externals: Update to mcl 0.1.11

Merge commit '78bb1d1571ec6adb716ddd080bfbfebc6e889d70'
This commit is contained in:
Merry 2022-07-10 10:10:22 +01:00
commit 6243e5a90e
25 changed files with 1833 additions and 143 deletions

View file

@ -34,7 +34,7 @@ BraceWrapping:
AfterClass: false AfterClass: false
AfterControlStatement: Never AfterControlStatement: Never
AfterEnum: false AfterEnum: false
AfterFunction: false AfterFunction: true
AfterNamespace: false AfterNamespace: false
AfterObjCDeclaration: false AfterObjCDeclaration: false
AfterStruct: false AfterStruct: false
@ -62,7 +62,7 @@ ColumnLimit: 0
CommentPragmas: '^ IWYU pragma:' CommentPragmas: '^ IWYU pragma:'
CompactNamespaces: false CompactNamespaces: false
ConstructorInitializerAllOnOneLineOrOnePerLine: true ConstructorInitializerAllOnOneLineOrOnePerLine: true
ConstructorInitializerIndentWidth: 8 ConstructorInitializerIndentWidth: 4
ContinuationIndentWidth: 4 ContinuationIndentWidth: 4
Cpp11BracedListStyle: true Cpp11BracedListStyle: true
DeriveLineEnding: true DeriveLineEnding: true

View file

@ -1,10 +1,18 @@
cmake_minimum_required(VERSION 3.12 FATAL_ERROR) cmake_minimum_required(VERSION 3.12 FATAL_ERROR)
include(GNUInstallDirs) include(GNUInstallDirs)
project(mcl LANGUAGES CXX VERSION 0.1.8) project(mcl LANGUAGES CXX VERSION 0.1.11)
# Determine if we're built as a subproject (using add_subdirectory)
# or if this is the master project.
set(MASTER_PROJECT OFF)
if (CMAKE_CURRENT_SOURCE_DIR STREQUAL CMAKE_SOURCE_DIR)
set(MASTER_PROJECT ON)
endif()
# Project options # Project options
option(MCL_WARNINGS_AS_ERRORS "Warnings as errors" ON) option(MCL_WARNINGS_AS_ERRORS "Warnings as errors" ${MASTER_PROJECT})
option(MCL_INSTALL "Enable installation" ${MASTER_PROJECT})
# Default to a Release build # Default to a Release build
if (NOT CMAKE_BUILD_TYPE) if (NOT CMAKE_BUILD_TYPE)
@ -85,7 +93,7 @@ endif()
# Dependencies # Dependencies
if (NOT TARGET Catch2::Catch2) if (NOT TARGET Catch2::Catch2)
find_package(Catch2 QUIET) find_package(Catch2 3 QUIET)
endif() endif()
if (NOT TARGET fmt::fmt) if (NOT TARGET fmt::fmt)
@ -95,12 +103,12 @@ endif()
# Project files # Project files
add_subdirectory(src) add_subdirectory(src)
if (TARGET Catch2::Catch2) if (TARGET Catch2::Catch2 AND MASTER_PROJECT)
add_subdirectory(tests) add_subdirectory(tests)
endif() endif()
# Install instructions # Install instructions
if (MCL_INSTALL)
include(GNUInstallDirs) include(GNUInstallDirs)
include(CMakePackageConfigHelpers) include(CMakePackageConfigHelpers)
@ -124,3 +132,4 @@ install(FILES
) )
install(DIRECTORY include/ TYPE INCLUDE FILES_MATCHING PATTERN "*.hpp") install(DIRECTORY include/ TYPE INCLUDE FILES_MATCHING PATTERN "*.hpp")
endif()

View file

@ -13,11 +13,12 @@
namespace mcl::detail { namespace mcl::detail {
[[noreturn]] void assert_terminate_impl(fmt::string_view msg, fmt::format_args args); [[noreturn]] void assert_terminate_impl(const char* expr_str, fmt::string_view msg, fmt::format_args args);
template<typename... Ts> template<typename... Ts>
[[noreturn]] void assert_terminate(fmt::string_view msg, Ts... args) { [[noreturn]] void assert_terminate(const char* expr_str, fmt::string_view msg, Ts... args)
assert_terminate_impl(msg, fmt::make_format_args(args...)); {
assert_terminate_impl(expr_str, msg, fmt::make_format_args(args...));
} }
} // namespace mcl::detail } // namespace mcl::detail
@ -32,7 +33,7 @@ template<typename... Ts>
} \ } \
} else { \ } else { \
if (!(expr)) [[unlikely]] { \ if (!(expr)) [[unlikely]] { \
::mcl::detail::assert_terminate(#expr); \ ::mcl::detail::assert_terminate(#expr, "(none)"); \
} \ } \
} \ } \
}() }()
@ -45,12 +46,12 @@ template<typename... Ts>
} \ } \
} else { \ } else { \
if (!(expr)) [[unlikely]] { \ if (!(expr)) [[unlikely]] { \
::mcl::detail::assert_terminate(#expr "\nMessage: " __VA_ARGS__); \ ::mcl::detail::assert_terminate(#expr, __VA_ARGS__); \
} \ } \
} \ } \
}() }()
#define ASSERT_FALSE(...) ::mcl::detail::assert_terminate("false\nMessage: " __VA_ARGS__) #define ASSERT_FALSE(...) ::mcl::detail::assert_terminate("false", __VA_ARGS__)
#if defined(NDEBUG) || defined(MCL_IGNORE_ASSERTS) #if defined(NDEBUG) || defined(MCL_IGNORE_ASSERTS)
# define DEBUG_ASSERT(expr) ASSUME(expr) # define DEBUG_ASSERT(expr) ASSUME(expr)

View file

@ -13,12 +13,14 @@
namespace mcl::bit { namespace mcl::bit {
template<BitIntegral T> template<BitIntegral T>
inline size_t count_ones(T x) { inline size_t count_ones(T x)
{
return std::bitset<bitsizeof<T>>(x).count(); return std::bitset<bitsizeof<T>>(x).count();
} }
template<BitIntegral T> template<BitIntegral T>
constexpr size_t count_leading_zeros(T x) { constexpr size_t count_leading_zeros(T x)
{
size_t result = bitsizeof<T>; size_t result = bitsizeof<T>;
while (x != 0) { while (x != 0) {
x >>= 1; x >>= 1;
@ -28,7 +30,8 @@ constexpr size_t count_leading_zeros(T x) {
} }
template<BitIntegral T> template<BitIntegral T>
constexpr int highest_set_bit(T x) { constexpr int highest_set_bit(T x)
{
int result = -1; int result = -1;
while (x != 0) { while (x != 0) {
x >>= 1; x >>= 1;
@ -38,7 +41,8 @@ constexpr int highest_set_bit(T x) {
} }
template<BitIntegral T> template<BitIntegral T>
constexpr size_t lowest_set_bit(T x) { constexpr size_t lowest_set_bit(T x)
{
if (x == 0) { if (x == 0) {
return bitsizeof<T>; return bitsizeof<T>;
} }

View file

@ -13,7 +13,8 @@ namespace mcl::bit {
/// Create a mask with `count` number of one bits. /// Create a mask with `count` number of one bits.
template<size_t count, BitIntegral T> template<size_t count, BitIntegral T>
constexpr T ones() { constexpr T ones()
{
static_assert(count <= bitsizeof<T>, "count larger than bitsize of T"); static_assert(count <= bitsizeof<T>, "count larger than bitsize of T");
if constexpr (count == 0) { if constexpr (count == 0) {
@ -25,7 +26,8 @@ constexpr T ones() {
/// Create a mask with `count` number of one bits. /// Create a mask with `count` number of one bits.
template<BitIntegral T> template<BitIntegral T>
constexpr T ones(size_t count) { constexpr T ones(size_t count)
{
ASSERT_MSG(count <= bitsizeof<T>, "count larger than bitsize of T"); ASSERT_MSG(count <= bitsizeof<T>, "count larger than bitsize of T");
if (count == 0) { if (count == 0) {
@ -36,7 +38,8 @@ constexpr T ones(size_t count) {
/// Create a mask of type T for bits [begin_bit, end_bit] inclusive. /// Create a mask of type T for bits [begin_bit, end_bit] inclusive.
template<size_t begin_bit, size_t end_bit, BitIntegral T> template<size_t begin_bit, size_t end_bit, BitIntegral T>
constexpr T mask() { constexpr T mask()
{
static_assert(begin_bit <= end_bit, "invalid bit range (position of beginning bit cannot be greater than that of end bit)"); static_assert(begin_bit <= end_bit, "invalid bit range (position of beginning bit cannot be greater than that of end bit)");
static_assert(begin_bit < bitsizeof<T>, "begin_bit must be smaller than size of T"); static_assert(begin_bit < bitsizeof<T>, "begin_bit must be smaller than size of T");
static_assert(end_bit < bitsizeof<T>, "end_bit must be smaller than size of T"); static_assert(end_bit < bitsizeof<T>, "end_bit must be smaller than size of T");
@ -46,7 +49,8 @@ constexpr T mask() {
/// Create a mask of type T for bits [begin_bit, end_bit] inclusive. /// Create a mask of type T for bits [begin_bit, end_bit] inclusive.
template<BitIntegral T> template<BitIntegral T>
constexpr T mask(size_t begin_bit, size_t end_bit) { constexpr T mask(size_t begin_bit, size_t end_bit)
{
ASSERT_MSG(begin_bit <= end_bit, "invalid bit range (position of beginning bit cannot be greater than that of end bit)"); ASSERT_MSG(begin_bit <= end_bit, "invalid bit range (position of beginning bit cannot be greater than that of end bit)");
ASSERT_MSG(begin_bit < bitsizeof<T>, "begin_bit must be smaller than size of T"); ASSERT_MSG(begin_bit < bitsizeof<T>, "begin_bit must be smaller than size of T");
ASSERT_MSG(end_bit < bitsizeof<T>, "end_bit must be smaller than size of T"); ASSERT_MSG(end_bit < bitsizeof<T>, "end_bit must be smaller than size of T");
@ -56,91 +60,104 @@ constexpr T mask(size_t begin_bit, size_t end_bit) {
/// Extract bits [begin_bit, end_bit] inclusive from value of type T. /// Extract bits [begin_bit, end_bit] inclusive from value of type T.
template<size_t begin_bit, size_t end_bit, BitIntegral T> template<size_t begin_bit, size_t end_bit, BitIntegral T>
constexpr T get_bits(T value) { constexpr T get_bits(T value)
{
constexpr T m = mask<begin_bit, end_bit, T>(); constexpr T m = mask<begin_bit, end_bit, T>();
return (value & m) >> begin_bit; return (value & m) >> begin_bit;
} }
/// Extract bits [begin_bit, end_bit] inclusive from value of type T. /// Extract bits [begin_bit, end_bit] inclusive from value of type T.
template<BitIntegral T> template<BitIntegral T>
constexpr T get_bits(size_t begin_bit, size_t end_bit, T value) { constexpr T get_bits(size_t begin_bit, size_t end_bit, T value)
{
const T m = mask<T>(begin_bit, end_bit); const T m = mask<T>(begin_bit, end_bit);
return (value & m) >> begin_bit; return (value & m) >> begin_bit;
} }
/// Clears bits [begin_bit, end_bit] inclusive of value of type T. /// Clears bits [begin_bit, end_bit] inclusive of value of type T.
template<size_t begin_bit, size_t end_bit, BitIntegral T> template<size_t begin_bit, size_t end_bit, BitIntegral T>
constexpr T clear_bits(T value) { constexpr T clear_bits(T value)
{
constexpr T m = mask<begin_bit, end_bit, T>(); constexpr T m = mask<begin_bit, end_bit, T>();
return value & ~m; return value & ~m;
} }
/// Clears bits [begin_bit, end_bit] inclusive of value of type T. /// Clears bits [begin_bit, end_bit] inclusive of value of type T.
template<BitIntegral T> template<BitIntegral T>
constexpr T clear_bits(size_t begin_bit, size_t end_bit, T value) { constexpr T clear_bits(size_t begin_bit, size_t end_bit, T value)
{
const T m = mask<T>(begin_bit, end_bit); const T m = mask<T>(begin_bit, end_bit);
return value & ~m; return value & ~m;
} }
/// Modifies bits [begin_bit, end_bit] inclusive of value of type T. /// Modifies bits [begin_bit, end_bit] inclusive of value of type T.
template<size_t begin_bit, size_t end_bit, BitIntegral T> template<size_t begin_bit, size_t end_bit, BitIntegral T>
constexpr T set_bits(T value, T new_bits) { constexpr T set_bits(T value, T new_bits)
{
constexpr T m = mask<begin_bit, end_bit, T>(); constexpr T m = mask<begin_bit, end_bit, T>();
return (value & ~m) | ((new_bits << begin_bit) & m); return (value & ~m) | ((new_bits << begin_bit) & m);
} }
/// Modifies bits [begin_bit, end_bit] inclusive of value of type T. /// Modifies bits [begin_bit, end_bit] inclusive of value of type T.
template<BitIntegral T> template<BitIntegral T>
constexpr T set_bits(size_t begin_bit, size_t end_bit, T value, T new_bits) { constexpr T set_bits(size_t begin_bit, size_t end_bit, T value, T new_bits)
{
const T m = mask<T>(begin_bit, end_bit); const T m = mask<T>(begin_bit, end_bit);
return (value & ~m) | ((new_bits << begin_bit) & m); return (value & ~m) | ((new_bits << begin_bit) & m);
} }
/// Extract bit at bit_position from value of type T. /// Extract bit at bit_position from value of type T.
template<size_t bit_position, BitIntegral T> template<size_t bit_position, BitIntegral T>
constexpr bool get_bit(T value) { constexpr bool get_bit(T value)
{
constexpr T m = mask<bit_position, bit_position, T>(); constexpr T m = mask<bit_position, bit_position, T>();
return (value & m) != 0; return (value & m) != 0;
} }
/// Extract bit at bit_position from value of type T. /// Extract bit at bit_position from value of type T.
template<BitIntegral T> template<BitIntegral T>
constexpr bool get_bit(size_t bit_position, T value) { constexpr bool get_bit(size_t bit_position, T value)
{
const T m = mask<T>(bit_position, bit_position); const T m = mask<T>(bit_position, bit_position);
return (value & m) != 0; return (value & m) != 0;
} }
/// Clears bit at bit_position of value of type T. /// Clears bit at bit_position of value of type T.
template<size_t bit_position, BitIntegral T> template<size_t bit_position, BitIntegral T>
constexpr T clear_bit(T value) { constexpr T clear_bit(T value)
{
constexpr T m = mask<bit_position, bit_position, T>(); constexpr T m = mask<bit_position, bit_position, T>();
return value & ~m; return value & ~m;
} }
/// Clears bit at bit_position of value of type T. /// Clears bit at bit_position of value of type T.
template<BitIntegral T> template<BitIntegral T>
constexpr T clear_bit(size_t bit_position, T value) { constexpr T clear_bit(size_t bit_position, T value)
{
const T m = mask<T>(bit_position, bit_position); const T m = mask<T>(bit_position, bit_position);
return value & ~m; return value & ~m;
} }
/// Modifies bit at bit_position of value of type T. /// Modifies bit at bit_position of value of type T.
template<size_t bit_position, BitIntegral T> template<size_t bit_position, BitIntegral T>
constexpr T set_bit(T value, bool new_bit) { constexpr T set_bit(T value, bool new_bit)
{
constexpr T m = mask<bit_position, bit_position, T>(); constexpr T m = mask<bit_position, bit_position, T>();
return (value & ~m) | (new_bit ? m : static_cast<T>(0)); return (value & ~m) | (new_bit ? m : static_cast<T>(0));
} }
/// Modifies bit at bit_position of value of type T. /// Modifies bit at bit_position of value of type T.
template<BitIntegral T> template<BitIntegral T>
constexpr T set_bit(size_t bit_position, T value, bool new_bit) { constexpr T set_bit(size_t bit_position, T value, bool new_bit)
{
const T m = mask<T>(bit_position, bit_position); const T m = mask<T>(bit_position, bit_position);
return (value & ~m) | (new_bit ? m : static_cast<T>(0)); return (value & ~m) | (new_bit ? m : static_cast<T>(0));
} }
/// Sign-extends a value that has bit_count bits to the full bitwidth of type T. /// Sign-extends a value that has bit_count bits to the full bitwidth of type T.
template<size_t bit_count, BitIntegral T> template<size_t bit_count, BitIntegral T>
constexpr T sign_extend(T value) { constexpr T sign_extend(T value)
{
static_assert(bit_count != 0, "cannot sign-extend zero-sized value"); static_assert(bit_count != 0, "cannot sign-extend zero-sized value");
using S = std::make_signed_t<T>; using S = std::make_signed_t<T>;
@ -150,7 +167,8 @@ constexpr T sign_extend(T value) {
/// Sign-extends a value that has bit_count bits to the full bitwidth of type T. /// Sign-extends a value that has bit_count bits to the full bitwidth of type T.
template<BitIntegral T> template<BitIntegral T>
constexpr T sign_extend(size_t bit_count, T value) { constexpr T sign_extend(size_t bit_count, T value)
{
ASSERT_MSG(bit_count != 0, "cannot sign-extend zero-sized value"); ASSERT_MSG(bit_count != 0, "cannot sign-extend zero-sized value");
using S = std::make_signed_t<T>; using S = std::make_signed_t<T>;
@ -160,7 +178,8 @@ constexpr T sign_extend(size_t bit_count, T value) {
/// Replicate an element across a value of type T. /// Replicate an element across a value of type T.
template<size_t element_size, BitIntegral T> template<size_t element_size, BitIntegral T>
constexpr T replicate_element(T value) { constexpr T replicate_element(T value)
{
static_assert(element_size <= bitsizeof<T>, "element_size is too large"); static_assert(element_size <= bitsizeof<T>, "element_size is too large");
static_assert(bitsizeof<T> % element_size == 0, "bitsize of T not divisible by element_size"); static_assert(bitsizeof<T> % element_size == 0, "bitsize of T not divisible by element_size");
@ -173,7 +192,8 @@ constexpr T replicate_element(T value) {
/// Replicate an element of type U across a value of type T. /// Replicate an element of type U across a value of type T.
template<BitIntegral U, BitIntegral T> template<BitIntegral U, BitIntegral T>
constexpr T replicate_element(T value) { constexpr T replicate_element(T value)
{
static_assert(bitsizeof<U> <= bitsizeof<T>, "element_size is too large"); static_assert(bitsizeof<U> <= bitsizeof<T>, "element_size is too large");
return replicate_element<bitsizeof<U>, T>(value); return replicate_element<bitsizeof<U>, T>(value);
@ -181,7 +201,8 @@ constexpr T replicate_element(T value) {
/// Replicate an element across a value of type T. /// Replicate an element across a value of type T.
template<BitIntegral T> template<BitIntegral T>
constexpr T replicate_element(size_t element_size, T value) { constexpr T replicate_element(size_t element_size, T value)
{
ASSERT_MSG(element_size <= bitsizeof<T>, "element_size is too large"); ASSERT_MSG(element_size <= bitsizeof<T>, "element_size is too large");
ASSERT_MSG(bitsizeof<T> % element_size == 0, "bitsize of T not divisible by element_size"); ASSERT_MSG(bitsizeof<T> % element_size == 0, "bitsize of T not divisible by element_size");
@ -192,7 +213,8 @@ constexpr T replicate_element(size_t element_size, T value) {
} }
template<BitIntegral T> template<BitIntegral T>
constexpr bool most_significant_bit(T value) { constexpr bool most_significant_bit(T value)
{
return get_bit<bitsizeof<T> - 1, T>(value); return get_bit<bitsizeof<T> - 1, T>(value);
} }

View file

@ -11,7 +11,8 @@
namespace mcl::bit { namespace mcl::bit {
template<BitIntegral T> template<BitIntegral T>
constexpr T rotate_right(T x, size_t amount) { constexpr T rotate_right(T x, size_t amount)
{
amount %= bitsizeof<T>; amount %= bitsizeof<T>;
if (amount == 0) { if (amount == 0) {
return x; return x;
@ -20,7 +21,8 @@ constexpr T rotate_right(T x, size_t amount) {
} }
template<BitIntegral T> template<BitIntegral T>
constexpr T rotate_left(T x, size_t amount) { constexpr T rotate_left(T x, size_t amount)
{
amount %= bitsizeof<T>; amount %= bitsizeof<T>;
if (amount == 0) { if (amount == 0) {
return x; return x;

View file

@ -8,18 +8,21 @@
namespace mcl::bit { namespace mcl::bit {
constexpr u16 swap_bytes_16(u16 value) { constexpr u16 swap_bytes_16(u16 value)
{
return static_cast<u16>(u32{value} >> 8 | u32{value} << 8); return static_cast<u16>(u32{value} >> 8 | u32{value} << 8);
} }
constexpr u32 swap_bytes_32(u32 value) { constexpr u32 swap_bytes_32(u32 value)
{
return ((value & 0xff000000u) >> 24) return ((value & 0xff000000u) >> 24)
| ((value & 0x00ff0000u) >> 8) | ((value & 0x00ff0000u) >> 8)
| ((value & 0x0000ff00u) << 8) | ((value & 0x0000ff00u) << 8)
| ((value & 0x000000ffu) << 24); | ((value & 0x000000ffu) << 24);
} }
constexpr u64 swap_bytes_64(u64 value) { constexpr u64 swap_bytes_64(u64 value)
{
return ((value & 0xff00000000000000ull) >> 56) return ((value & 0xff00000000000000ull) >> 56)
| ((value & 0x00ff000000000000ull) >> 40) | ((value & 0x00ff000000000000ull) >> 40)
| ((value & 0x0000ff0000000000ull) >> 24) | ((value & 0x0000ff0000000000ull) >> 24)
@ -30,19 +33,22 @@ constexpr u64 swap_bytes_64(u64 value) {
| ((value & 0x00000000000000ffull) << 56); | ((value & 0x00000000000000ffull) << 56);
} }
constexpr u32 swap_halves_32(u32 value) { constexpr u32 swap_halves_32(u32 value)
{
return ((value & 0xffff0000u) >> 16) return ((value & 0xffff0000u) >> 16)
| ((value & 0x0000ffffu) << 16); | ((value & 0x0000ffffu) << 16);
} }
constexpr u64 swap_halves_64(u64 value) { constexpr u64 swap_halves_64(u64 value)
{
return ((value & 0xffff000000000000ull) >> 48) return ((value & 0xffff000000000000ull) >> 48)
| ((value & 0x0000ffff00000000ull) >> 16) | ((value & 0x0000ffff00000000ull) >> 16)
| ((value & 0x00000000ffff0000ull) << 16) | ((value & 0x00000000ffff0000ull) << 16)
| ((value & 0x000000000000ffffull) << 48); | ((value & 0x000000000000ffffull) << 48);
} }
constexpr u64 swap_words_64(u64 value) { constexpr u64 swap_words_64(u64 value)
{
return ((value & 0xffffffff00000000ull) >> 32) return ((value & 0xffffffff00000000ull) >> 32)
| ((value & 0x00000000ffffffffull) << 32); | ((value & 0x00000000ffffffffull) << 32);
} }

View file

@ -11,7 +11,8 @@ namespace mcl {
/// Reinterpret objects of one type as another by bit-casting between object representations. /// Reinterpret objects of one type as another by bit-casting between object representations.
template<class Dest, class Source> template<class Dest, class Source>
inline Dest bit_cast(const Source& source) noexcept { inline Dest bit_cast(const Source& source) noexcept
{
static_assert(sizeof(Dest) == sizeof(Source), "size of destination and source objects must be equal"); static_assert(sizeof(Dest) == sizeof(Source), "size of destination and source objects must be equal");
static_assert(std::is_trivially_copyable_v<Dest>, "destination type must be trivially copyable."); static_assert(std::is_trivially_copyable_v<Dest>, "destination type must be trivially copyable.");
static_assert(std::is_trivially_copyable_v<Source>, "source type must be trivially copyable"); static_assert(std::is_trivially_copyable_v<Source>, "source type must be trivially copyable");
@ -24,7 +25,8 @@ inline Dest bit_cast(const Source& source) noexcept {
/// Reinterpret objects of any arbitrary type as another type by bit-casting between object representations. /// Reinterpret objects of any arbitrary type as another type by bit-casting between object representations.
/// Note that here we do not verify if source pointed to by source_ptr has enough bytes to read from. /// Note that here we do not verify if source pointed to by source_ptr has enough bytes to read from.
template<class Dest, class SourcePtr> template<class Dest, class SourcePtr>
inline Dest bit_cast_pointee(const SourcePtr source_ptr) noexcept { inline Dest bit_cast_pointee(const SourcePtr source_ptr) noexcept
{
static_assert(sizeof(SourcePtr) == sizeof(void*), "source pointer must have size of a pointer"); static_assert(sizeof(SourcePtr) == sizeof(void*), "source pointer must have size of a pointer");
static_assert(std::is_trivially_copyable_v<Dest>, "destination type must be trivially copyable."); static_assert(std::is_trivially_copyable_v<Dest>, "destination type must be trivially copyable.");

View file

@ -0,0 +1,35 @@
// This file is part of the mcl project.
// Copyright (c) 2022 merryhime
// SPDX-License-Identifier: MIT
#pragma once
#include "mcl/bitsizeof.hpp"
#include "mcl/stdint.hpp"
namespace mcl::detail {
/// if MSB is 0, this is a full slot. remaining 7 bits is a partial hash of the key.
/// if MSB is 1, this is a non-full slot.
enum class meta_byte : u8 {
empty = 0xff,
tombstone = 0x80,
end_sentinel = 0x88,
};
inline bool is_full(meta_byte mb)
{
return (static_cast<u8>(mb) & 0x80) == 0;
}
inline meta_byte meta_byte_from_hash(size_t hash)
{
return static_cast<meta_byte>(hash >> (bitsizeof<size_t> - 7));
}
inline size_t group_index_from_hash(size_t hash, size_t group_index_mask)
{
return hash & group_index_mask;
}
} // namespace mcl::detail

View file

@ -0,0 +1,263 @@
// This file is part of the mcl project.
// Copyright (c) 2022 merryhime
// SPDX-License-Identifier: MIT
#pragma once
#include <array>
#include <bit>
#include "mcl/assert.hpp"
#include "mcl/container/detail/meta_byte.hpp"
#include "mcl/macro/architecture.hpp"
#include "mcl/stdint.hpp"
#if defined(MCL_ARCHITECTURE_ARM64)
# include <arm_neon.h>
#elif defined(MCL_ARCHITECTURE_X86_64)
# include <emmintrin.h>
# include "mcl/bit_cast.hpp"
#else
# include <cstring>
#endif
namespace mcl::detail {
#if defined(MCL_ARCHITECTURE_ARM64)
struct meta_byte_group {
static constexpr size_t max_group_size{16};
explicit meta_byte_group(meta_byte* ptr)
: data{vld1q_u8(reinterpret_cast<u8*>(ptr))}
{}
explicit meta_byte_group(const std::array<meta_byte, 16>& array)
: data{vld1q_u8(reinterpret_cast<const u8*>(array.data()))}
{}
uint64x2_t match(meta_byte cmp) const
{
return vreinterpretq_u64_u8(vandq_u8(vceqq_u8(data,
vdupq_n_u8(static_cast<u8>(cmp))),
vdupq_n_u8(0x80)));
}
uint64x2_t match_empty_or_tombstone() const
{
return vreinterpretq_u64_u8(vandq_u8(data,
vdupq_n_u8(0x80)));
}
bool is_any_empty() const
{
static_assert(meta_byte::empty == static_cast<meta_byte>(0xff), "empty must be maximal u8 value");
return vmaxvq_u8(data) == 0xff;
}
bool is_all_empty_or_tombstone() const
{
return vminvq_u8(vandq_u8(data, vdupq_n_u8(0x80))) == 0x80;
}
meta_byte get(size_t index) const
{
return static_cast<meta_byte>(data[index]);
}
void set(size_t index, meta_byte value)
{
data[index] = static_cast<u8>(value);
}
uint8x16_t data;
};
# define MCL_HMAP_MATCH_META_BYTE_GROUP(MATCH, ...) \
{ \
const uint64x2_t match_result{MATCH}; \
\
for (u64 match_result_v{match_result[0]}; match_result_v != 0; match_result_v &= match_result_v - 1) { \
const size_t match_index{static_cast<size_t>(std::countr_zero(match_result_v) / 8)}; \
__VA_ARGS__ \
} \
\
for (u64 match_result_v{match_result[1]}; match_result_v != 0; match_result_v &= match_result_v - 1) { \
const size_t match_index{static_cast<size_t>(8 + std::countr_zero(match_result_v) / 8)}; \
__VA_ARGS__ \
} \
}
# define MCL_HMAP_MATCH_META_BYTE_GROUP_EXCEPT_LAST(MATCH, ...) \
{ \
const uint64x2_t match_result{MATCH}; \
\
for (u64 match_result_v{match_result[0]}; match_result_v != 0; match_result_v &= match_result_v - 1) { \
const size_t match_index{static_cast<size_t>(std::countr_zero(match_result_v) / 8)}; \
__VA_ARGS__ \
} \
\
for (u64 match_result_v{match_result[1] & 0x00ffffffffffffff}; match_result_v != 0; match_result_v &= match_result_v - 1) { \
const size_t match_index{static_cast<size_t>(8 + std::countr_zero(match_result_v) / 8)}; \
__VA_ARGS__ \
} \
}
#elif defined(MCL_ARCHITECTURE_X86_64)
struct meta_byte_group {
static constexpr size_t max_group_size{16};
explicit meta_byte_group(meta_byte* ptr)
: data{_mm_load_si128(reinterpret_cast<__m128i const*>(ptr))}
{}
explicit meta_byte_group(const std::array<meta_byte, 16>& array)
: data{_mm_loadu_si128(reinterpret_cast<__m128i const*>(array.data()))}
{}
u16 match(meta_byte cmp) const
{
return _mm_movemask_epi8(_mm_cmpeq_epi8(data, _mm_set1_epi8(static_cast<u8>(cmp))));
}
u16 match_empty_or_tombstone() const
{
return _mm_movemask_epi8(data);
}
bool is_any_empty() const
{
return match(meta_byte::empty);
}
bool is_all_empty_or_tombstone() const
{
return match_empty_or_tombstone() == 0xffff;
}
meta_byte get(size_t index) const
{
return mcl::bit_cast<std::array<meta_byte, max_group_size>>(data)[index];
}
void set(size_t index, meta_byte value)
{
auto array = mcl::bit_cast<std::array<meta_byte, max_group_size>>(data);
array[index] = value;
data = mcl::bit_cast<__m128i>(array);
}
__m128i data;
};
# define MCL_HMAP_MATCH_META_BYTE_GROUP(MATCH, ...) \
{ \
for (u16 match_result{MATCH}; match_result != 0; match_result &= match_result - 1) { \
const size_t match_index{static_cast<size_t>(std::countr_zero(match_result))}; \
__VA_ARGS__ \
} \
}
# define MCL_HMAP_MATCH_META_BYTE_GROUP_EXCEPT_LAST(MATCH, ...) \
{ \
for (u16 match_result{static_cast<u16>((MATCH) & (0x7fff))}; match_result != 0; match_result &= match_result - 1) { \
const size_t match_index{static_cast<size_t>(std::countr_zero(match_result))}; \
__VA_ARGS__ \
} \
}
#else
struct meta_byte_group {
static constexpr size_t max_group_size{16};
static constexpr u64 msb{0x8080808080808080};
static constexpr u64 lsb{0x0101010101010101};
static constexpr u64 not_msb{0x7f7f7f7f7f7f7f7f};
static constexpr u64 not_lsb{0xfefefefefefefefe};
explicit meta_byte_group(meta_byte* ptr)
{
std::memcpy(data.data(), ptr, sizeof(data));
}
explicit meta_byte_group(const std::array<meta_byte, 16>& array)
: data{array}
{}
std::array<u64, 2> match(meta_byte cmp) const
{
DEBUG_ASSERT(is_full(cmp));
const u64 vcmp{lsb * static_cast<u64>(cmp)};
return {(msb - ((data[0] ^ vcmp) & not_msb)) & ~data[0] & msb, (msb - ((data[1] ^ vcmp) & not_msb)) & ~data[1] & msb};
}
std::array<u64, 2> match_empty_or_tombstone() const
{
return {data[0] & msb, data[1] & msb};
}
bool is_any_empty() const
{
static_assert((static_cast<u8>(meta_byte::empty) & 0xc0) == 0xc0);
static_assert((static_cast<u8>(meta_byte::tombstone) & 0xc0) == 0x80);
return (data[0] & (data[0] << 1) & msb) || (data[1] & (data[1] << 1) & msb);
}
bool is_all_empty_or_tombstone() const
{
return (data[0] & data[1] & msb) == msb;
}
meta_byte get(size_t index) const
{
return mcl::bit_cast<std::array<meta_byte, max_group_size>>(data)[index];
}
void set(size_t index, meta_byte value)
{
auto array = mcl::bit_cast<std::array<meta_byte, max_group_size>>(data);
array[index] = value;
data = mcl::bit_cast<std::array<u64, 2>>(array);
}
std::array<u64, 2> data;
};
# define MCL_HMAP_MATCH_META_BYTE_GROUP(MATCH, ...) \
{ \
const std::array<u64, 2> match_result{MATCH}; \
\
for (u64 match_result_v{match_result[0]}; match_result_v != 0; match_result_v &= match_result_v - 1) { \
const size_t match_index{static_cast<size_t>(std::countr_zero(match_result_v) / 8)}; \
__VA_ARGS__ \
} \
\
for (u64 match_result_v{match_result[1]}; match_result_v != 0; match_result_v &= match_result_v - 1) { \
const size_t match_index{static_cast<size_t>(8 + std::countr_zero(match_result_v) / 8)}; \
__VA_ARGS__ \
} \
}
# define MCL_HMAP_MATCH_META_BYTE_GROUP_EXCEPT_LAST(MATCH, ...) \
{ \
const std::array<u64, 2> match_result{MATCH}; \
\
for (u64 match_result_v{match_result[0]}; match_result_v != 0; match_result_v &= match_result_v - 1) { \
const size_t match_index{static_cast<size_t>(std::countr_zero(match_result_v) / 8)}; \
__VA_ARGS__ \
} \
\
for (u64 match_result_v{match_result[1] & 0x00ffffffffffffff}; match_result_v != 0; match_result_v &= match_result_v - 1) { \
const size_t match_index{static_cast<size_t>(8 + std::countr_zero(match_result_v) / 8)}; \
__VA_ARGS__ \
} \
}
#endif
} // namespace mcl::detail

View file

@ -0,0 +1,16 @@
// This file is part of the mcl project.
// Copyright (c) 2022 merryhime
// SPDX-License-Identifier: MIT
#pragma once
namespace mcl::detail {
template<typename ValueType>
union slot_union {
slot_union() {}
~slot_union() {}
ValueType value;
};
} // namespace mcl::detail

View file

@ -0,0 +1,532 @@
// This file is part of the mcl project.
// Copyright (c) 2022 merryhime
// SPDX-License-Identifier: MIT
#pragma once
#include <cstddef>
#include <functional>
#include <limits>
#include <type_traits>
#include <utility>
#include "mcl/assert.hpp"
#include "mcl/container/detail/meta_byte.hpp"
#include "mcl/container/detail/meta_byte_group.hpp"
#include "mcl/container/detail/slot_union.hpp"
#include "mcl/hash/xmrx.hpp"
#include "mcl/hint/assume.hpp"
#include "mcl/memory/overaligned_unique_ptr.hpp"
namespace mcl {
template<typename KeyType, typename MappedType, typename Hash, typename Pred>
class hmap;
template<bool IsConst, typename KeyType, typename MappedType, typename Hash, typename Pred>
class hmap_iterator {
using base_value_type = std::pair<const KeyType, MappedType>;
using slot_type = detail::slot_union<base_value_type>;
public:
using key_type = KeyType;
using mapped_type = MappedType;
using iterator_category = std::forward_iterator_tag;
using difference_type = std::ptrdiff_t;
using value_type = std::conditional_t<IsConst, std::add_const_t<base_value_type>, base_value_type>;
using pointer = value_type*;
using const_pointer = const value_type*;
using reference = value_type&;
using const_reference = const value_type&;
hmap_iterator() = default;
hmap_iterator(const hmap_iterator& other) = default;
hmap_iterator& operator=(const hmap_iterator& other) = default;
hmap_iterator& operator++()
{
if (mb_ptr == nullptr)
return *this;
++mb_ptr;
++slot_ptr;
skip_empty_or_tombstone();
return *this;
}
hmap_iterator operator++(int)
{
hmap_iterator it(*this);
++*this;
return it;
}
bool operator==(const hmap_iterator& other) const
{
return std::tie(mb_ptr, slot_ptr) == std::tie(other.mb_ptr, other.slot_ptr);
}
bool operator!=(const hmap_iterator& other) const
{
return !operator==(other);
}
reference operator*() const
{
return static_cast<reference>(slot_ptr->value);
}
pointer operator->() const
{
return std::addressof(operator*());
}
private:
friend class hmap<KeyType, MappedType, Hash, Pred>;
hmap_iterator(detail::meta_byte* mb_ptr, slot_type* slot_ptr)
: mb_ptr{mb_ptr}, slot_ptr{slot_ptr}
{
ASSUME(mb_ptr != nullptr);
ASSUME(slot_ptr != nullptr);
}
void skip_empty_or_tombstone()
{
if (!mb_ptr)
return;
while (*mb_ptr == detail::meta_byte::empty || *mb_ptr == detail::meta_byte::tombstone) {
++mb_ptr;
++slot_ptr;
}
if (*mb_ptr == detail::meta_byte::end_sentinel) {
mb_ptr = nullptr;
slot_ptr = nullptr;
}
}
detail::meta_byte* mb_ptr{nullptr};
slot_type* slot_ptr{nullptr};
};
template<typename KeyType, typename MappedType, typename Hash = hash::avalanche_xmrx<KeyType>, typename Pred = std::equal_to<KeyType>>
class hmap {
public:
using key_type = KeyType;
using mapped_type = MappedType;
using hasher = Hash;
using key_equal = Pred;
using value_type = std::pair<const key_type, mapped_type>;
using reference = value_type&;
using const_reference = const value_type&;
using pointer = value_type*;
using const_pointer = const value_type*;
using size_type = std::size_t;
using difference_type = std::ptrdiff_t;
using iterator = hmap_iterator<false, key_type, mapped_type, hasher, key_equal>;
using const_iterator = hmap_iterator<true, key_type, mapped_type, hasher, key_equal>;
private:
static constexpr size_t group_size{detail::meta_byte_group::max_group_size};
static constexpr size_t average_max_group_load{group_size - 2};
using slot_type = detail::slot_union<value_type>;
using slot_ptr = std::unique_ptr<slot_type[]>;
using meta_byte_ptr = overaligned_unique_ptr<group_size, detail::meta_byte[]>;
static_assert(!std::is_reference_v<key_type>);
static_assert(!std::is_reference_v<mapped_type>);
public:
hmap()
{
initialize_members(1);
}
hmap(const hmap& other)
{
deep_copy(other);
}
hmap(hmap&& other)
: group_index_mask{std::exchange(other.group_index_mask, 0)}
, empty_slots{std::exchange(other.empty_slots, 0)}
, full_slots{std::exchange(other.full_slots, 0)}
, mbs{std::move(other.mbs)}
, slots{std::move(other.slots)}
{
}
hmap& operator=(const hmap& other)
{
deep_copy(other);
return *this;
}
hmap& operator=(hmap&& other)
{
group_index_mask = std::exchange(other.group_index_mask, 0);
empty_slots = std::exchange(other.empty_slots, 0);
full_slots = std::exchange(other.full_slots, 0);
mbs = std::move(other.mbs);
slots = std::move(other.slots);
return *this;
}
~hmap()
{
if (!mbs)
return;
clear();
}
[[nodiscard]] bool empty() const noexcept { return full_slots == 0; }
size_type size() const noexcept { return full_slots; }
size_type max_size() const noexcept { return static_cast<size_type>(std::numeric_limits<difference_type>::max()); }
iterator begin()
{
iterator result{iterator_at(0)};
result.skip_empty_or_tombstone();
return result;
}
iterator end()
{
return {};
}
const_iterator cbegin() const
{
const_iterator result{const_iterator_at(0)};
result.skip_empty_or_tombstone();
return result;
}
const_iterator cend() const
{
return {};
}
const_iterator begin() const
{
return cbegin();
}
const_iterator end() const
{
return cend();
}
template<typename K = key_type, typename... Args>
std::pair<iterator, bool> try_emplace(K&& k, Args&&... args)
{
auto [item_index, item_found] = find_key_or_empty_slot(k);
if (!item_found) {
new (&slots[item_index].value) value_type(
std::piecewise_construct,
std::forward_as_tuple(std::forward<K>(k)),
std::forward_as_tuple(std::forward<Args>(args)...));
}
return {iterator_at(item_index), !item_found};
}
template<typename K = key_type, typename V = mapped_type>
std::pair<iterator, bool> insert_or_assign(K&& k, V&& v)
{
auto [item_index, item_found] = find_key_or_empty_slot(k);
if (item_found) {
slots[item_index].value.second = std::forward<V>(v);
} else {
new (&slots[item_index].value) value_type(
std::forward<K>(k),
std::forward<V>(v));
}
return {iterator_at(item_index), !item_found};
}
void erase(const_iterator position)
{
if (position == cend()) {
return;
}
const std::size_t item_index{static_cast<std::size_t>(std::distance(mbs.get(), position.mb_ptr))};
const std::size_t group_index{item_index / group_size};
const detail::meta_byte_group g{mbs.get() + group_index * group_size};
erase_impl(item_index, std::move(g));
}
void erase(iterator position)
{
if (position == end()) {
return;
}
const std::size_t item_index{static_cast<std::size_t>(std::distance(mbs.get(), position.mb_ptr))};
const std::size_t group_index{item_index / group_size};
const detail::meta_byte_group g{mbs.get() + group_index * group_size};
erase_impl(item_index, std::move(g));
}
template<typename K = key_type>
size_t erase(const K& key)
{
const std::size_t hash{hasher{}(key)};
const detail::meta_byte mb{detail::meta_byte_from_hash(hash)};
size_t group_index{detail::group_index_from_hash(hash, group_index_mask)};
while (true) {
detail::meta_byte_group g{mbs.get() + group_index * group_size};
MCL_HMAP_MATCH_META_BYTE_GROUP(g.match(mb), {
const std::size_t item_index{group_index * group_size + match_index};
if (key_equal{}(slots[item_index].value.first, key)) [[likely]] {
erase_impl(item_index, std::move(g));
return 1;
}
});
if (g.is_any_empty()) [[likely]] {
return 0;
}
group_index = (group_index + 1) & group_index_mask;
}
}
template<typename K = key_type>
iterator find(const K& key)
{
const std::size_t hash{hasher{}(key)};
const detail::meta_byte mb{detail::meta_byte_from_hash(hash)};
size_t group_index{detail::group_index_from_hash(hash, group_index_mask)};
while (true) {
detail::meta_byte_group g{mbs.get() + group_index * group_size};
MCL_HMAP_MATCH_META_BYTE_GROUP(g.match(mb), {
const std::size_t item_index{group_index * group_size + match_index};
if (key_equal{}(slots[item_index].value.first, key)) [[likely]] {
return iterator_at(item_index);
}
});
if (g.is_any_empty()) [[likely]] {
return {};
}
group_index = (group_index + 1) & group_index_mask;
}
}
template<typename K = key_type>
const_iterator find(const K& key) const
{
const std::size_t hash{hasher{}(key)};
const detail::meta_byte mb{detail::meta_byte_from_hash(hash)};
size_t group_index{detail::group_index_from_hash(hash, group_index_mask)};
while (true) {
detail::meta_byte_group g{mbs.get() + group_index * group_size};
MCL_HMAP_MATCH_META_BYTE_GROUP(g.match(mb), {
const std::size_t item_index{group_index * group_size + match_index};
if (key_equal{}(slots[item_index].value.first, key)) [[likely]] {
return const_iterator_at(item_index);
}
});
if (g.is_any_empty()) [[likely]] {
return {};
}
group_index = (group_index + 1) & group_index_mask;
}
}
template<typename K = key_type>
bool contains(const K& key) const
{
return find(key) != end();
}
template<typename K = key_type>
size_t count(const K& key) const
{
return contains(key) ? 1 : 0;
}
template<typename K = key_type>
mapped_type& operator[](K&& k)
{
return try_emplace(std::forward<K>(k)).first->second;
}
template<typename K = key_type>
mapped_type& at(K&& k)
{
const auto iter{find(k)};
if (iter == end()) {
throw std::out_of_range("hmap::at: key not found");
}
return iter->second;
}
template<typename K = key_type>
const mapped_type& at(K&& k) const
{
const auto iter{find(k)};
if (iter == end()) {
throw std::out_of_range("hmap::at: key not found");
}
return iter->second;
}
void clear()
{
for (auto iter{begin()}; iter != end(); ++iter) {
iter->~value_type();
}
clear_metadata();
}
private:
iterator iterator_at(std::size_t item_index)
{
return {mbs.get() + item_index, slots.get() + item_index};
}
const_iterator const_iterator_at(std::size_t item_index) const
{
return {mbs.get() + item_index, slots.get() + item_index};
}
std::pair<std::size_t, bool> find_key_or_empty_slot(const key_type& key)
{
const std::size_t hash{hasher{}(key)};
const detail::meta_byte mb{detail::meta_byte_from_hash(hash)};
std::size_t group_index{detail::group_index_from_hash(hash, group_index_mask)};
while (true) {
detail::meta_byte_group g{mbs.get() + group_index * group_size};
MCL_HMAP_MATCH_META_BYTE_GROUP(g.match(mb), {
const std::size_t item_index{group_index * group_size + match_index};
if (key_equal{}(slots[item_index].value.first, key)) [[likely]] {
return {item_index, true};
}
});
if (g.is_any_empty()) [[likely]] {
return {find_empty_slot_to_insert(hash), false};
}
group_index = (group_index + 1) & group_index_mask;
}
}
std::size_t find_empty_slot_to_insert(const std::size_t hash)
{
if (empty_slots == 0) [[unlikely]] {
grow_and_rehash();
}
std::size_t group_index{detail::group_index_from_hash(hash, group_index_mask)};
while (true) {
detail::meta_byte_group g{mbs.get() + group_index * group_size};
MCL_HMAP_MATCH_META_BYTE_GROUP(g.match_empty_or_tombstone(), {
const std::size_t item_index{group_index * group_size + match_index};
if (mbs[item_index] == detail::meta_byte::empty) [[likely]] {
--empty_slots;
}
++full_slots;
mbs[item_index] = detail::meta_byte_from_hash(hash);
return item_index;
});
group_index = (group_index + 1) & group_index_mask;
}
}
void erase_impl(std::size_t item_index, detail::meta_byte_group&& g)
{
slots[item_index].value->~value_type();
--full_slots;
if (g.is_any_empty()) {
mbs[item_index] = detail::meta_byte::empty;
++empty_slots;
} else {
mbs[item_index] = detail::meta_byte::tombstone;
}
}
void grow_and_rehash()
{
const std::size_t new_group_count{2 * (group_index_mask + 1)};
pow2_resize(new_group_count);
}
void pow2_resize(std::size_t new_group_count)
{
auto iter{begin()};
const auto old_mbs{std::move(mbs)};
const auto old_slots{std::move(slots)};
initialize_members(new_group_count);
for (; iter != end(); ++iter) {
const std::size_t hash{hasher{}(iter->first)};
const std::size_t item_index{find_empty_slot_to_insert(hash)};
new (&slots[item_index].value) value_type(std::move(iter.slot_ptr->value));
iter.slot_ptr->value.~value_type();
}
}
void deep_copy(const hmap& other)
{
initialize_members(other.group_index_mask + 1);
for (auto iter = other.begin(); iter != other.end(); ++iter) {
const std::size_t hash{hasher{}(iter->first)};
const std::size_t item_index{find_empty_slot_to_insert(hash)};
new (&slots[item_index].value) value_type(iter.slot_ptr->value);
}
}
void initialize_members(std::size_t group_count)
{
// DEBUG_ASSERT(group_count != 0 && std::ispow2(group_count));
group_index_mask = group_count - 1;
mbs = make_overaligned_unique_ptr_array<group_size, detail::meta_byte>(group_count * group_size + 1);
slots = slot_ptr{new slot_type[group_count * group_size]};
clear_metadata();
}
void clear_metadata()
{
const std::size_t group_count{group_index_mask + 1};
empty_slots = group_count * average_max_group_load;
full_slots = 0;
std::memset(mbs.get(), static_cast<int>(detail::meta_byte::empty), group_count * group_size);
mbs[group_count * group_size] = detail::meta_byte::end_sentinel;
}
std::size_t group_index_mask;
std::size_t empty_slots;
std::size_t full_slots;
meta_byte_ptr mbs;
slot_ptr slots;
};
} // namespace mcl

View file

@ -0,0 +1,549 @@
// This file is part of the mcl project.
// Copyright (c) 2022 merryhime
// SPDX-License-Identifier: MIT
#pragma once
#include <array>
#include <cstddef>
#include <functional>
#include <limits>
#include <type_traits>
#include <utility>
#include "mcl/assert.hpp"
#include "mcl/container/detail/meta_byte.hpp"
#include "mcl/container/detail/meta_byte_group.hpp"
#include "mcl/container/detail/slot_union.hpp"
#include "mcl/hash/xmrx.hpp"
#include "mcl/hint/assume.hpp"
namespace mcl {
template<typename KeyType, typename MappedType, typename Hash, typename Pred>
class ihmap;
namespace detail {
constexpr std::array<meta_byte, 16> ihmap_default_meta{
meta_byte::empty, meta_byte::empty, meta_byte::empty, meta_byte::empty,
meta_byte::empty, meta_byte::empty, meta_byte::empty, meta_byte::empty,
meta_byte::empty, meta_byte::empty, meta_byte::empty, meta_byte::empty,
meta_byte::empty, meta_byte::empty, meta_byte::empty, meta_byte::tombstone};
template<typename KeyType, typename MappedType>
struct ihmap_group {
using base_value_type = std::pair<const KeyType, MappedType>;
using slot_type = detail::slot_union<base_value_type>;
static constexpr std::size_t group_size{meta_byte_group::max_group_size - 1};
meta_byte_group meta{ihmap_default_meta};
std::array<slot_type, group_size> slots{};
};
} // namespace detail
template<bool IsConst, typename KeyType, typename MappedType, typename Hash, typename Pred>
class ihmap_iterator {
using group_type = detail::ihmap_group<KeyType, MappedType>;
using base_value_type = typename group_type::base_value_type;
public:
using key_type = KeyType;
using mapped_type = MappedType;
using iterator_category = std::forward_iterator_tag;
using difference_type = std::ptrdiff_t;
using value_type = std::conditional_t<IsConst, std::add_const_t<base_value_type>, base_value_type>;
using pointer = value_type*;
using const_pointer = const value_type*;
using reference = value_type&;
using const_reference = const value_type&;
ihmap_iterator() = default;
ihmap_iterator(const ihmap_iterator& other) = default;
ihmap_iterator& operator=(const ihmap_iterator& other) = default;
ihmap_iterator& operator++()
{
if (group_ptr == nullptr)
return *this;
++slot_index;
skip_empty_or_tombstone();
return *this;
}
ihmap_iterator operator++(int)
{
ihmap_iterator it(*this);
++*this;
return it;
}
bool operator==(const ihmap_iterator& other) const
{
return std::tie(group_ptr, slot_index) == std::tie(other.group_ptr, other.slot_index);
}
bool operator!=(const ihmap_iterator& other) const
{
return !operator==(other);
}
reference operator*() const
{
return static_cast<reference>(group_ptr->slots[slot_index].value);
}
pointer operator->() const
{
return std::addressof(operator*());
}
private:
friend class ihmap<KeyType, MappedType, Hash, Pred>;
ihmap_iterator(group_type* group_ptr, size_t slot_index)
: group_ptr{group_ptr}, slot_index{slot_index}
{
ASSUME(group_ptr != nullptr);
}
void skip_empty_or_tombstone()
{
if (!group_ptr)
return;
while (true) {
const detail::meta_byte mb = group_ptr->meta.get(slot_index);
if (slot_index == group_type::group_size) {
slot_index = 0;
++group_ptr;
if (mb == detail::meta_byte::end_sentinel) {
group_ptr = nullptr;
return;
}
continue;
}
if (is_full(mb)) {
break;
}
++slot_index;
}
}
group_type* group_ptr{nullptr};
std::size_t slot_index{0};
};
template<typename KeyType, typename MappedType, typename Hash = hash::avalanche_xmrx<KeyType>, typename Pred = std::equal_to<KeyType>>
class ihmap {
using group_type = detail::ihmap_group<KeyType, MappedType>;
public:
using key_type = KeyType;
using mapped_type = MappedType;
using hasher = Hash;
using key_equal = Pred;
using value_type = typename group_type::base_value_type;
using reference = value_type&;
using const_reference = const value_type&;
using pointer = value_type*;
using const_pointer = const value_type*;
using size_type = std::size_t;
using difference_type = std::ptrdiff_t;
using iterator = ihmap_iterator<false, key_type, mapped_type, hasher, key_equal>;
using const_iterator = ihmap_iterator<true, key_type, mapped_type, hasher, key_equal>;
private:
static_assert(!std::is_reference_v<key_type>);
static_assert(!std::is_reference_v<mapped_type>);
static constexpr std::size_t group_size{group_type::group_size};
static constexpr std::size_t average_max_group_load{group_size - 2};
struct position {
std::size_t group_index;
std::size_t slot_index;
};
public:
ihmap()
{
initialize_members(1);
}
ihmap(const ihmap& other)
{
deep_copy(other);
}
ihmap(ihmap&& other)
: group_index_mask{std::exchange(other.group_index_mask, 0)}
, empty_slots{std::exchange(other.empty_slots, 0)}
, full_slots{std::exchange(other.full_slots, 0)}
, groups{std::move(other.groups)}
{
}
ihmap& operator=(const ihmap& other)
{
deep_copy(other);
return *this;
}
ihmap& operator=(ihmap&& other)
{
group_index_mask = std::exchange(other.group_index_mask, 0);
empty_slots = std::exchange(other.empty_slots, 0);
full_slots = std::exchange(other.full_slots, 0);
groups = std::move(other.groups);
return *this;
}
~ihmap()
{
if (!groups)
return;
clear();
}
[[nodiscard]] bool empty() const noexcept { return full_slots == 0; }
size_type size() const noexcept { return full_slots; }
size_type max_size() const noexcept { return static_cast<size_type>(std::numeric_limits<difference_type>::max()); }
iterator begin()
{
iterator result{iterator_at({0, 0})};
result.skip_empty_or_tombstone();
return result;
}
iterator end()
{
return {};
}
const_iterator cbegin() const
{
const_iterator result{const_iterator_at({0, 0})};
result.skip_empty_or_tombstone();
return result;
}
const_iterator cend() const
{
return {};
}
const_iterator begin() const
{
return cbegin();
}
const_iterator end() const
{
return cend();
}
template<typename K = key_type, typename... Args>
std::pair<iterator, bool> try_emplace(K&& k, Args&&... args)
{
auto [pos, item_found] = find_key_or_empty_slot(k);
if (!item_found) {
new (&groups[pos.group_index].slots[pos.slot_index].value) value_type(
std::piecewise_construct,
std::forward_as_tuple(std::forward<K>(k)),
std::forward_as_tuple(std::forward<Args>(args)...));
}
return {iterator_at(pos), !item_found};
}
template<typename K = key_type, typename V = mapped_type>
std::pair<iterator, bool> insert_or_assign(K&& k, V&& v)
{
auto [pos, item_found] = find_key_or_empty_slot(k);
if (item_found) {
groups[pos.group_index].slots[pos.slot_index].value.second = std::forward<V>(v);
} else {
new (&groups[pos.group_index].slots[pos.slot_index].value) value_type(
std::forward<K>(k),
std::forward<V>(v));
}
return {iterator_at(pos), !item_found};
}
void erase(const_iterator iter)
{
if (iter == cend()) {
return;
}
const std::size_t group_index{static_cast<std::size_t>(std::distance(groups.get(), iter.group_ptr))};
erase_impl({group_index, iter.slot_index});
}
void erase(iterator iter)
{
if (iter == end()) {
return;
}
const std::size_t group_index{static_cast<std::size_t>(std::distance(groups.get(), iter.group_ptr))};
erase_impl({group_index, iter.slot_index});
}
template<typename K = key_type>
std::size_t erase(const K& key)
{
const std::size_t hash{hasher{}(key)};
const detail::meta_byte mb{detail::meta_byte_from_hash(hash)};
std::size_t group_index{detail::group_index_from_hash(hash, group_index_mask)};
while (true) {
const group_type& g{groups[group_index]};
MCL_HMAP_MATCH_META_BYTE_GROUP_EXCEPT_LAST(g.meta.match(mb), {
if (key_equal{}(g.slots[match_index].value.first, key)) [[likely]] {
erase_impl({group_index, match_index});
return 1;
}
});
if (g.meta.is_any_empty()) [[likely]] {
return 0;
}
group_index = (group_index + 1) & group_index_mask;
}
}
template<typename K = key_type>
iterator find(const K& key)
{
const std::size_t hash{hasher{}(key)};
const detail::meta_byte mb{detail::meta_byte_from_hash(hash)};
std::size_t group_index{detail::group_index_from_hash(hash, group_index_mask)};
while (true) {
const group_type& g{groups[group_index]};
MCL_HMAP_MATCH_META_BYTE_GROUP_EXCEPT_LAST(g.meta.match(mb), {
if (key_equal{}(g.slots[match_index].value.first, key)) [[likely]] {
return iterator_at({group_index, match_index});
}
});
if (g.meta.is_any_empty()) [[likely]] {
return {};
}
group_index = (group_index + 1) & group_index_mask;
}
}
template<typename K = key_type>
const_iterator find(const K& key) const
{
const std::size_t hash{hasher{}(key)};
const detail::meta_byte mb{detail::meta_byte_from_hash(hash)};
std::size_t group_index{detail::group_index_from_hash(hash, group_index_mask)};
while (true) {
const group_type& g{groups[group_index]};
MCL_HMAP_MATCH_META_BYTE_GROUP_EXCEPT_LAST(g.meta.match(mb), {
if (key_equal{}(g.slots[match_index].value.first, key)) [[likely]] {
return const_iterator_at({group_index, match_index});
}
});
if (g.meta.is_any_empty()) [[likely]] {
return {};
}
group_index = (group_index + 1) & group_index_mask;
}
}
template<typename K = key_type>
bool contains(const K& key) const
{
return find(key) != end();
}
template<typename K = key_type>
std::size_t count(const K& key) const
{
return contains(key) ? 1 : 0;
}
template<typename K = key_type>
mapped_type& operator[](K&& k)
{
return try_emplace(std::forward<K>(k)).first->second;
}
template<typename K = key_type>
mapped_type& at(K&& k)
{
const auto iter{find(k)};
if (iter == end()) {
throw std::out_of_range("ihmap::at: key not found");
}
return iter->second;
}
template<typename K = key_type>
const mapped_type& at(K&& k) const
{
const auto iter{find(k)};
if (iter == end()) {
throw std::out_of_range("ihmap::at: key not found");
}
return iter->second;
}
void clear()
{
for (auto iter{begin()}; iter != end(); ++iter) {
iter->~value_type();
}
clear_metadata();
}
private:
iterator iterator_at(position pos)
{
return {groups.get() + pos.group_index, pos.slot_index};
}
const_iterator const_iterator_at(position pos) const
{
return {groups.get() + pos.group_index, pos.slot_index};
}
std::pair<position, bool> find_key_or_empty_slot(const key_type& key)
{
const std::size_t hash{hasher{}(key)};
const detail::meta_byte mb{detail::meta_byte_from_hash(hash)};
std::size_t group_index{detail::group_index_from_hash(hash, group_index_mask)};
while (true) {
const group_type& g{groups[group_index]};
MCL_HMAP_MATCH_META_BYTE_GROUP_EXCEPT_LAST(g.meta.match(mb), {
if (key_equal{}(g.slots[match_index].value.first, key)) [[likely]] {
return {{group_index, match_index}, true};
}
});
if (g.meta.is_any_empty()) [[likely]] {
return {find_empty_slot_to_insert(hash), false};
}
group_index = (group_index + 1) & group_index_mask;
}
}
position find_empty_slot_to_insert(const std::size_t hash)
{
if (empty_slots == 0) [[unlikely]] {
grow_and_rehash();
}
std::size_t group_index{detail::group_index_from_hash(hash, group_index_mask)};
while (true) {
group_type& g{groups[group_index]};
MCL_HMAP_MATCH_META_BYTE_GROUP_EXCEPT_LAST(g.meta.match_empty_or_tombstone(), {
if (g.meta.get(match_index) == detail::meta_byte::empty) [[likely]] {
--empty_slots;
}
++full_slots;
g.meta.set(match_index, detail::meta_byte_from_hash(hash));
return {group_index, match_index};
});
group_index = (group_index + 1) & group_index_mask;
}
}
void erase_impl(position pos)
{
group_type& g{groups[pos.group_index]};
g.slots[pos.slot_index].value.~value_type();
--full_slots;
if (g.meta.is_any_empty()) {
g.meta.set(pos.slot_index, detail::meta_byte::empty);
++empty_slots;
} else {
g.meta.set(pos.slot_index, detail::meta_byte::tombstone);
}
}
void grow_and_rehash()
{
const std::size_t new_group_count{2 * (group_index_mask + 1)};
pow2_resize(new_group_count);
}
void pow2_resize(std::size_t new_group_count)
{
auto iter{begin()};
const auto old_groups{std::move(groups)};
initialize_members(new_group_count);
for (; iter != end(); ++iter) {
const std::size_t hash{hasher{}(iter->first)};
const position pos{find_empty_slot_to_insert(hash)};
new (&groups[pos.group_index].slots[pos.slot_index].value) value_type(std::move(iter.group_ptr->slots[iter.slot_index].value));
iter.group_ptr->slots[iter.slot_index].value.~value_type();
}
}
void deep_copy(const ihmap& other)
{
initialize_members(other.group_index_mask + 1);
for (auto iter = other.begin(); iter != other.end(); ++iter) {
const std::size_t hash{hasher{}(iter->first)};
const position pos{find_empty_slot_to_insert(hash)};
new (&groups[pos.group_index].slots[pos.slot_index].value) value_type(iter.group_ptr->slots[iter.slot_index].value);
}
}
void initialize_members(std::size_t group_count)
{
// DEBUG_ASSERT(group_count != 0 && std::ispow2(group_count));
group_index_mask = group_count - 1;
groups = std::unique_ptr<group_type[]>{new group_type[group_count]};
clear_metadata();
}
void clear_metadata()
{
const std::size_t group_count{group_index_mask + 1};
empty_slots = group_count * average_max_group_load;
full_slots = 0;
for (size_t i{0}; i < group_count; ++i) {
groups[i].meta = detail::meta_byte_group{detail::ihmap_default_meta};
}
groups[group_count - 1].meta.set(group_size, detail::meta_byte::end_sentinel);
}
std::size_t group_index_mask;
std::size_t empty_slots;
std::size_t full_slots;
std::unique_ptr<group_type[]> groups;
};
} // namespace mcl

View file

@ -21,7 +21,8 @@ class intrusive_list_iterator;
template<typename T> template<typename T>
class intrusive_list_node { class intrusive_list_node {
public: public:
bool is_sentinel() const { bool is_sentinel() const
{
return is_sentinel_; return is_sentinel_;
} }
@ -42,7 +43,8 @@ class intrusive_list_sentinel final : public intrusive_list_node<T> {
using intrusive_list_node<T>::is_sentinel_; using intrusive_list_node<T>::is_sentinel_;
public: public:
intrusive_list_sentinel() { intrusive_list_sentinel()
{
next = this; next = this;
prev = this; prev = this;
is_sentinel_ = true; is_sentinel_ = true;
@ -72,50 +74,56 @@ public:
intrusive_list_iterator& operator=(const intrusive_list_iterator& other) = default; intrusive_list_iterator& operator=(const intrusive_list_iterator& other) = default;
explicit intrusive_list_iterator(node_pointer list_node) explicit intrusive_list_iterator(node_pointer list_node)
: node(list_node) { : node(list_node) {}
}
explicit intrusive_list_iterator(pointer data) explicit intrusive_list_iterator(pointer data)
: node(data) { : node(data) {}
}
explicit intrusive_list_iterator(reference data) explicit intrusive_list_iterator(reference data)
: node(&data) { : node(&data) {}
}
intrusive_list_iterator& operator++() { intrusive_list_iterator& operator++()
{
node = node->next; node = node->next;
return *this; return *this;
} }
intrusive_list_iterator& operator--() { intrusive_list_iterator& operator--()
{
node = node->prev; node = node->prev;
return *this; return *this;
} }
intrusive_list_iterator operator++(int) { intrusive_list_iterator operator++(int)
{
intrusive_list_iterator it(*this); intrusive_list_iterator it(*this);
++*this; ++*this;
return it; return it;
} }
intrusive_list_iterator operator--(int) { intrusive_list_iterator operator--(int)
{
intrusive_list_iterator it(*this); intrusive_list_iterator it(*this);
--*this; --*this;
return it; return it;
} }
bool operator==(const intrusive_list_iterator& other) const { bool operator==(const intrusive_list_iterator& other) const
{
return node == other.node; return node == other.node;
} }
bool operator!=(const intrusive_list_iterator& other) const { bool operator!=(const intrusive_list_iterator& other) const
{
return !operator==(other); return !operator==(other);
} }
reference operator*() const { reference operator*() const
{
DEBUG_ASSERT(!node->is_sentinel()); DEBUG_ASSERT(!node->is_sentinel());
return static_cast<reference>(*node); return static_cast<reference>(*node);
} }
pointer operator->() const { pointer operator->() const
{
return std::addressof(operator*()); return std::addressof(operator*());
} }
node_pointer AsNodePointer() const { node_pointer AsNodePointer() const
{
return node; return node;
} }
@ -145,7 +153,8 @@ public:
* @param location The location to insert the node. * @param location The location to insert the node.
* @param new_node The node to add. * @param new_node The node to add.
*/ */
iterator insert(iterator location, pointer new_node) { iterator insert(iterator location, pointer new_node)
{
return insert_before(location, new_node); return insert_before(location, new_node);
} }
@ -156,7 +165,8 @@ public:
* @param location The location to insert the new node. * @param location The location to insert the new node.
* @param new_node The node to insert into the list. * @param new_node The node to insert into the list.
*/ */
iterator insert_before(iterator location, pointer new_node) { iterator insert_before(iterator location, pointer new_node)
{
auto existing_node = location.AsNodePointer(); auto existing_node = location.AsNodePointer();
new_node->next = existing_node; new_node->next = existing_node;
@ -173,7 +183,8 @@ public:
* @param position Location to insert the node in front of. * @param position Location to insert the node in front of.
* @param new_node The node to be inserted into the list. * @param new_node The node to be inserted into the list.
*/ */
iterator insert_after(iterator position, pointer new_node) { iterator insert_after(iterator position, pointer new_node)
{
if (empty()) if (empty())
return insert(begin(), new_node); return insert(begin(), new_node);
@ -184,7 +195,8 @@ public:
* Add an entry to the start of the list. * Add an entry to the start of the list.
* @param node Node to add to the list. * @param node Node to add to the list.
*/ */
void push_front(pointer node) { void push_front(pointer node)
{
insert(begin(), node); insert(begin(), node);
} }
@ -192,7 +204,8 @@ public:
* Add an entry to the end of the list * Add an entry to the end of the list
* @param node Node to add to the list. * @param node Node to add to the list.
*/ */
void push_back(pointer node) { void push_back(pointer node)
{
insert(end(), node); insert(end(), node);
} }
@ -200,7 +213,8 @@ public:
* Erases the node at the front of the list. * Erases the node at the front of the list.
* @note Must not be called on an empty list. * @note Must not be called on an empty list.
*/ */
void pop_front() { void pop_front()
{
DEBUG_ASSERT(!empty()); DEBUG_ASSERT(!empty());
erase(begin()); erase(begin());
} }
@ -209,7 +223,8 @@ public:
* Erases the node at the back of the list. * Erases the node at the back of the list.
* @note Must not be called on an empty list. * @note Must not be called on an empty list.
*/ */
void pop_back() { void pop_back()
{
DEBUG_ASSERT(!empty()); DEBUG_ASSERT(!empty());
erase(--end()); erase(--end());
} }
@ -218,7 +233,8 @@ public:
* Removes a node from this list * Removes a node from this list
* @param it An iterator that points to the node to remove from list. * @param it An iterator that points to the node to remove from list.
*/ */
pointer remove(iterator& it) { pointer remove(iterator& it)
{
DEBUG_ASSERT(it != end()); DEBUG_ASSERT(it != end());
pointer node = &*it++; pointer node = &*it++;
@ -237,7 +253,8 @@ public:
* Removes a node from this list * Removes a node from this list
* @param it A constant iterator that points to the node to remove from list. * @param it A constant iterator that points to the node to remove from list.
*/ */
pointer remove(const iterator& it) { pointer remove(const iterator& it)
{
iterator copy = it; iterator copy = it;
return remove(copy); return remove(copy);
} }
@ -246,7 +263,8 @@ public:
* Removes a node from this list. * Removes a node from this list.
* @param node A pointer to the node to remove. * @param node A pointer to the node to remove.
*/ */
pointer remove(pointer node) { pointer remove(pointer node)
{
return remove(iterator(node)); return remove(iterator(node));
} }
@ -254,7 +272,8 @@ public:
* Removes a node from this list. * Removes a node from this list.
* @param node A reference to the node to remove. * @param node A reference to the node to remove.
*/ */
pointer remove(reference node) { pointer remove(reference node)
{
return remove(iterator(node)); return remove(iterator(node));
} }
@ -262,7 +281,8 @@ public:
* Is this list empty? * Is this list empty?
* @returns true if there are no nodes in this list. * @returns true if there are no nodes in this list.
*/ */
bool empty() const { bool empty() const
{
return root->next == root.get(); return root->next == root.get();
} }
@ -270,7 +290,8 @@ public:
* Gets the total number of elements within this list. * Gets the total number of elements within this list.
* @return the number of elements in this list. * @return the number of elements in this list.
*/ */
size_type size() const { size_type size() const
{
return static_cast<size_type>(std::distance(begin(), end())); return static_cast<size_type>(std::distance(begin(), end()));
} }
@ -278,7 +299,8 @@ public:
* Retrieves a reference to the node at the front of the list. * Retrieves a reference to the node at the front of the list.
* @note Must not be called on an empty list. * @note Must not be called on an empty list.
*/ */
reference front() { reference front()
{
DEBUG_ASSERT(!empty()); DEBUG_ASSERT(!empty());
return *begin(); return *begin();
} }
@ -287,7 +309,8 @@ public:
* Retrieves a constant reference to the node at the front of the list. * Retrieves a constant reference to the node at the front of the list.
* @note Must not be called on an empty list. * @note Must not be called on an empty list.
*/ */
const_reference front() const { const_reference front() const
{
DEBUG_ASSERT(!empty()); DEBUG_ASSERT(!empty());
return *begin(); return *begin();
} }
@ -296,7 +319,8 @@ public:
* Retrieves a reference to the node at the back of the list. * Retrieves a reference to the node at the back of the list.
* @note Must not be called on an empty list. * @note Must not be called on an empty list.
*/ */
reference back() { reference back()
{
DEBUG_ASSERT(!empty()); DEBUG_ASSERT(!empty());
return *--end(); return *--end();
} }
@ -305,7 +329,8 @@ public:
* Retrieves a constant reference to the node at the back of the list. * Retrieves a constant reference to the node at the back of the list.
* @note Must not be called on an empty list. * @note Must not be called on an empty list.
*/ */
const_reference back() const { const_reference back() const
{
DEBUG_ASSERT(!empty()); DEBUG_ASSERT(!empty());
return *--end(); return *--end();
} }
@ -331,7 +356,8 @@ public:
* Erases a node from the list, indicated by an iterator. * Erases a node from the list, indicated by an iterator.
* @param it The iterator that points to the node to erase. * @param it The iterator that points to the node to erase.
*/ */
iterator erase(iterator it) { iterator erase(iterator it)
{
remove(it); remove(it);
return it; return it;
} }
@ -340,7 +366,8 @@ public:
* Erases a node from this list. * Erases a node from this list.
* @param node A pointer to the node to erase from this list. * @param node A pointer to the node to erase from this list.
*/ */
iterator erase(pointer node) { iterator erase(pointer node)
{
return erase(iterator(node)); return erase(iterator(node));
} }
@ -348,7 +375,8 @@ public:
* Erases a node from this list. * Erases a node from this list.
* @param node A reference to the node to erase from this list. * @param node A reference to the node to erase from this list.
*/ */
iterator erase(reference node) { iterator erase(reference node)
{
return erase(iterator(node)); return erase(iterator(node));
} }
@ -356,7 +384,8 @@ public:
* Exchanges contents of this list with another list instance. * Exchanges contents of this list with another list instance.
* @param other The other list to swap with. * @param other The other list to swap with.
*/ */
void swap(intrusive_list& other) noexcept { void swap(intrusive_list& other) noexcept
{
root.swap(other.root); root.swap(other.root);
} }
@ -371,7 +400,8 @@ private:
* @param rhs The second list. * @param rhs The second list.
*/ */
template<typename T> template<typename T>
void swap(intrusive_list<T>& lhs, intrusive_list<T>& rhs) noexcept { void swap(intrusive_list<T>& lhs, intrusive_list<T>& rhs) noexcept
{
lhs.swap(rhs); lhs.swap(rhs);
} }

32
externals/mcl/include/mcl/hash/xmrx.hpp vendored Normal file
View file

@ -0,0 +1,32 @@
// This file is part of the mcl project.
// Copyright (c) 2022 merryhime
// SPDX-License-Identifier: MIT
// Reference: http://jonkagstrom.com/bit-mixer-construction/
#pragma once
#include <functional>
#include "mcl/bit/rotate.hpp"
#include "mcl/stdint.hpp"
namespace mcl::hash {
constexpr size_t xmrx(size_t x)
{
x ^= x >> 32;
x *= 0xff51afd7ed558ccd;
x ^= bit::rotate_right(x, 47) ^ bit::rotate_right(x, 23);
return x;
}
template<typename T>
struct avalanche_xmrx {
size_t operator()(const T& value)
{
return xmrx(std::hash<T>{}(value));
}
};
} // namespace mcl::hash

View file

@ -13,12 +13,14 @@ template<typename T>
struct reverse_adapter { struct reverse_adapter {
T& iterable; T& iterable;
constexpr auto begin() { constexpr auto begin()
{
using namespace std; using namespace std;
return rbegin(iterable); return rbegin(iterable);
} }
constexpr auto end() { constexpr auto end()
{
using namespace std; using namespace std;
return rend(iterable); return rend(iterable);
} }
@ -27,7 +29,8 @@ struct reverse_adapter {
} // namespace detail } // namespace detail
template<typename T> template<typename T>
constexpr detail::reverse_adapter<T> reverse(T&& iterable) { constexpr detail::reverse_adapter<T> reverse(T&& iterable)
{
return detail::reverse_adapter<T>{iterable}; return detail::reverse_adapter<T>{iterable};
} }

View file

@ -0,0 +1,46 @@
// This file is part of the mcl project.
// Copyright (c) 2022 merryhime
// SPDX-License-Identifier: MIT
#pragma once
#include <type_traits>
#ifdef _MSC_VER
# include <malloc.h>
#else
# include <cstdlib>
#endif
namespace mcl {
namespace detail {
struct aligned_alloc_deleter {
template<typename T>
void operator()(T* p) const
{
#ifdef _MSC_VER
_aligned_free(const_cast<std::remove_const_t<T>*>(p));
#else
std::free(const_cast<std::remove_const_t<T>*>(p));
#endif
}
};
} // namespace detail
template<size_t, typename T>
using overaligned_unique_ptr = std::unique_ptr<T, detail::aligned_alloc_deleter>;
template<size_t alignment, typename T>
auto make_overaligned_unique_ptr_array(size_t element_count)
{
const size_t min_size = element_count * sizeof(T);
const size_t alloc_size = (min_size + alignment - 1) / alignment * alignment;
#ifdef _MSC_VER
return overaligned_unique_ptr<alignment, T[]>{static_cast<T*>(_aligned_malloc(alloc_size, alignment))};
#else
return overaligned_unique_ptr<alignment, T[]>{static_cast<T*>(std::aligned_alloc(alignment, alloc_size))};
#endif
}
} // namespace mcl

View file

@ -21,7 +21,9 @@ class scope_exit final {
public: public:
explicit scope_exit(Function&& fn) explicit scope_exit(Function&& fn)
: function(std::move(fn)) {} : function(std::move(fn)) {}
~scope_exit() noexcept {
~scope_exit() noexcept
{
function(); function();
} }
@ -34,7 +36,9 @@ class scope_fail final {
public: public:
explicit scope_fail(Function&& fn) explicit scope_fail(Function&& fn)
: function(std::move(fn)), exception_count(std::uncaught_exceptions()) {} : function(std::move(fn)), exception_count(std::uncaught_exceptions()) {}
~scope_fail() noexcept {
~scope_fail() noexcept
{
if (std::uncaught_exceptions() > exception_count) { if (std::uncaught_exceptions() > exception_count) {
function(); function();
} }
@ -50,7 +54,9 @@ class scope_success final {
public: public:
explicit scope_success(Function&& fn) explicit scope_success(Function&& fn)
: function(std::move(fn)), exception_count(std::uncaught_exceptions()) {} : function(std::move(fn)), exception_count(std::uncaught_exceptions()) {}
~scope_success() {
~scope_success()
{
if (std::uncaught_exceptions() <= exception_count) { if (std::uncaught_exceptions() <= exception_count) {
function(); function();
} }
@ -64,17 +70,20 @@ private:
// We use ->* here as it has the highest precedence of the operators we can use. // We use ->* here as it has the highest precedence of the operators we can use.
template<typename Function> template<typename Function>
auto operator->*(scope_exit_tag, Function&& function) { auto operator->*(scope_exit_tag, Function&& function)
{
return scope_exit<std::decay_t<Function>>{std::forward<Function>(function)}; return scope_exit<std::decay_t<Function>>{std::forward<Function>(function)};
} }
template<typename Function> template<typename Function>
auto operator->*(scope_fail_tag, Function&& function) { auto operator->*(scope_fail_tag, Function&& function)
{
return scope_fail<std::decay_t<Function>>{std::forward<Function>(function)}; return scope_fail<std::decay_t<Function>>{std::forward<Function>(function)};
} }
template<typename Function> template<typename Function>
auto operator->*(scope_success_tag, Function&& function) { auto operator->*(scope_success_tag, Function&& function)
{
return scope_success<std::decay_t<Function>>{std::forward<Function>(function)}; return scope_success<std::decay_t<Function>>{std::forward<Function>(function)};
} }

View file

@ -11,8 +11,9 @@
namespace mcl::detail { namespace mcl::detail {
[[noreturn]] void assert_terminate_impl(fmt::string_view msg, fmt::format_args args) { [[noreturn]] void assert_terminate_impl(const char* expr_str, fmt::string_view msg, fmt::format_args args)
fmt::print(stderr, "assertion failed: "); {
fmt::print(stderr, "assertion failed: {}\nMessage:", expr_str);
fmt::vprint(stderr, msg, args); fmt::vprint(stderr, msg, args);
std::fflush(stderr); std::fflush(stderr);
std::terminate(); std::terminate();

View file

@ -1,13 +1,14 @@
add_executable(mcl-tests add_executable(mcl-tests
bit/bit_field_tests.cpp bit/bit_field_tests.cpp
main.cpp container/hmap.cpp
container/ihmap.cpp
mp/metavalue_tests.cpp mp/metavalue_tests.cpp
mp/typelist_tests.cpp mp/typelist_tests.cpp
type_traits/type_traits_tests.cpp type_traits/type_traits_tests.cpp
) )
target_include_directories(mcl-tests PUBLIC .) target_include_directories(mcl-tests PUBLIC .)
target_compile_options(mcl-tests PRIVATE ${STAMINA_CXX_FLAGS}) target_compile_options(mcl-tests PRIVATE ${STAMINA_CXX_FLAGS})
target_link_libraries(mcl-tests PRIVATE Catch2::Catch2 mcl) target_link_libraries(mcl-tests PRIVATE Catch2::Catch2WithMain mcl)
include(CTest) include(CTest)
include(Catch) include(Catch)

View file

@ -5,11 +5,12 @@
#include <array> #include <array>
#include <tuple> #include <tuple>
#include <catch2/catch.hpp> #include <catch2/catch_test_macros.hpp>
#include <mcl/bit/bit_field.hpp> #include <mcl/bit/bit_field.hpp>
#include <mcl/stdint.hpp> #include <mcl/stdint.hpp>
TEST_CASE("mcl::bit::ones", "[bit]") { TEST_CASE("mcl::bit::ones", "[bit]")
{
const std::array cases{ const std::array cases{
std::make_tuple<size_t, u8>(0, 0x00), std::make_tuple<size_t, u8>(0, 0x00),
std::make_tuple<size_t, u8>(1, 0x01), std::make_tuple<size_t, u8>(1, 0x01),

66
externals/mcl/tests/container/hmap.cpp vendored Normal file
View file

@ -0,0 +1,66 @@
// This file is part of the mcl project.
// Copyright (c) 2022 merryhime
// SPDX-License-Identifier: MIT
#include <unordered_map>
#include <catch2/catch_test_macros.hpp>
#include <fmt/core.h>
#include <mcl/container/hmap.hpp>
#include <mcl/stdint.hpp>
TEST_CASE("mcl::hmap", "[hmap]")
{
mcl::hmap<u64, u64> double_map;
constexpr int count = 100000;
REQUIRE(double_map.empty());
for (int i = 0; i < count; ++i) {
double_map[i] = i * 2;
REQUIRE(double_map.size() == i + 1);
}
for (int i = 0; i < count; ++i) {
REQUIRE(double_map[i] == i * 2);
REQUIRE(double_map.contains(i));
}
for (int i = 0; i < count; ++i) {
auto iter = double_map.find(i);
REQUIRE(iter->first == i);
REQUIRE(iter->second == i * 2);
}
for (int i = count; i < count * 2; ++i) {
REQUIRE(!double_map.contains(i));
}
for (int i = 0; i < count; ++i) {
auto result = double_map.try_emplace(i, 0);
REQUIRE(!result.second);
}
for (auto [k, v] : double_map) {
REQUIRE(k * 2 == v);
}
std::unordered_map<u64, size_t> indexes_count;
for (auto [k, v] : double_map) {
(void)v;
indexes_count[k]++;
}
for (auto [k, v] : indexes_count) {
(void)k;
REQUIRE(v == 1);
}
REQUIRE(!double_map.empty());
double_map.clear();
REQUIRE(double_map.empty());
for (auto [k, v] : double_map) {
REQUIRE(false);
}
}

66
externals/mcl/tests/container/ihmap.cpp vendored Normal file
View file

@ -0,0 +1,66 @@
// This file is part of the mcl project.
// Copyright (c) 2022 merryhime
// SPDX-License-Identifier: MIT
#include <unordered_map>
#include <catch2/catch_test_macros.hpp>
#include <fmt/core.h>
#include <mcl/container/ihmap.hpp>
#include <mcl/stdint.hpp>
TEST_CASE("mcl::ihmap", "[ihmap]")
{
mcl::ihmap<u64, u64> double_map;
constexpr int count = 100000;
REQUIRE(double_map.empty());
for (int i = 0; i < count; ++i) {
double_map[i] = i * 2;
REQUIRE(double_map.size() == i + 1);
}
for (int i = 0; i < count; ++i) {
REQUIRE(double_map[i] == i * 2);
REQUIRE(double_map.contains(i));
}
for (int i = 0; i < count; ++i) {
auto iter = double_map.find(i);
REQUIRE(iter->first == i);
REQUIRE(iter->second == i * 2);
}
for (int i = count; i < count * 2; ++i) {
REQUIRE(!double_map.contains(i));
}
for (int i = 0; i < count; ++i) {
auto result = double_map.try_emplace(i, 0);
REQUIRE(!result.second);
}
for (auto [k, v] : double_map) {
REQUIRE(k * 2 == v);
}
std::unordered_map<u64, size_t> indexes_count;
for (auto [k, v] : double_map) {
(void)v;
indexes_count[k]++;
}
for (auto [k, v] : indexes_count) {
(void)k;
REQUIRE(v == 1);
}
REQUIRE(!double_map.empty());
double_map.clear();
REQUIRE(double_map.empty());
for (auto [k, v] : double_map) {
REQUIRE(false);
}
}

View file

@ -1,6 +0,0 @@
// This file is part of the mcl project.
// Copyright (c) 2022 merryhime
// SPDX-License-Identifier: MIT
#define CATCH_CONFIG_MAIN
#include "catch2/catch.hpp"