backend/x64: Inline exclusive memory access operations (#664)

* a64_emit_x64_memory: Add Unsafe_IgnoreGlobalMonitor optimization

* a32_emit_x64_memory: Add Unsafe_IgnoreGlobalMonitor optimization

* a32_emit_x64_memory: Remove dead code

* {a32,a64}_emit_x64_memory: Also verify vaddr in Exclusive{Read,Write}MemoryInlineUnsafe

* a64_emit_x64_memory: Full fallback for ExclusiveWriteMemoryInlineUnsafe

* a64_emit_x64_memory: Inline full locking

* a64_emit_x64_memory: Allow inlined locking to be optionally removed

* spin_lock: Use xbyak instead of inline asm

* a64_emit_x64_memory: Recompile on exclusive fastmem failure

* Avoid variable shadowing

* a32_emit_x64_memory: Implement recompilation

* Fix recompilation

* spin_lock: Clang format fix

* fix fallback function calls
This commit is contained in:
merry 2022-02-28 08:13:10 +00:00 committed by GitHub
parent 0a11e79b55
commit 5ea2b49ef0
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
15 changed files with 836 additions and 47 deletions

View file

@ -58,6 +58,7 @@ add_library(dynarmic
common/memory_pool.h
common/safe_ops.h
common/scope_exit.h
common/spin_lock.h
common/string_util.h
common/u128.cpp
common/u128.h
@ -281,6 +282,7 @@ if (ARCHITECTURE STREQUAL "x86_64")
backend/x64/emit_x64_crc32.cpp
backend/x64/emit_x64_data_processing.cpp
backend/x64/emit_x64_floating_point.cpp
backend/x64/emit_x64_memory.h
backend/x64/emit_x64_packed.cpp
backend/x64/emit_x64_saturation.cpp
backend/x64/emit_x64_sm4.cpp
@ -289,6 +291,7 @@ if (ARCHITECTURE STREQUAL "x86_64")
backend/x64/emit_x64_vector_saturation.cpp
backend/x64/exception_handler.h
backend/x64/exclusive_monitor.cpp
backend/x64/exclusive_monitor_friend.h
backend/x64/host_feature.h
backend/x64/hostloc.cpp
backend/x64/hostloc.h
@ -299,6 +302,8 @@ if (ARCHITECTURE STREQUAL "x86_64")
backend/x64/reg_alloc.cpp
backend/x64/reg_alloc.h
backend/x64/stack_layout.h
common/spin_lock_x64.cpp
common/spin_lock_x64.h
)
if ("A32" IN_LIST DYNARMIC_FRONTENDS)

View file

@ -73,6 +73,7 @@ protected:
std::map<std::tuple<size_t, int, int>, void (*)()> read_fallbacks;
std::map<std::tuple<size_t, int, int>, void (*)()> write_fallbacks;
std::map<std::tuple<size_t, int, int>, void (*)()> exclusive_write_fallbacks;
void GenFastmemFallbacks();
const void* terminal_handler_pop_rsb_hint;
@ -98,6 +99,7 @@ protected:
u64 resume_rip;
u64 callback;
DoNotFastmemMarker marker;
bool compile;
};
tsl::robin_map<u64, FastmemPatchInfo> fastmem_patch_info;
std::set<DoNotFastmemMarker> do_not_fastmem;
@ -113,6 +115,10 @@ protected:
void ExclusiveReadMemory(A32EmitContext& ctx, IR::Inst* inst);
template<std::size_t bitsize, auto callback>
void ExclusiveWriteMemory(A32EmitContext& ctx, IR::Inst* inst);
template<std::size_t bitsize, auto callback>
void ExclusiveReadMemoryInline(A32EmitContext& ctx, IR::Inst* inst);
template<std::size_t bitsize, auto callback>
void ExclusiveWriteMemoryInline(A32EmitContext& ctx, IR::Inst* inst);
// Terminal instruction emitters
void EmitSetUpperLocationDescriptor(IR::LocationDescriptor new_location, IR::LocationDescriptor old_location);

View file

@ -16,6 +16,8 @@
#include "dynarmic/backend/x64/a32_emit_x64.h"
#include "dynarmic/backend/x64/abi.h"
#include "dynarmic/backend/x64/devirtualize.h"
#include "dynarmic/backend/x64/emit_x64_memory.h"
#include "dynarmic/backend/x64/exclusive_monitor_friend.h"
#include "dynarmic/backend/x64/perf_map.h"
#include "dynarmic/common/x64_disassemble.h"
#include "dynarmic/interface/exclusive_monitor.h"
@ -38,6 +40,12 @@ void A32EmitX64::GenFastmemFallbacks() {
{32, Devirtualize<&A32::UserCallbacks::MemoryWrite32>(conf.callbacks)},
{64, Devirtualize<&A32::UserCallbacks::MemoryWrite64>(conf.callbacks)},
}};
const std::array<std::pair<size_t, ArgCallback>, 4> exclusive_write_callbacks{{
{8, Devirtualize<&A32::UserCallbacks::MemoryWriteExclusive8>(conf.callbacks)},
{16, Devirtualize<&A32::UserCallbacks::MemoryWriteExclusive16>(conf.callbacks)},
{32, Devirtualize<&A32::UserCallbacks::MemoryWriteExclusive32>(conf.callbacks)},
{64, Devirtualize<&A32::UserCallbacks::MemoryWriteExclusive64>(conf.callbacks)},
}};
for (int vaddr_idx : idxes) {
for (int value_idx : idxes) {
@ -82,6 +90,32 @@ void A32EmitX64::GenFastmemFallbacks() {
code.ret();
PerfMapRegister(write_fallbacks[std::make_tuple(bitsize, vaddr_idx, value_idx)], code.getCurr(), fmt::format("a32_write_fallback_{}", bitsize));
}
for (const auto& [bitsize, callback] : exclusive_write_callbacks) {
code.align();
exclusive_write_fallbacks[std::make_tuple(bitsize, vaddr_idx, value_idx)] = code.getCurr<void (*)()>();
ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, HostLoc::RAX);
if (vaddr_idx == code.ABI_PARAM3.getIdx() && value_idx == code.ABI_PARAM2.getIdx()) {
code.xchg(code.ABI_PARAM2, code.ABI_PARAM3);
} else if (vaddr_idx == code.ABI_PARAM3.getIdx()) {
code.mov(code.ABI_PARAM2, Xbyak::Reg64{vaddr_idx});
if (value_idx != code.ABI_PARAM3.getIdx()) {
code.mov(code.ABI_PARAM3, Xbyak::Reg64{value_idx});
}
} else {
if (value_idx != code.ABI_PARAM3.getIdx()) {
code.mov(code.ABI_PARAM3, Xbyak::Reg64{value_idx});
}
if (vaddr_idx != code.ABI_PARAM2.getIdx()) {
code.mov(code.ABI_PARAM2, Xbyak::Reg64{vaddr_idx});
}
}
code.mov(code.ABI_PARAM4, rax);
callback.EmitCall(code);
ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, HostLoc::RAX);
code.ret();
PerfMapRegister(exclusive_write_fallbacks[std::make_tuple(bitsize, vaddr_idx, value_idx)], code.getCurr(), fmt::format("a32_exclusive_write_fallback_{}", bitsize));
}
}
}
}
@ -109,15 +143,16 @@ FakeCall A32EmitX64::FastmemCallback(u64 rip_) {
ASSERT_FALSE("iter != fastmem_patch_info.end()");
}
if (conf.recompile_on_fastmem_failure) {
if (iter->second.compile) {
const auto marker = iter->second.marker;
do_not_fastmem.emplace(marker);
InvalidateBasicBlocks({std::get<0>(marker)});
}
FakeCall ret;
ret.call_rip = iter->second.callback;
ret.ret_rip = iter->second.resume_rip;
return ret;
return FakeCall{
.call_rip = iter->second.callback,
.ret_rip = iter->second.resume_rip,
};
}
namespace {
@ -265,6 +300,7 @@ void A32EmitX64::EmitMemoryRead(A32EmitContext& ctx, IR::Inst* inst) {
Common::BitCast<u64>(code.getCurr()),
Common::BitCast<u64>(wrapped_fn),
*fastmem_marker,
conf.recompile_on_fastmem_failure,
});
ctx.reg_alloc.DefineValue(inst, value);
@ -318,6 +354,7 @@ void A32EmitX64::EmitMemoryWrite(A32EmitContext& ctx, IR::Inst* inst) {
Common::BitCast<u64>(code.getCurr()),
Common::BitCast<u64>(wrapped_fn),
*fastmem_marker,
conf.recompile_on_fastmem_failure,
});
return;
@ -418,40 +455,221 @@ void A32EmitX64::ExclusiveWriteMemory(A32EmitContext& ctx, IR::Inst* inst) {
code.L(end);
}
template<std::size_t bitsize, auto callback>
void A32EmitX64::ExclusiveReadMemoryInline(A32EmitContext& ctx, IR::Inst* inst) {
ASSERT(conf.global_monitor && conf.fastmem_pointer);
if (!exception_handler.SupportsFastmem()) {
ExclusiveReadMemory<bitsize, callback>(ctx, inst);
return;
}
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const Xbyak::Reg64 vaddr = ctx.reg_alloc.UseGpr(args[0]);
const Xbyak::Reg64 value = ctx.reg_alloc.ScratchGpr();
const Xbyak::Reg64 tmp = ctx.reg_alloc.ScratchGpr();
const Xbyak::Reg64 tmp2 = ctx.reg_alloc.ScratchGpr();
const auto wrapped_fn = read_fallbacks[std::make_tuple(bitsize, vaddr.getIdx(), value.getIdx())];
EmitExclusiveLock(code, conf, tmp, tmp2.cvt32());
code.mov(code.byte[r15 + offsetof(A32JitState, exclusive_state)], u8(1));
code.mov(tmp, Common::BitCast<u64>(GetExclusiveMonitorAddressPointer(conf.global_monitor, conf.processor_id)));
code.mov(qword[tmp], vaddr);
const auto fastmem_marker = ShouldFastmem(ctx, inst);
if (fastmem_marker) {
Xbyak::Label end;
const auto src_ptr = r13 + vaddr;
const auto location = code.getCurr();
EmitReadMemoryMov<bitsize>(code, value, src_ptr);
fastmem_patch_info.emplace(
Common::BitCast<u64>(location),
FastmemPatchInfo{
Common::BitCast<u64>(code.getCurr()),
Common::BitCast<u64>(wrapped_fn),
*fastmem_marker,
conf.recompile_on_exclusive_fastmem_failure,
});
code.L(end);
} else {
code.call(wrapped_fn);
}
code.mov(tmp, Common::BitCast<u64>(GetExclusiveMonitorValuePointer(conf.global_monitor, conf.processor_id)));
EmitWriteMemoryMov<bitsize>(code, tmp, value);
EmitExclusiveUnlock(code, conf, tmp, tmp2.cvt32());
ctx.reg_alloc.DefineValue(inst, value);
}
template<std::size_t bitsize, auto callback>
void A32EmitX64::ExclusiveWriteMemoryInline(A32EmitContext& ctx, IR::Inst* inst) {
ASSERT(conf.global_monitor && conf.fastmem_pointer);
if (!exception_handler.SupportsFastmem()) {
ExclusiveWriteMemory<bitsize, callback>(ctx, inst);
return;
}
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
ctx.reg_alloc.ScratchGpr(HostLoc::RAX);
const Xbyak::Reg64 value = ctx.reg_alloc.UseGpr(args[1]);
const Xbyak::Reg64 vaddr = ctx.reg_alloc.UseGpr(args[0]);
const Xbyak::Reg32 status = ctx.reg_alloc.ScratchGpr().cvt32();
const Xbyak::Reg64 tmp = ctx.reg_alloc.ScratchGpr();
const auto fallback_fn = exclusive_write_fallbacks[std::make_tuple(bitsize, vaddr.getIdx(), value.getIdx())];
EmitExclusiveLock(code, conf, tmp, eax);
Xbyak::Label end;
code.mov(tmp, Common::BitCast<u64>(GetExclusiveMonitorAddressPointer(conf.global_monitor, conf.processor_id)));
code.mov(status, u32(1));
code.cmp(code.byte[r15 + offsetof(A32JitState, exclusive_state)], u8(0));
code.je(end, code.T_NEAR);
code.cmp(qword[tmp], vaddr);
code.jne(end, code.T_NEAR);
EmitExclusiveTestAndClear(code, conf, vaddr, tmp, rax);
code.mov(code.byte[r15 + offsetof(A32JitState, exclusive_state)], u8(0));
code.mov(tmp, Common::BitCast<u64>(GetExclusiveMonitorValuePointer(conf.global_monitor, conf.processor_id)));
EmitReadMemoryMov<bitsize>(code, rax, tmp);
const auto fastmem_marker = ShouldFastmem(ctx, inst);
if (fastmem_marker) {
const auto dest_ptr = r13 + vaddr;
const auto location = code.getCurr();
switch (bitsize) {
case 8:
code.lock();
code.cmpxchg(code.byte[dest_ptr], value.cvt8());
break;
case 16:
code.lock();
code.cmpxchg(word[dest_ptr], value.cvt16());
break;
case 32:
code.lock();
code.cmpxchg(dword[dest_ptr], value.cvt32());
break;
case 64:
code.lock();
code.cmpxchg(qword[dest_ptr], value.cvt64());
break;
default:
UNREACHABLE();
}
code.setnz(status.cvt8());
code.SwitchToFarCode();
fastmem_patch_info.emplace(
Common::BitCast<u64>(location),
FastmemPatchInfo{
Common::BitCast<u64>(code.getCurr()),
Common::BitCast<u64>(fallback_fn),
*fastmem_marker,
conf.recompile_on_exclusive_fastmem_failure,
});
code.cmp(al, 0);
code.setz(status.cvt8());
code.movzx(status.cvt32(), status.cvt8());
code.jmp(end, code.T_NEAR);
code.SwitchToNearCode();
} else {
code.call(fallback_fn);
code.cmp(al, 0);
code.setz(status.cvt8());
code.movzx(status.cvt32(), status.cvt8());
}
code.L(end);
EmitExclusiveUnlock(code, conf, tmp, eax);
ctx.reg_alloc.DefineValue(inst, status);
}
void A32EmitX64::EmitA32ClearExclusive(A32EmitContext&, IR::Inst*) {
code.mov(code.byte[r15 + offsetof(A32JitState, exclusive_state)], u8(0));
}
void A32EmitX64::EmitA32ExclusiveReadMemory8(A32EmitContext& ctx, IR::Inst* inst) {
if (conf.fastmem_exclusive_access) {
ExclusiveReadMemoryInline<8, &A32::UserCallbacks::MemoryRead8>(ctx, inst);
} else {
ExclusiveReadMemory<8, &A32::UserCallbacks::MemoryRead8>(ctx, inst);
}
}
void A32EmitX64::EmitA32ExclusiveReadMemory16(A32EmitContext& ctx, IR::Inst* inst) {
if (conf.fastmem_exclusive_access) {
ExclusiveReadMemoryInline<16, &A32::UserCallbacks::MemoryRead16>(ctx, inst);
} else {
ExclusiveReadMemory<16, &A32::UserCallbacks::MemoryRead16>(ctx, inst);
}
}
void A32EmitX64::EmitA32ExclusiveReadMemory32(A32EmitContext& ctx, IR::Inst* inst) {
if (conf.fastmem_exclusive_access) {
ExclusiveReadMemoryInline<32, &A32::UserCallbacks::MemoryRead32>(ctx, inst);
} else {
ExclusiveReadMemory<32, &A32::UserCallbacks::MemoryRead32>(ctx, inst);
}
}
void A32EmitX64::EmitA32ExclusiveReadMemory64(A32EmitContext& ctx, IR::Inst* inst) {
if (conf.fastmem_exclusive_access) {
ExclusiveReadMemoryInline<64, &A32::UserCallbacks::MemoryRead64>(ctx, inst);
} else {
ExclusiveReadMemory<64, &A32::UserCallbacks::MemoryRead64>(ctx, inst);
}
}
void A32EmitX64::EmitA32ExclusiveWriteMemory8(A32EmitContext& ctx, IR::Inst* inst) {
if (conf.fastmem_exclusive_access) {
ExclusiveWriteMemoryInline<8, &A32::UserCallbacks::MemoryWriteExclusive8>(ctx, inst);
} else {
ExclusiveWriteMemory<8, &A32::UserCallbacks::MemoryWriteExclusive8>(ctx, inst);
}
}
void A32EmitX64::EmitA32ExclusiveWriteMemory16(A32EmitContext& ctx, IR::Inst* inst) {
if (conf.fastmem_exclusive_access) {
ExclusiveWriteMemoryInline<16, &A32::UserCallbacks::MemoryWriteExclusive16>(ctx, inst);
} else {
ExclusiveWriteMemory<16, &A32::UserCallbacks::MemoryWriteExclusive16>(ctx, inst);
}
}
void A32EmitX64::EmitA32ExclusiveWriteMemory32(A32EmitContext& ctx, IR::Inst* inst) {
if (conf.fastmem_exclusive_access) {
ExclusiveWriteMemoryInline<32, &A32::UserCallbacks::MemoryWriteExclusive32>(ctx, inst);
} else {
ExclusiveWriteMemory<32, &A32::UserCallbacks::MemoryWriteExclusive32>(ctx, inst);
}
}
void A32EmitX64::EmitA32ExclusiveWriteMemory64(A32EmitContext& ctx, IR::Inst* inst) {
if (conf.fastmem_exclusive_access) {
ExclusiveWriteMemoryInline<64, &A32::UserCallbacks::MemoryWriteExclusive64>(ctx, inst);
} else {
ExclusiveWriteMemory<64, &A32::UserCallbacks::MemoryWriteExclusive64>(ctx, inst);
}
}
} // namespace Dynarmic::Backend::X64

View file

@ -7,6 +7,7 @@
#include <array>
#include <map>
#include <optional>
#include <tuple>
#include "dynarmic/backend/x64/a64_jitstate.h"
@ -67,10 +68,12 @@ protected:
void (*memory_read_128)();
void (*memory_write_128)();
void (*memory_exclusive_write_128)();
void GenMemory128Accessors();
std::map<std::tuple<size_t, int, int>, void (*)()> read_fallbacks;
std::map<std::tuple<size_t, int, int>, void (*)()> write_fallbacks;
std::map<std::tuple<size_t, int, int>, void (*)()> exclusive_write_fallbacks;
void GenFastmemFallbacks();
const void* terminal_handler_pop_rsb_hint;
@ -97,6 +100,7 @@ protected:
u64 resume_rip;
u64 callback;
DoNotFastmemMarker marker;
bool recompile;
};
tsl::robin_map<u64, FastmemPatchInfo> fastmem_patch_info;
std::set<DoNotFastmemMarker> do_not_fastmem;
@ -112,6 +116,10 @@ protected:
void EmitExclusiveReadMemory(A64EmitContext& ctx, IR::Inst* inst);
template<std::size_t bitsize, auto callback>
void EmitExclusiveWriteMemory(A64EmitContext& ctx, IR::Inst* inst);
template<std::size_t bitsize, auto callback>
void EmitExclusiveReadMemoryInline(A64EmitContext& ctx, IR::Inst* inst);
template<std::size_t bitsize, auto callback>
void EmitExclusiveWriteMemoryInline(A64EmitContext& ctx, IR::Inst* inst);
// Terminal instruction emitters
void EmitTerminalImpl(IR::Term::Interpret terminal, IR::LocationDescriptor initial_location, bool is_single_step) override;

View file

@ -16,7 +16,10 @@
#include "dynarmic/backend/x64/a64_emit_x64.h"
#include "dynarmic/backend/x64/abi.h"
#include "dynarmic/backend/x64/devirtualize.h"
#include "dynarmic/backend/x64/emit_x64_memory.h"
#include "dynarmic/backend/x64/exclusive_monitor_friend.h"
#include "dynarmic/backend/x64/perf_map.h"
#include "dynarmic/common/spin_lock_x64.h"
#include "dynarmic/common/x64_disassemble.h"
#include "dynarmic/interface/exclusive_monitor.h"
@ -73,7 +76,38 @@ void A64EmitX64::GenMemory128Accessors() {
code.add(rsp, 8);
#endif
code.ret();
PerfMapRegister(memory_read_128, code.getCurr(), "a64_memory_write_128");
PerfMapRegister(memory_write_128, code.getCurr(), "a64_memory_write_128");
code.align();
memory_exclusive_write_128 = code.getCurr<void (*)()>();
#ifdef _WIN32
code.sub(rsp, 8 + 32 + ABI_SHADOW_SPACE);
code.lea(code.ABI_PARAM3, ptr[rsp + ABI_SHADOW_SPACE]);
code.lea(code.ABI_PARAM4, ptr[rsp + ABI_SHADOW_SPACE + 16]);
code.movaps(xword[code.ABI_PARAM3], xmm1);
code.movaps(xword[code.ABI_PARAM4], xmm2);
Devirtualize<&A64::UserCallbacks::MemoryWriteExclusive128>(conf.callbacks).EmitCall(code);
code.add(rsp, 8 + 16 + ABI_SHADOW_SPACE);
#else
code.sub(rsp, 8);
if (code.HasHostFeature(HostFeature::SSE41)) {
code.movq(code.ABI_PARAM3, xmm1);
code.pextrq(code.ABI_PARAM4, xmm1, 1);
code.movq(code.ABI_PARAM5, xmm2);
code.pextrq(code.ABI_PARAM6, xmm2, 1);
} else {
code.movq(code.ABI_PARAM3, xmm1);
code.punpckhqdq(xmm1, xmm1);
code.movq(code.ABI_PARAM4, xmm1);
code.movq(code.ABI_PARAM5, xmm2);
code.punpckhqdq(xmm2, xmm2);
code.movq(code.ABI_PARAM6, xmm2);
}
Devirtualize<&A64::UserCallbacks::MemoryWriteExclusive128>(conf.callbacks).EmitCall(code);
code.add(rsp, 8);
#endif
code.ret();
PerfMapRegister(memory_exclusive_write_128, code.getCurr(), "a64_memory_exclusive_write_128");
}
void A64EmitX64::GenFastmemFallbacks() {
@ -90,6 +124,12 @@ void A64EmitX64::GenFastmemFallbacks() {
{32, Devirtualize<&A64::UserCallbacks::MemoryWrite32>(conf.callbacks)},
{64, Devirtualize<&A64::UserCallbacks::MemoryWrite64>(conf.callbacks)},
}};
const std::array<std::pair<size_t, ArgCallback>, 4> exclusive_write_callbacks{{
{8, Devirtualize<&A64::UserCallbacks::MemoryWriteExclusive8>(conf.callbacks)},
{16, Devirtualize<&A64::UserCallbacks::MemoryWriteExclusive16>(conf.callbacks)},
{32, Devirtualize<&A64::UserCallbacks::MemoryWriteExclusive32>(conf.callbacks)},
{64, Devirtualize<&A64::UserCallbacks::MemoryWriteExclusive64>(conf.callbacks)},
}};
for (int vaddr_idx : idxes) {
if (vaddr_idx == 4 || vaddr_idx == 15) {
@ -125,6 +165,28 @@ void A64EmitX64::GenFastmemFallbacks() {
code.ret();
PerfMapRegister(write_fallbacks[std::make_tuple(128, vaddr_idx, value_idx)], code.getCurr(), "a64_write_fallback_128");
code.align();
exclusive_write_fallbacks[std::make_tuple(128, vaddr_idx, value_idx)] = code.getCurr<void (*)()>();
ABI_PushCallerSaveRegistersAndAdjustStack(code);
if (value_idx != 1) {
code.movaps(xmm1, Xbyak::Xmm{value_idx});
}
if (code.HasHostFeature(HostFeature::SSE41)) {
code.movq(xmm2, rax);
code.pinsrq(xmm2, rdx, 1);
} else {
code.movq(xmm2, rax);
code.movq(xmm0, rdx);
code.punpcklqdq(xmm2, xmm0);
}
if (vaddr_idx != code.ABI_PARAM2.getIdx()) {
code.mov(code.ABI_PARAM2, Xbyak::Reg64{vaddr_idx});
}
code.call(memory_exclusive_write_128);
ABI_PopCallerSaveRegistersAndAdjustStack(code);
code.ret();
PerfMapRegister(exclusive_write_fallbacks[std::make_tuple(128, vaddr_idx, value_idx)], code.getCurr(), "a64_write_fallback_128");
if (value_idx == 4 || value_idx == 15) {
continue;
}
@ -170,6 +232,32 @@ void A64EmitX64::GenFastmemFallbacks() {
code.ret();
PerfMapRegister(write_fallbacks[std::make_tuple(bitsize, vaddr_idx, value_idx)], code.getCurr(), fmt::format("a64_write_fallback_{}", bitsize));
}
for (const auto& [bitsize, callback] : exclusive_write_callbacks) {
code.align();
exclusive_write_fallbacks[std::make_tuple(bitsize, vaddr_idx, value_idx)] = code.getCurr<void (*)()>();
ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, HostLoc::RAX);
if (vaddr_idx == code.ABI_PARAM3.getIdx() && value_idx == code.ABI_PARAM2.getIdx()) {
code.xchg(code.ABI_PARAM2, code.ABI_PARAM3);
} else if (vaddr_idx == code.ABI_PARAM3.getIdx()) {
code.mov(code.ABI_PARAM2, Xbyak::Reg64{vaddr_idx});
if (value_idx != code.ABI_PARAM3.getIdx()) {
code.mov(code.ABI_PARAM3, Xbyak::Reg64{value_idx});
}
} else {
if (value_idx != code.ABI_PARAM3.getIdx()) {
code.mov(code.ABI_PARAM3, Xbyak::Reg64{value_idx});
}
if (vaddr_idx != code.ABI_PARAM2.getIdx()) {
code.mov(code.ABI_PARAM2, Xbyak::Reg64{vaddr_idx});
}
}
code.mov(code.ABI_PARAM4, rax);
callback.EmitCall(code);
ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, HostLoc::RAX);
code.ret();
PerfMapRegister(exclusive_write_fallbacks[std::make_tuple(bitsize, vaddr_idx, value_idx)], code.getCurr(), fmt::format("a64_exclusive_write_fallback_{}", bitsize));
}
}
}
}
@ -197,15 +285,16 @@ FakeCall A64EmitX64::FastmemCallback(u64 rip_) {
ASSERT_FALSE("iter != fastmem_patch_info.end()");
}
if (conf.recompile_on_fastmem_failure) {
if (iter->second.recompile) {
const auto marker = iter->second.marker;
do_not_fastmem.emplace(marker);
InvalidateBasicBlocks({std::get<0>(marker)});
}
FakeCall ret;
ret.call_rip = iter->second.callback;
ret.ret_rip = iter->second.resume_rip;
return ret;
return FakeCall{
.call_rip = iter->second.callback,
.ret_rip = iter->second.resume_rip,
};
}
namespace {
@ -309,24 +398,26 @@ Xbyak::RegExp EmitVAddrLookup(BlockOfCode& code, A64EmitContext& ctx, size_t bit
return page + tmp;
}
Xbyak::RegExp EmitFastmemVAddr(BlockOfCode& code, A64EmitContext& ctx, Xbyak::Label& abort, Xbyak::Reg64 vaddr, bool& require_abort_handling) {
Xbyak::RegExp EmitFastmemVAddr(BlockOfCode& code, A64EmitContext& ctx, Xbyak::Label& abort, Xbyak::Reg64 vaddr, bool& require_abort_handling, std::optional<Xbyak::Reg64> tmp = std::nullopt) {
const size_t unused_top_bits = 64 - ctx.conf.fastmem_address_space_bits;
if (unused_top_bits == 0) {
return r13 + vaddr;
} else if (ctx.conf.silently_mirror_fastmem) {
Xbyak::Reg64 tmp = ctx.reg_alloc.ScratchGpr();
if (unused_top_bits < 32) {
code.mov(tmp, vaddr);
code.shl(tmp, int(unused_top_bits));
code.shr(tmp, int(unused_top_bits));
} else if (unused_top_bits == 32) {
code.mov(tmp.cvt32(), vaddr.cvt32());
} else {
code.mov(tmp.cvt32(), vaddr.cvt32());
code.and_(tmp, u32((1 << ctx.conf.fastmem_address_space_bits) - 1));
if (!tmp) {
tmp = ctx.reg_alloc.ScratchGpr();
}
return r13 + tmp;
if (unused_top_bits < 32) {
code.mov(*tmp, vaddr);
code.shl(*tmp, int(unused_top_bits));
code.shr(*tmp, int(unused_top_bits));
} else if (unused_top_bits == 32) {
code.mov(tmp->cvt32(), vaddr.cvt32());
} else {
code.mov(tmp->cvt32(), vaddr.cvt32());
code.and_(*tmp, u32((1 << ctx.conf.fastmem_address_space_bits) - 1));
}
return r13 + *tmp;
} else {
if (ctx.conf.fastmem_address_space_bits < 32) {
code.test(vaddr, u32(-(1 << ctx.conf.fastmem_address_space_bits)));
@ -334,9 +425,11 @@ Xbyak::RegExp EmitFastmemVAddr(BlockOfCode& code, A64EmitContext& ctx, Xbyak::La
require_abort_handling = true;
} else {
// TODO: Consider having TEST as above but coalesce 64-bit constant in register allocator
Xbyak::Reg64 tmp = ctx.reg_alloc.ScratchGpr();
code.mov(tmp, vaddr);
code.shr(tmp, int(ctx.conf.fastmem_address_space_bits));
if (!tmp) {
tmp = ctx.reg_alloc.ScratchGpr();
}
code.mov(*tmp, vaddr);
code.shr(*tmp, int(ctx.conf.fastmem_address_space_bits));
code.jnz(abort, code.T_NEAR);
require_abort_handling = true;
}
@ -432,6 +525,7 @@ void A64EmitX64::EmitMemoryRead(A64EmitContext& ctx, IR::Inst* inst) {
Common::BitCast<u64>(code.getCurr()),
Common::BitCast<u64>(wrapped_fn),
*fastmem_marker,
conf.recompile_on_fastmem_failure,
});
} else {
// Use page table
@ -498,6 +592,7 @@ void A64EmitX64::EmitMemoryWrite(A64EmitContext& ctx, IR::Inst* inst) {
Common::BitCast<u64>(code.getCurr()),
Common::BitCast<u64>(wrapped_fn),
*fastmem_marker,
conf.recompile_on_fastmem_failure,
});
} else {
// Use page table
@ -650,48 +745,284 @@ void A64EmitX64::EmitExclusiveWriteMemory(A64EmitContext& ctx, IR::Inst* inst) {
code.L(end);
}
template<std::size_t bitsize, auto callback>
void A64EmitX64::EmitExclusiveReadMemoryInline(A64EmitContext& ctx, IR::Inst* inst) {
ASSERT(conf.global_monitor && conf.fastmem_pointer);
if (!exception_handler.SupportsFastmem()) {
EmitExclusiveReadMemory<bitsize, callback>(ctx, inst);
return;
}
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const Xbyak::Reg64 vaddr = ctx.reg_alloc.UseGpr(args[0]);
const int value_idx = bitsize == 128 ? ctx.reg_alloc.ScratchXmm().getIdx() : ctx.reg_alloc.ScratchGpr().getIdx();
const Xbyak::Reg64 tmp = ctx.reg_alloc.ScratchGpr();
const Xbyak::Reg64 tmp2 = ctx.reg_alloc.ScratchGpr();
const auto wrapped_fn = read_fallbacks[std::make_tuple(bitsize, vaddr.getIdx(), value_idx)];
EmitExclusiveLock(code, conf, tmp, tmp2.cvt32());
code.mov(code.byte[r15 + offsetof(A64JitState, exclusive_state)], u8(1));
code.mov(tmp, Common::BitCast<u64>(GetExclusiveMonitorAddressPointer(conf.global_monitor, conf.processor_id)));
code.mov(qword[tmp], vaddr);
const auto fastmem_marker = ShouldFastmem(ctx, inst);
if (fastmem_marker) {
Xbyak::Label abort, end;
bool require_abort_handling = false;
const auto src_ptr = EmitFastmemVAddr(code, ctx, abort, vaddr, require_abort_handling);
const auto location = code.getCurr();
EmitReadMemoryMov<bitsize>(code, value_idx, src_ptr);
fastmem_patch_info.emplace(
Common::BitCast<u64>(location),
FastmemPatchInfo{
Common::BitCast<u64>(code.getCurr()),
Common::BitCast<u64>(wrapped_fn),
*fastmem_marker,
conf.recompile_on_exclusive_fastmem_failure,
});
code.L(end);
if (require_abort_handling) {
code.SwitchToFarCode();
code.L(abort);
code.call(wrapped_fn);
code.jmp(end, code.T_NEAR);
code.SwitchToNearCode();
}
} else {
code.call(wrapped_fn);
}
code.mov(tmp, Common::BitCast<u64>(GetExclusiveMonitorValuePointer(conf.global_monitor, conf.processor_id)));
EmitWriteMemoryMov<bitsize>(code, tmp, value_idx);
EmitExclusiveUnlock(code, conf, tmp, tmp2.cvt32());
if constexpr (bitsize == 128) {
ctx.reg_alloc.DefineValue(inst, Xbyak::Xmm{value_idx});
} else {
ctx.reg_alloc.DefineValue(inst, Xbyak::Reg64{value_idx});
}
}
template<std::size_t bitsize, auto callback>
void A64EmitX64::EmitExclusiveWriteMemoryInline(A64EmitContext& ctx, IR::Inst* inst) {
ASSERT(conf.global_monitor && conf.fastmem_pointer);
if (!exception_handler.SupportsFastmem()) {
EmitExclusiveWriteMemory<bitsize, callback>(ctx, inst);
return;
}
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const auto value = [&] {
if constexpr (bitsize == 128) {
ctx.reg_alloc.ScratchGpr(HostLoc::RAX);
ctx.reg_alloc.ScratchGpr(HostLoc::RBX);
ctx.reg_alloc.ScratchGpr(HostLoc::RCX);
ctx.reg_alloc.ScratchGpr(HostLoc::RDX);
return ctx.reg_alloc.UseXmm(args[1]);
} else {
ctx.reg_alloc.ScratchGpr(HostLoc::RAX);
return ctx.reg_alloc.UseGpr(args[1]);
}
}();
const Xbyak::Reg64 vaddr = ctx.reg_alloc.UseGpr(args[0]);
const Xbyak::Reg32 status = ctx.reg_alloc.ScratchGpr().cvt32();
const Xbyak::Reg64 tmp = ctx.reg_alloc.ScratchGpr();
const auto fallback_fn = exclusive_write_fallbacks[std::make_tuple(bitsize, vaddr.getIdx(), value.getIdx())];
EmitExclusiveLock(code, conf, tmp, eax);
Xbyak::Label end;
code.mov(tmp, Common::BitCast<u64>(GetExclusiveMonitorAddressPointer(conf.global_monitor, conf.processor_id)));
code.mov(status, u32(1));
code.cmp(code.byte[r15 + offsetof(A64JitState, exclusive_state)], u8(0));
code.je(end, code.T_NEAR);
code.cmp(qword[tmp], vaddr);
code.jne(end, code.T_NEAR);
EmitExclusiveTestAndClear(code, conf, vaddr, tmp, rax);
code.mov(code.byte[r15 + offsetof(A64JitState, exclusive_state)], u8(0));
code.mov(tmp, Common::BitCast<u64>(GetExclusiveMonitorValuePointer(conf.global_monitor, conf.processor_id)));
if constexpr (bitsize == 128) {
code.mov(rax, qword[tmp + 0]);
code.mov(rdx, qword[tmp + 8]);
if (code.HasHostFeature(HostFeature::SSE41)) {
code.movq(rbx, value);
code.pextrq(rcx, value, 1);
} else {
code.movaps(xmm0, value);
code.movq(rbx, xmm0);
code.punpckhqdq(xmm0, xmm0);
code.movq(rcx, xmm0);
}
} else {
EmitReadMemoryMov<bitsize>(code, rax.getIdx(), tmp);
}
const auto fastmem_marker = ShouldFastmem(ctx, inst);
if (fastmem_marker) {
Xbyak::Label abort;
bool require_abort_handling = false;
const auto dest_ptr = EmitFastmemVAddr(code, ctx, abort, vaddr, require_abort_handling, tmp);
const auto location = code.getCurr();
if constexpr (bitsize == 128) {
code.lock();
code.cmpxchg16b(ptr[dest_ptr]);
} else {
switch (bitsize) {
case 8:
code.lock();
code.cmpxchg(code.byte[dest_ptr], value.cvt8());
break;
case 16:
code.lock();
code.cmpxchg(word[dest_ptr], value.cvt16());
break;
case 32:
code.lock();
code.cmpxchg(dword[dest_ptr], value.cvt32());
break;
case 64:
code.lock();
code.cmpxchg(qword[dest_ptr], value.cvt64());
break;
default:
UNREACHABLE();
}
}
code.setnz(status.cvt8());
code.SwitchToFarCode();
code.L(abort);
code.call(fallback_fn);
fastmem_patch_info.emplace(
Common::BitCast<u64>(location),
FastmemPatchInfo{
Common::BitCast<u64>(code.getCurr()),
Common::BitCast<u64>(fallback_fn),
*fastmem_marker,
conf.recompile_on_exclusive_fastmem_failure,
});
code.cmp(al, 0);
code.setz(status.cvt8());
code.movzx(status.cvt32(), status.cvt8());
code.jmp(end, code.T_NEAR);
code.SwitchToNearCode();
} else {
code.call(fallback_fn);
code.cmp(al, 0);
code.setz(status.cvt8());
code.movzx(status.cvt32(), status.cvt8());
}
code.L(end);
EmitExclusiveUnlock(code, conf, tmp, eax);
ctx.reg_alloc.DefineValue(inst, status);
}
void A64EmitX64::EmitA64ClearExclusive(A64EmitContext&, IR::Inst*) {
code.mov(code.byte[r15 + offsetof(A64JitState, exclusive_state)], u8(0));
}
void A64EmitX64::EmitA64ExclusiveReadMemory8(A64EmitContext& ctx, IR::Inst* inst) {
if (conf.fastmem_exclusive_access) {
EmitExclusiveReadMemoryInline<8, &A64::UserCallbacks::MemoryRead8>(ctx, inst);
} else {
EmitExclusiveReadMemory<8, &A64::UserCallbacks::MemoryRead8>(ctx, inst);
}
}
void A64EmitX64::EmitA64ExclusiveReadMemory16(A64EmitContext& ctx, IR::Inst* inst) {
if (conf.fastmem_exclusive_access) {
EmitExclusiveReadMemoryInline<16, &A64::UserCallbacks::MemoryRead16>(ctx, inst);
} else {
EmitExclusiveReadMemory<16, &A64::UserCallbacks::MemoryRead16>(ctx, inst);
}
}
void A64EmitX64::EmitA64ExclusiveReadMemory32(A64EmitContext& ctx, IR::Inst* inst) {
if (conf.fastmem_exclusive_access) {
EmitExclusiveReadMemoryInline<32, &A64::UserCallbacks::MemoryRead32>(ctx, inst);
} else {
EmitExclusiveReadMemory<32, &A64::UserCallbacks::MemoryRead32>(ctx, inst);
}
}
void A64EmitX64::EmitA64ExclusiveReadMemory64(A64EmitContext& ctx, IR::Inst* inst) {
if (conf.fastmem_exclusive_access) {
EmitExclusiveReadMemoryInline<64, &A64::UserCallbacks::MemoryRead64>(ctx, inst);
} else {
EmitExclusiveReadMemory<64, &A64::UserCallbacks::MemoryRead64>(ctx, inst);
}
}
void A64EmitX64::EmitA64ExclusiveReadMemory128(A64EmitContext& ctx, IR::Inst* inst) {
if (conf.fastmem_exclusive_access) {
EmitExclusiveReadMemoryInline<128, &A64::UserCallbacks::MemoryRead128>(ctx, inst);
} else {
EmitExclusiveReadMemory<128, &A64::UserCallbacks::MemoryRead128>(ctx, inst);
}
}
void A64EmitX64::EmitA64ExclusiveWriteMemory8(A64EmitContext& ctx, IR::Inst* inst) {
if (conf.fastmem_exclusive_access) {
EmitExclusiveWriteMemoryInline<8, &A64::UserCallbacks::MemoryWriteExclusive8>(ctx, inst);
} else {
EmitExclusiveWriteMemory<8, &A64::UserCallbacks::MemoryWriteExclusive8>(ctx, inst);
}
}
void A64EmitX64::EmitA64ExclusiveWriteMemory16(A64EmitContext& ctx, IR::Inst* inst) {
if (conf.fastmem_exclusive_access) {
EmitExclusiveWriteMemoryInline<16, &A64::UserCallbacks::MemoryWriteExclusive16>(ctx, inst);
} else {
EmitExclusiveWriteMemory<16, &A64::UserCallbacks::MemoryWriteExclusive16>(ctx, inst);
}
}
void A64EmitX64::EmitA64ExclusiveWriteMemory32(A64EmitContext& ctx, IR::Inst* inst) {
if (conf.fastmem_exclusive_access) {
EmitExclusiveWriteMemoryInline<32, &A64::UserCallbacks::MemoryWriteExclusive32>(ctx, inst);
} else {
EmitExclusiveWriteMemory<32, &A64::UserCallbacks::MemoryWriteExclusive32>(ctx, inst);
}
}
void A64EmitX64::EmitA64ExclusiveWriteMemory64(A64EmitContext& ctx, IR::Inst* inst) {
if (conf.fastmem_exclusive_access) {
EmitExclusiveWriteMemoryInline<64, &A64::UserCallbacks::MemoryWriteExclusive64>(ctx, inst);
} else {
EmitExclusiveWriteMemory<64, &A64::UserCallbacks::MemoryWriteExclusive64>(ctx, inst);
}
}
void A64EmitX64::EmitA64ExclusiveWriteMemory128(A64EmitContext& ctx, IR::Inst* inst) {
if (conf.fastmem_exclusive_access) {
EmitExclusiveWriteMemoryInline<128, &A64::UserCallbacks::MemoryWriteExclusive128>(ctx, inst);
} else {
EmitExclusiveWriteMemory<128, &A64::UserCallbacks::MemoryWriteExclusive128>(ctx, inst);
}
}
} // namespace Dynarmic::Backend::X64

View file

@ -0,0 +1,62 @@
/* This file is part of the dynarmic project.
* Copyright (c) 2022 MerryMage
* SPDX-License-Identifier: 0BSD
*/
#include <xbyak/xbyak.h>
#include "dynarmic/backend/x64/a64_emit_x64.h"
#include "dynarmic/backend/x64/exclusive_monitor_friend.h"
#include "dynarmic/common/spin_lock_x64.h"
#include "dynarmic/interface/exclusive_monitor.h"
namespace Dynarmic::Backend::X64 {
namespace {
using namespace Xbyak::util;
template<typename UserConfig>
void EmitExclusiveLock(BlockOfCode& code, const UserConfig& conf, Xbyak::Reg64 pointer, Xbyak::Reg32 tmp) {
if (conf.HasOptimization(OptimizationFlag::Unsafe_IgnoreGlobalMonitor)) {
return;
}
code.mov(pointer, Common::BitCast<u64>(GetExclusiveMonitorLockPointer(conf.global_monitor)));
EmitSpinLockLock(code, pointer, tmp);
}
template<typename UserConfig>
void EmitExclusiveUnlock(BlockOfCode& code, const UserConfig& conf, Xbyak::Reg64 pointer, Xbyak::Reg32 tmp) {
if (conf.HasOptimization(OptimizationFlag::Unsafe_IgnoreGlobalMonitor)) {
return;
}
code.mov(pointer, Common::BitCast<u64>(GetExclusiveMonitorLockPointer(conf.global_monitor)));
EmitSpinLockUnlock(code, pointer, tmp);
}
template<typename UserConfig>
void EmitExclusiveTestAndClear(BlockOfCode& code, const UserConfig& conf, Xbyak::Reg64 vaddr, Xbyak::Reg64 pointer, Xbyak::Reg64 tmp) {
if (conf.HasOptimization(OptimizationFlag::Unsafe_IgnoreGlobalMonitor)) {
return;
}
code.mov(tmp, 0xDEAD'DEAD'DEAD'DEAD);
const size_t processor_count = GetExclusiveMonitorProcessorCount(conf.global_monitor);
for (size_t processor_index = 0; processor_index < processor_count; processor_index++) {
if (processor_index == conf.processor_id) {
continue;
}
Xbyak::Label ok;
code.mov(pointer, Common::BitCast<u64>(GetExclusiveMonitorAddressPointer(conf.global_monitor, processor_index)));
code.cmp(qword[pointer], vaddr);
code.jne(ok);
code.mov(qword[pointer], tmp);
code.L(ok);
}
}
} // namespace
} // namespace Dynarmic::Backend::X64

View file

@ -21,11 +21,11 @@ size_t ExclusiveMonitor::GetProcessorCount() const {
}
void ExclusiveMonitor::Lock() {
while (is_locked.test_and_set(std::memory_order_acquire)) {}
lock.Lock();
}
void ExclusiveMonitor::Unlock() {
is_locked.clear(std::memory_order_release);
lock.Unlock();
}
bool ExclusiveMonitor::CheckAndClear(size_t processor_id, VAddr address) {

View file

@ -0,0 +1,28 @@
/* This file is part of the dynarmic project.
* Copyright (c) 2022 MerryMage
* SPDX-License-Identifier: 0BSD
*/
#pragma once
#include "dynarmic/interface/exclusive_monitor.h"
namespace Dynarmic {
inline volatile int* GetExclusiveMonitorLockPointer(ExclusiveMonitor* monitor) {
return &monitor->lock.storage;
}
inline size_t GetExclusiveMonitorProcessorCount(ExclusiveMonitor* monitor) {
return monitor->exclusive_addresses.size();
}
inline VAddr* GetExclusiveMonitorAddressPointer(ExclusiveMonitor* monitor, size_t index) {
return monitor->exclusive_addresses.data() + index;
}
inline Vector* GetExclusiveMonitorValuePointer(ExclusiveMonitor* monitor, size_t index) {
return monitor->exclusive_values.data() + index;
}
} // namespace Dynarmic

View file

@ -0,0 +1,17 @@
/* This file is part of the dynarmic project.
* Copyright (c) 2022 MerryMage
* SPDX-License-Identifier: 0BSD
*/
#pragma once
namespace Dynarmic {
struct SpinLock {
void Lock();
void Unlock();
volatile int storage;
};
} // namespace Dynarmic

View file

@ -0,0 +1,70 @@
/* This file is part of the dynarmic project.
* Copyright (c) 2022 MerryMage
* SPDX-License-Identifier: 0BSD
*/
#include <xbyak/xbyak.h>
#include "dynarmic/backend/x64/abi.h"
#include "dynarmic/backend/x64/hostloc.h"
#include "dynarmic/common/spin_lock.h"
namespace Dynarmic {
void EmitSpinLockLock(Xbyak::CodeGenerator& code, Xbyak::Reg64 ptr, Xbyak::Reg32 tmp) {
Xbyak::Label start, loop;
code.jmp(start);
code.L(loop);
code.pause();
code.L(start);
code.mov(tmp, 1);
code.lock();
code.xchg(code.dword[ptr], tmp);
code.test(tmp, tmp);
code.jnz(loop);
}
void EmitSpinLockUnlock(Xbyak::CodeGenerator& code, Xbyak::Reg64 ptr, Xbyak::Reg32 tmp) {
code.xor_(tmp, tmp);
code.xchg(code.dword[ptr], tmp);
code.mfence();
}
namespace {
struct SpinLockImpl {
SpinLockImpl();
Xbyak::CodeGenerator code;
void (*lock)(volatile int*);
void (*unlock)(volatile int*);
};
SpinLockImpl impl;
SpinLockImpl::SpinLockImpl() {
const Xbyak::Reg64 ABI_PARAM1 = Backend::X64::HostLocToReg64(Backend::X64::ABI_PARAM1);
code.align();
lock = code.getCurr<void (*)(volatile int*)>();
EmitSpinLockLock(code, ABI_PARAM1, code.eax);
code.ret();
code.align();
unlock = code.getCurr<void (*)(volatile int*)>();
EmitSpinLockUnlock(code, ABI_PARAM1, code.eax);
code.ret();
}
} // namespace
void SpinLock::Lock() {
impl.lock(&storage);
}
void SpinLock::Unlock() {
impl.unlock(&storage);
}
} // namespace Dynarmic

View file

@ -0,0 +1,15 @@
/* This file is part of the dynarmic project.
* Copyright (c) 2022 MerryMage
* SPDX-License-Identifier: 0BSD
*/
#pragma once
#include <xbyak/xbyak.h>
namespace Dynarmic {
void EmitSpinLockLock(Xbyak::CodeGenerator& code, Xbyak::Reg64 ptr, Xbyak::Reg32 tmp);
void EmitSpinLockUnlock(Xbyak::CodeGenerator& code, Xbyak::Reg64 ptr, Xbyak::Reg32 tmp);
} // namespace Dynarmic

View file

@ -177,6 +177,15 @@ struct UserConfig {
/// accesses will hit the memory callbacks.
bool recompile_on_fastmem_failure = true;
/// Determines if we should use the above fastmem_pointer for exclusive reads and
/// writes. On x64, dynarmic currently relies on x64 cmpxchg semantics which may not
/// provide fully accurate emulation.
bool fastmem_exclusive_access = false;
/// Determines if exclusive access instructions that pagefault should cause
/// recompilation of that block with fastmem disabled. Recompiled code will use memory
/// callbacks.
bool recompile_on_exclusive_fastmem_failure = true;
// Coprocessors
std::array<std::shared_ptr<Coprocessor>, 16> coprocessors{};

View file

@ -254,6 +254,15 @@ struct UserConfig {
/// This is only used if fastmem_pointer is not nullptr.
bool silently_mirror_fastmem = true;
/// Determines if we should use the above fastmem_pointer for exclusive reads and
/// writes. On x64, dynarmic currently relies on x64 cmpxchg semantics which may not
/// provide fully accurate emulation.
bool fastmem_exclusive_access = false;
/// Determines if exclusive access instructions that pagefault should cause
/// recompilation of that block with fastmem disabled. Recompiled code will use memory
/// callbacks.
bool recompile_on_exclusive_fastmem_failure = true;
/// This option relates to translation. Generally when we run into an unpredictable
/// instruction the ExceptionRaised callback is called. If this is true, we define
/// definite behaviour for some unpredictable instructions.

View file

@ -12,6 +12,8 @@
#include <cstring>
#include <vector>
#include <dynarmic/common/spin_lock.h>
namespace Dynarmic {
using VAddr = std::uint64_t;
@ -71,9 +73,14 @@ private:
void Lock();
void Unlock();
friend volatile int* GetExclusiveMonitorLockPointer(ExclusiveMonitor*);
friend size_t GetExclusiveMonitorProcessorCount(ExclusiveMonitor*);
friend VAddr* GetExclusiveMonitorAddressPointer(ExclusiveMonitor*, size_t index);
friend Vector* GetExclusiveMonitorValuePointer(ExclusiveMonitor*, size_t index);
static constexpr VAddr RESERVATION_GRANULE_MASK = 0xFFFF'FFFF'FFFF'FFFFull;
static constexpr VAddr INVALID_EXCLUSIVE_ADDRESS = 0xDEAD'DEAD'DEAD'DEADull;
std::atomic_flag is_locked;
SpinLock lock;
std::vector<VAddr> exclusive_addresses;
std::vector<Vector> exclusive_values;
};

View file

@ -45,6 +45,10 @@ enum class OptimizationFlag : std::uint32_t {
/// This is an UNSAFE optimization that causes ASIMD floating-point instructions to be run with incorrect
/// rounding modes. This may result in inaccurate results with all floating-point ASIMD instructions.
Unsafe_IgnoreStandardFPCRValue = 0x00080000,
/// This is an UNSAFE optimization that causes the global monitor to be ignored. This may
/// result in unexpected behaviour in multithreaded scenarios, including but not limited
/// to data races and deadlocks.
Unsafe_IgnoreGlobalMonitor = 0x00100000,
};
constexpr OptimizationFlag no_optimizations = static_cast<OptimizationFlag>(0);