(IR::Opcode::MostSignificantBit, {value}); return Inst(IR::Opcode::MostSignificantBit, {value});
} }
IR::ValuePtr IREmitter::IsZero(IR::ValuePtr value) { IR::Value IREmitter::IsZero(const IR::Value& value) {
return Inst(IR::Opcode::IsZero, {value}); return Inst(IR::Opcode::IsZero, {value});
} }
IREmitter::ResultAndCarry IREmitter::LogicalShiftLeft(IR::ValuePtr value_in, IR::ValuePtr shift_amount, IR::ValuePtr carry_in) { IREmitter::ResultAndCarry IREmitter::LogicalShiftLeft(const IR::Value& value_in, const IR::Value& shift_amount, const IR::Value& carry_in) {
auto result = Inst(IR::Opcode::LogicalShiftLeft, {value_in, shift_amount, carry_in}); auto result = Inst(IR::Opcode::LogicalShiftLeft, {value_in, shift_amount, carry_in});
auto carry_out = Inst(IR::Opcode::GetCarryFromOp, {result}); auto carry_out = Inst(IR::Opcode::GetCarryFromOp, {result});
return {result, carry_out}; return {result, carry_out};
} }
IREmitter::ResultAndCarry IREmitter::LogicalShiftRight(IR::ValuePtr value_in, IR::ValuePtr shift_amount, IR::ValuePtr carry_in) { IREmitter::ResultAndCarry IREmitter::LogicalShiftRight(const IR::Value& value_in, const IR::Value& shift_amount, const IR::Value& carry_in) {
auto result = Inst(IR::Opcode::LogicalShiftRight, {value_in, shift_amount, carry_in}); auto result = Inst(IR::Opcode::LogicalShiftRight, {value_in, shift_amount, carry_in});
auto carry_out = Inst(IR::Opcode::GetCarryFromOp, {result}); auto carry_out = Inst(IR::Opcode::GetCarryFromOp, {result});
return {result, carry_out}; return {result, carry_out};
} }
IREmitter::ResultAndCarry IREmitter::ArithmeticShiftRight(IR::ValuePtr value_in, IR::ValuePtr shift_amount, IR::ValuePtr carry_in) { IREmitter::ResultAndCarry IREmitter::ArithmeticShiftRight(const IR::Value& value_in, const IR::Value& shift_amount, const IR::Value& carry_in) {
auto result = Inst(IR::Opcode::ArithmeticShiftRight, {value_in, shift_amount, carry_in}); auto result = Inst(IR::Opcode::ArithmeticShiftRight, {value_in, shift_amount, carry_in});
auto carry_out = Inst(IR::Opcode::GetCarryFromOp, {result}); auto carry_out = Inst(IR::Opcode::GetCarryFromOp, {result});
return {result, carry_out}; return {result, carry_out};
} }
IREmitter::ResultAndCarry IREmitter::RotateRight(IR::ValuePtr value_in, IR::ValuePtr shift_amount, IR::ValuePtr carry_in) { IREmitter::ResultAndCarry IREmitter::RotateRight(const IR::Value& value_in, const IR::Value& shift_amount, const IR::Value& carry_in) {
auto result = Inst(IR::Opcode::RotateRight, {value_in, shift_amount, carry_in}); auto result = Inst(IR::Opcode::RotateRight, {value_in, shift_amount, carry_in});
auto carry_out = Inst(IR::Opcode::GetCarryFromOp, {result}); auto carry_out = Inst(IR::Opcode::GetCarryFromOp, {result});
return {result, carry_out}; return {result, carry_out};
} }
IREmitter::ResultAndCarryAndOverflow IREmitter::AddWithCarry(IR::ValuePtr a, IR::ValuePtr b, IR::ValuePtr carry_in) { IREmitter::ResultAndCarryAndOverflow IREmitter::AddWithCarry(const IR::Value& a, const IR::Value& b, const IR::Value& carry_in) {
auto result = Inst(IR::Opcode::AddWithCarry, {a, b, carry_in}); auto result = Inst(IR::Opcode::AddWithCarry, {a, b, carry_in});
auto carry_out = Inst(IR::Opcode::GetCarryFromOp, {result}); auto carry_out = Inst(IR::Opcode::GetCarryFromOp, {result});
auto overflow = Inst(IR::Opcode::GetOverflowFromOp, {result}); auto overflow = Inst(IR::Opcode::GetOverflowFromOp, {result});
return {result, carry_out, overflow}; return {result, carry_out, overflow};
} }
IR::ValuePtr IREmitter::Add(IR::ValuePtr a, IR::ValuePtr b) { IR::Value IREmitter::Add(const IR::Value& a, const IR::Value& b) {
return Inst(IR::Opcode::AddWithCarry, {a, b, Imm1(0)}); return Inst(IR::Opcode::AddWithCarry, {a, b, Imm1(0)});
} }
IREmitter::ResultAndCarryAndOverflow IREmitter::SubWithCarry(IR::ValuePtr a, IR::ValuePtr b, IR::ValuePtr carry_in) { IREmitter::ResultAndCarryAndOverflow IREmitter::SubWithCarry(const IR::Value& a, const IR::Value& b, const IR::Value& carry_in) {
// This is equivalent to AddWithCarry(a, Not(b), carry_in). // This is equivalent to AddWithCarry(a, Not(b), carry_in).
auto result = Inst(IR::Opcode::SubWithCarry, {a, b, carry_in}); auto result = Inst(IR::Opcode::SubWithCarry, {a, b, carry_in});
auto carry_out = Inst(IR::Opcode::GetCarryFromOp, {result}); auto carry_out = Inst(IR::Opcode::GetCarryFromOp, {result});
@ -163,96 +157,102 @@ IREmitter::ResultAndCarryAndOverflow IREmitter::SubWithCarry(IR::ValuePtr a, IR:
return {result, carry_out, overflow}; return {result, carry_out, overflow};
} }
IR::ValuePtr IREmitter::Sub(IR::ValuePtr a, IR::ValuePtr b) { IR::Value IREmitter::Sub(const IR::Value& a, const IR::Value& b) {
return Inst(IR::Opcode::SubWithCarry, {a, b, Imm1(1)}); return Inst(IR::Opcode::SubWithCarry, {a, b, Imm1(1)});
} }
IR::ValuePtr IREmitter::And(IR::ValuePtr a, IR::ValuePtr b) { IR::Value IREmitter::And(const IR::Value& a, const IR::Value& b) {
return Inst(IR::Opcode::And, {a, b}); return Inst(IR::Opcode::And, {a, b});
} }
IR::ValuePtr IREmitter::Eor(IR::ValuePtr a, IR::ValuePtr b) { IR::Value IREmitter::Eor(const IR::Value& a, const IR::Value& b) {
return Inst(IR::Opcode::Eor, {a, b}); return Inst(IR::Opcode::Eor, {a, b});
} }
IR::ValuePtr IREmitter::Or(IR::ValuePtr a, IR::ValuePtr b) { IR::Value IREmitter::Or(const IR::Value& a, const IR::Value& b) {
return Inst(IR::Opcode::Or, {a, b}); return Inst(IR::Opcode::Or, {a, b});
} }
IR::ValuePtr IREmitter::Not(IR::ValuePtr a) { IR::Value IREmitter::Not(const IR::Value& a) {
return Inst(IR::Opcode::Not, {a}); return Inst(IR::Opcode::Not, {a});
} }
IR::ValuePtr IREmitter::SignExtendHalfToWord(IR::ValuePtr a) { IR::Value IREmitter::SignExtendHalfToWord(const IR::Value& a) {
return Inst(IR::Opcode::SignExtendHalfToWord, {a}); return Inst(IR::Opcode::SignExtendHalfToWord, {a});
} }
IR::ValuePtr IREmitter::SignExtendByteToWord(IR::ValuePtr a) { IR::Value IREmitter::SignExtendByteToWord(const IR::Value& a) {
return Inst(IR::Opcode::SignExtendByteToWord, {a}); return Inst(IR::Opcode::SignExtendByteToWord, {a});
} }
IR::ValuePtr IREmitter::ZeroExtendHalfToWord(IR::ValuePtr a) { IR::Value IREmitter::ZeroExtendHalfToWord(const IR::Value& a) {
return Inst(IR::Opcode::ZeroExtendHalfToWord, {a}); return Inst(IR::Opcode::ZeroExtendHalfToWord, {a});
} }
IR::ValuePtr IREmitter::ZeroExtendByteToWord(IR::ValuePtr a) { IR::Value IREmitter::ZeroExtendByteToWord(const IR::Value& a) {
return Inst(IR::Opcode::ZeroExtendByteToWord, {a}); return Inst(IR::Opcode::ZeroExtendByteToWord, {a});
} }
IR::ValuePtr IREmitter::ByteReverseWord(IR::ValuePtr a) { IR::Value IREmitter::ByteReverseWord(const IR::Value& a) {
return Inst(IR::Opcode::ByteReverseWord, {a}); return Inst(IR::Opcode::ByteReverseWord, {a});
} }
IR::ValuePtr IREmitter::ByteReverseHalf(IR::ValuePtr a) { IR::Value IREmitter::ByteReverseHalf(const IR::Value& a) {
return Inst(IR::Opcode::ByteReverseHalf, {a}); return Inst(IR::Opcode::ByteReverseHalf, {a});
} }
IR::ValuePtr IREmitter::ByteReverseDual(IR::ValuePtr a) { IR::Value IREmitter::ByteReverseDual(const IR::Value& a) {
return Inst(IR::Opcode::ByteReverseDual, {a}); return Inst(IR::Opcode::ByteReverseDual, {a});
} }
IR::ValuePtr IREmitter::ReadMemory8(IR::ValuePtr vaddr) { IR::Value IREmitter::ReadMemory8(const IR::Value& vaddr) {
return Inst(IR::Opcode::ReadMemory8, {vaddr}); return Inst(IR::Opcode::ReadMemory8, {vaddr});
} }
IR::ValuePtr IREmitter::ReadMemory16(IR::ValuePtr vaddr) { IR::Value IREmitter::ReadMemory16(const IR::Value& vaddr) {
auto value = Inst(IR::Opcode::ReadMemory16, {vaddr}); auto value = Inst(IR::Opcode::ReadMemory16, {vaddr});
return current_location.EFlag ? ByteReverseHalf(value) : value; return current_location.EFlag ? ByteReverseHalf(value) : value;
} }
IR::ValuePtr IREmitter::ReadMemory32(IR::ValuePtr vaddr) { IR::Value IREmitter::ReadMemory32(const IR::Value& vaddr) {
auto value = Inst(IR::Opcode::ReadMemory32, {vaddr}); auto value = Inst(IR::Opcode::ReadMemory32, {vaddr});
return current_location.EFlag ? ByteReverseWord(value) : value; return current_location.EFlag ? ByteReverseWord(value) : value;
} }
IR::ValuePtr IREmitter::ReadMemory64(IR::ValuePtr vaddr) { IR::Value IREmitter::ReadMemory64(const IR::Value& vaddr) {
auto value = Inst(IR::Opcode::ReadMemory64, {vaddr}); auto value = Inst(IR::Opcode::ReadMemory64, {vaddr});
return current_location.EFlag ? ByteReverseDual(value) : value; return current_location.EFlag ? ByteReverseDual(value) : value;
} }
void IREmitter::WriteMemory8(IR::ValuePtr vaddr, IR::ValuePtr value) { void IREmitter::WriteMemory8(const IR::Value& vaddr, const IR::Value& value) {
Inst(IR::Opcode::WriteMemory8, {vaddr, value}); Inst(IR::Opcode::WriteMemory8, {vaddr, value});
} }
void IREmitter::WriteMemory16(IR::ValuePtr vaddr, IR::ValuePtr value) { void IREmitter::WriteMemory16(const IR::Value& vaddr, const IR::Value& value) {
if (current_location.EFlag) { if (current_location.EFlag) {
value = ByteReverseHalf(value); auto v = ByteReverseHalf(value);
Inst(IR::Opcode::WriteMemory16, {vaddr, v});
} else {
Inst(IR::Opcode::WriteMemory16, {vaddr, value});
} }
Inst(IR::Opcode::WriteMemory16, {vaddr, value});
} }
void IREmitter::WriteMemory32(IR::ValuePtr vaddr, IR::ValuePtr value) { void IREmitter::WriteMemory32(const IR::Value& vaddr, const IR::Value& value) {
if (current_location.EFlag) { if (current_location.EFlag) {
value = ByteReverseWord(value); auto v = ByteReverseWord(value);
Inst(IR::Opcode::WriteMemory32, {vaddr, v});
} else {
Inst(IR::Opcode::WriteMemory32, {vaddr, value});
} }
Inst(IR::Opcode::WriteMemory32, {vaddr, value});
} }
void IREmitter::WriteMemory64(IR::ValuePtr vaddr, IR::ValuePtr value) { void IREmitter::WriteMemory64(const IR::Value& vaddr, const IR::Value& value) {
if (current_location.EFlag) { if (current_location.EFlag) {
value = ByteReverseDual(value); auto v = ByteReverseDual(value);
Inst(IR::Opcode::WriteMemory64, {vaddr, v});
} else {
Inst(IR::Opcode::WriteMemory64, {vaddr, value});
} }
Inst(IR::Opcode::WriteMemory64, {vaddr, value});
} }
void IREmitter::SetTerm(const IR::Terminal& terminal) { void IREmitter::SetTerm(const IR::Terminal& terminal) {
@ -260,28 +260,18 @@ void IREmitter::SetTerm(const IR::Terminal& terminal) {
block.terminal = terminal; block.terminal = terminal;
} }
IR::ValuePtr IREmitter::Inst(IR::Opcode op, std::initializer_list<IR::ValuePtr> args) { IR::Value IREmitter::Inst(IR::Opcode op, std::initializer_list<IR::Value> args) {
auto inst = std::make_shared<IR::Inst>(op); IR::Inst* inst = new(block.instruction_alloc_pool->malloc()) IR::Inst(op);
assert(args.size() == inst->NumArgs()); DEBUG_ASSERT(args.size() == inst->NumArgs());
std::for_each(args.begin(), args.end(), [&inst, op, index = size_t(0)](const auto& v) mutable { std::for_each(args.begin(), args.end(), [&inst, op, index = size_t(0)](const auto& v) mutable {
assert(IR::GetArgTypeOf(op, index) == v->GetType()); DEBUG_ASSERT(IR::GetArgTypeOf(op, index) == v.GetType());
inst->SetArg(index, v); inst->SetArg(index, v);
index++; index++;
}); });
AddToBlock(inst); block.instructions.push_back(*inst);
return inst; return IR::Value(inst);
}
IR::ValuePtr IREmitter::RegRef(Reg reg) {
auto regref = std::make_shared<IR::ImmRegRef>(reg);
AddToBlock(regref);
return regref;
}
void IREmitter::AddToBlock(IR::ValuePtr value) {
block.instructions.emplace_back(value);
} }
} // namespace Arm } // namespace Arm

View file

@ -21,79 +21,77 @@ public:
LocationDescriptor current_location; LocationDescriptor current_location;
struct ResultAndCarry { struct ResultAndCarry {
IR::ValuePtr result; IR::Value result;
IR::ValuePtr carry; IR::Value carry;
}; };
struct ResultAndCarryAndOverflow { struct ResultAndCarryAndOverflow {
IR::ValuePtr result; IR::Value result;
IR::ValuePtr carry; IR::Value carry;
IR::ValuePtr overflow; IR::Value overflow;
}; };
void Unimplemented(); void Unimplemented();
u32 PC(); u32 PC();
u32 AlignPC(size_t alignment); u32 AlignPC(size_t alignment);
IR::ValuePtr Imm1(bool value); IR::Value Imm1(bool value);
IR::ValuePtr Imm8(u8 value); IR::Value Imm8(u8 value);
IR::ValuePtr Imm32(u32 value); IR::Value Imm32(u32 value);
IR::ValuePtr GetRegister(Reg source_reg); IR::Value GetRegister(Reg source_reg);
void SetRegister(const Reg dest_reg, IR::ValuePtr value); void SetRegister(const Reg dest_reg, const IR::Value& value);
void ALUWritePC(IR::ValuePtr value); void ALUWritePC(const IR::Value& value);
void BranchWritePC(IR::ValuePtr value); void BranchWritePC(const IR::Value& value);
void BXWritePC(IR::ValuePtr value); void BXWritePC(const IR::Value& value);
void LoadWritePC(IR::ValuePtr value); void LoadWritePC(const IR::Value& value);
void CallSupervisor(IR::ValuePtr value); void CallSupervisor(const IR::Value& value);
IR::ValuePtr GetCFlag(); IR::Value GetCFlag();
void SetNFlag(IR::ValuePtr value); void SetNFlag(const IR::Value& value);
void SetZFlag(IR::ValuePtr value); void SetZFlag(const IR::Value& value);
void SetCFlag(IR::ValuePtr value); void SetCFlag(const IR::Value& value);
void SetVFlag(IR::ValuePtr value); void SetVFlag(const IR::Value& value);
IR::ValuePtr LeastSignificantHalf(IR::ValuePtr value); IR::Value LeastSignificantHalf(const IR::Value& value);
IR::ValuePtr LeastSignificantByte(IR::ValuePtr value); IR::Value LeastSignificantByte(const IR::Value& value);
IR::ValuePtr MostSignificantBit(IR::ValuePtr value); IR::Value MostSignificantBit(const IR::Value& value);
IR::ValuePtr IsZero(IR::ValuePtr value); IR::Value IsZero(const IR::Value& value);
ResultAndCarry LogicalShiftLeft(IR::ValuePtr value_in, IR::ValuePtr shift_amount, IR::ValuePtr carry_in); ResultAndCarry LogicalShiftLeft(const IR::Value& value_in, const IR::Value& shift_amount, const IR::Value& carry_in);
ResultAndCarry LogicalShiftRight(IR::ValuePtr value_in, IR::ValuePtr shift_amount, IR::ValuePtr carry_in); ResultAndCarry LogicalShiftRight(const IR::Value& value_in, const IR::Value& shift_amount, const IR::Value& carry_in);
ResultAndCarry ArithmeticShiftRight(IR::ValuePtr value_in, IR::ValuePtr shift_amount, IR::ValuePtr carry_in); ResultAndCarry ArithmeticShiftRight(const IR::Value& value_in, const IR::Value& shift_amount, const IR::Value& carry_in);
ResultAndCarry RotateRight(IR::ValuePtr value_in, IR::ValuePtr shift_amount, IR::ValuePtr carry_in); ResultAndCarry RotateRight(const IR::Value& value_in, const IR::Value& shift_amount, const IR::Value& carry_in);
ResultAndCarryAndOverflow AddWithCarry(IR::ValuePtr a, IR::ValuePtr b, IR::ValuePtr carry_in); ResultAndCarryAndOverflow AddWithCarry(const IR::Value& a, const IR::Value& b, const IR::Value& carry_in);
IR::ValuePtr Add(IR::ValuePtr a, IR::ValuePtr b); IR::Value Add(const IR::Value& a, const IR::Value& b);
ResultAndCarryAndOverflow SubWithCarry(IR::ValuePtr a, IR::ValuePtr b, IR::ValuePtr carry_in); ResultAndCarryAndOverflow SubWithCarry(const IR::Value& a, const IR::Value& b, const IR::Value& carry_in);
IR::ValuePtr Sub(IR::ValuePtr a, IR::ValuePtr b); IR::Value Sub(const IR::Value& a, const IR::Value& b);
IR::ValuePtr And(IR::ValuePtr a, IR::ValuePtr b); IR::Value And(const IR::Value& a, const IR::Value& b);
IR::ValuePtr Eor(IR::ValuePtr a, IR::ValuePtr b); IR::Value Eor(const IR::Value& a, const IR::Value& b);
IR::ValuePtr Or(IR::ValuePtr a, IR::ValuePtr b); IR::Value Or(const IR::Value& a, const IR::Value& b);
IR::ValuePtr Not(IR::ValuePtr a); IR::Value Not(const IR::Value& a);
IR::ValuePtr SignExtendHalfToWord(IR::ValuePtr a); IR::Value SignExtendHalfToWord(const IR::Value& a);
IR::ValuePtr SignExtendByteToWord(IR::ValuePtr a); IR::Value SignExtendByteToWord(const IR::Value& a);
IR::ValuePtr ZeroExtendHalfToWord(IR::ValuePtr a); IR::Value ZeroExtendHalfToWord(const IR::Value& a);
IR::ValuePtr ZeroExtendByteToWord(IR::ValuePtr a); IR::Value ZeroExtendByteToWord(const IR::Value& a);
IR::ValuePtr ByteReverseWord(IR::ValuePtr a); IR::Value ByteReverseWord(const IR::Value& a);
IR::ValuePtr ByteReverseHalf(IR::ValuePtr a); IR::Value ByteReverseHalf(const IR::Value& a);
IR::ValuePtr ByteReverseDual(IR::ValuePtr a); IR::Value ByteReverseDual(const IR::Value& a);
IR::ValuePtr ReadMemory8(IR::ValuePtr vaddr); IR::Value ReadMemory8(const IR::Value& vaddr);
IR::ValuePtr ReadMemory16(IR::ValuePtr vaddr); IR::Value ReadMemory16(const IR::Value& vaddr);
IR::ValuePtr ReadMemory32(IR::ValuePtr vaddr); IR::Value ReadMemory32(const IR::Value& vaddr);
IR::ValuePtr ReadMemory64(IR::ValuePtr vaddr); IR::Value ReadMemory64(const IR::Value& vaddr);
void WriteMemory8(IR::ValuePtr vaddr, IR::ValuePtr value); void WriteMemory8(const IR::Value& vaddr, const IR::Value& value);
void WriteMemory16(IR::ValuePtr vaddr, IR::ValuePtr value); void WriteMemory16(const IR::Value& vaddr, const IR::Value& value);
void WriteMemory32(IR::ValuePtr vaddr, IR::ValuePtr value); void WriteMemory32(const IR::Value& vaddr, const IR::Value& value);
void WriteMemory64(IR::ValuePtr vaddr, IR::ValuePtr value); void WriteMemory64(const IR::Value& vaddr, const IR::Value& value);
void SetTerm(const IR::Terminal& terminal); void SetTerm(const IR::Terminal& terminal);
private: private:
IR::ValuePtr Inst(IR::Opcode op, std::initializer_list<IR::ValuePtr> args); IR::Value Inst(IR::Opcode op, std::initializer_list<IR::Value> args);
IR::ValuePtr RegRef(Reg reg);
void AddToBlock(IR::ValuePtr value);
}; };
} // namespace Arm } // namespace Arm

View file

@ -1,11 +1,5 @@
// opcode name, return type, arg1 type, arg2 type, arg3 type, ... // opcode name, return type, arg1 type, arg2 type, arg3 type, ...
// Immediate values
OPCODE(ImmU1, T::U1, )
OPCODE(ImmU8, T::U8, )
OPCODE(ImmU32, T::U32, )
OPCODE(ImmRegRef, T::RegRef, )
// ARM Context getters/setters // ARM Context getters/setters
OPCODE(GetRegister, T::U32, T::RegRef ) OPCODE(GetRegister, T::U32, T::RegRef )
OPCODE(SetRegister, T::Void, T::RegRef, T::U32 ) OPCODE(SetRegister, T::Void, T::RegRef, T::U32 )

View file

@ -340,7 +340,7 @@ IR::Block TranslateArm(LocationDescriptor descriptor, MemoryRead32FuncType memor
visitor.ir.block.cond_failed = { visitor.ir.current_location }; visitor.ir.block.cond_failed = { visitor.ir.current_location };
} }
return visitor.ir.block; return std::move(visitor.ir.block);
} }
} // namespace Arm } // namespace Arm

View file

@ -888,7 +888,7 @@ IR::Block TranslateThumb(LocationDescriptor descriptor, MemoryRead32FuncType mem
visitor.ir.block.cycle_count++; visitor.ir.block.cycle_count++;
} }
return visitor.ir.block; return std::move(visitor.ir.block);
} }
} // namespace Arm } // namespace Arm

View file

@ -26,8 +26,8 @@ void DeadCodeElimination(IR::Block& block) {
auto iter = block.instructions.end(); auto iter = block.instructions.end();
do { do {
--iter; --iter;
if (!(*iter)->HasUses() && is_side_effect_free((*iter)->GetOpcode())) { if (!iter->HasUses() && is_side_effect_free(iter->GetOpcode())) {
(*iter)->Invalidate(); iter->Invalidate();
iter = block.instructions.erase(iter); iter = block.instructions.erase(iter);
} }
} while (iter != block.instructions.begin()); } while (iter != block.instructions.begin());

View file

@ -12,6 +12,7 @@ namespace Dynarmic {
namespace Optimization { namespace Optimization {
void GetSetElimination(IR::Block& block) { void GetSetElimination(IR::Block& block) {
#if 0
using Iterator = decltype(block.instructions.begin()); using Iterator = decltype(block.instructions.begin());
struct RegisterInfo { struct RegisterInfo {
IR::ValuePtr register_value = nullptr; IR::ValuePtr register_value = nullptr;
@ -102,6 +103,7 @@ void GetSetElimination(IR::Block& block) {
break; break;
} }
} }
#endif
} }
} // namespace Optimization } // namespace Optimization

View file

@ -12,9 +12,11 @@ namespace Dynarmic {
namespace Optimization { namespace Optimization {
void VerificationPass(const IR::Block& block) { void VerificationPass(const IR::Block& block) {
#if 0
for (const auto& inst : block.instructions) { for (const auto& inst : block.instructions) {
inst->AssertValid(); inst->AssertValid();
} }
#endif
} }
} // namespace Optimization } // namespace Optimization