Merge branch 'simplify-reg-alloc'

This commit is contained in:
MerryMage 2017-02-27 00:11:52 +00:00
commit 6396bd02f0
6 changed files with 1220 additions and 1317 deletions

File diff suppressed because it is too large Load diff

View file

@ -10,12 +10,12 @@ namespace Dynarmic {
namespace BackendX64 { namespace BackendX64 {
Xbyak::Reg64 HostLocToReg64(HostLoc loc) { Xbyak::Reg64 HostLocToReg64(HostLoc loc) {
DEBUG_ASSERT(HostLocIsGPR(loc)); ASSERT(HostLocIsGPR(loc));
return Xbyak::Reg64(static_cast<int>(loc)); return Xbyak::Reg64(static_cast<int>(loc));
} }
Xbyak::Xmm HostLocToXmm(HostLoc loc) { Xbyak::Xmm HostLocToXmm(HostLoc loc) {
DEBUG_ASSERT(HostLocIsXMM(loc)); ASSERT(HostLocIsXMM(loc));
return Xbyak::Xmm(static_cast<int>(loc) - static_cast<int>(HostLoc::XMM0)); return Xbyak::Xmm(static_cast<int>(loc) - static_cast<int>(HostLoc::XMM0));
} }
@ -23,7 +23,7 @@ Xbyak::Address SpillToOpArg(HostLoc loc) {
using namespace Xbyak::util; using namespace Xbyak::util;
static_assert(std::is_same<decltype(JitState::Spill[0]), u64&>::value, "Spill must be u64"); static_assert(std::is_same<decltype(JitState::Spill[0]), u64&>::value, "Spill must be u64");
DEBUG_ASSERT(HostLocIsSpill(loc)); ASSERT(HostLocIsSpill(loc));
size_t i = static_cast<size_t>(loc) - static_cast<size_t>(HostLoc::FirstSpill); size_t i = static_cast<size_t>(loc) - static_cast<size_t>(HostLoc::FirstSpill);
return qword[r15 + offsetof(JitState, Spill) + i * sizeof(u64)]; return qword[r15 + offsetof(JitState, Spill) + i * sizeof(u64)];

View file

@ -22,6 +22,8 @@ static u64 ImmediateToU64(const IR::Value& imm) {
return u64(imm.GetU1()); return u64(imm.GetU1());
case IR::Type::U8: case IR::Type::U8:
return u64(imm.GetU8()); return u64(imm.GetU8());
case IR::Type::U16:
return u64(imm.GetU16());
case IR::Type::U32: case IR::Type::U32:
return u64(imm.GetU32()); return u64(imm.GetU32());
case IR::Type::U64: case IR::Type::U64:
@ -31,253 +33,265 @@ static u64 ImmediateToU64(const IR::Value& imm) {
} }
} }
static Xbyak::Reg HostLocToX64(HostLoc hostloc) { static bool IsSameHostLocClass(HostLoc a, HostLoc b) {
if (HostLocIsGPR(hostloc)) { return (HostLocIsGPR(a) && HostLocIsGPR(b))
DEBUG_ASSERT(hostloc != HostLoc::RSP && hostloc != HostLoc::R15); || (HostLocIsXMM(a) && HostLocIsXMM(b))
return HostLocToReg64(hostloc); || (HostLocIsSpill(a) && HostLocIsSpill(b));
}
if (HostLocIsXMM(hostloc)) {
return HostLocToXmm(hostloc);
}
ASSERT_MSG(false, "This should never happen.");
} }
HostLoc RegAlloc::DefHostLocReg(IR::Inst* def_inst, HostLocList desired_locations) { static void EmitMove(BlockOfCode* code, HostLoc to, HostLoc from) {
DEBUG_ASSERT(std::all_of(desired_locations.begin(), desired_locations.end(), HostLocIsRegister)); if (HostLocIsXMM(to) && HostLocIsXMM(from)) {
DEBUG_ASSERT_MSG(!ValueLocation(def_inst), "def_inst has already been defined"); code->movaps(HostLocToXmm(to), HostLocToXmm(from));
} else if (HostLocIsGPR(to) && HostLocIsGPR(from)) {
HostLoc location = SelectARegister(desired_locations); code->mov(HostLocToReg64(to), HostLocToReg64(from));
} else if (HostLocIsXMM(to) && HostLocIsGPR(from)) {
if (IsRegisterOccupied(location)) { code->movq(HostLocToXmm(to), HostLocToReg64(from));
SpillRegister(location); } else if (HostLocIsGPR(to) && HostLocIsXMM(from)) {
} code->movq(HostLocToReg64(to), HostLocToXmm(from));
} else if (HostLocIsXMM(to) && HostLocIsSpill(from)) {
LocInfo(location).is_being_used = true; code->movsd(HostLocToXmm(to), SpillToOpArg(from));
LocInfo(location).def = def_inst; } else if (HostLocIsSpill(to) && HostLocIsXMM(from)) {
code->movsd(SpillToOpArg(to), HostLocToXmm(from));
DEBUG_ASSERT(LocInfo(location).IsDef()); } else if (HostLocIsGPR(to) && HostLocIsSpill(from)) {
return location; code->mov(HostLocToReg64(to), SpillToOpArg(from));
} } else if (HostLocIsSpill(to) && HostLocIsGPR(from)) {
code->mov(SpillToOpArg(to), HostLocToReg64(from));
void RegAlloc::RegisterAddDef(IR::Inst* def_inst, const IR::Value& use_inst) {
DEBUG_ASSERT_MSG(!ValueLocation(def_inst), "def_inst has already been defined");
if (use_inst.IsImmediate()) {
LoadImmediateIntoHostLocReg(use_inst, DefHostLocReg(def_inst, any_gpr));
return;
}
DEBUG_ASSERT_MSG(ValueLocation(use_inst.GetInst()), "use_inst must already be defined");
HostLoc location = *ValueLocation(use_inst.GetInst());
LocInfo(location).values.emplace_back(def_inst);
use_inst.GetInst()->DecrementRemainingUses();
DEBUG_ASSERT(LocInfo(location).IsIdle());
}
HostLoc RegAlloc::UseDefHostLocReg(IR::Value use_value, IR::Inst* def_inst, HostLocList desired_locations) {
if (!use_value.IsImmediate()) {
return UseDefHostLocReg(use_value.GetInst(), def_inst, desired_locations);
}
return LoadImmediateIntoHostLocReg(use_value, DefHostLocReg(def_inst, desired_locations));
}
HostLoc RegAlloc::UseDefHostLocReg(IR::Inst* use_inst, IR::Inst* def_inst, HostLocList desired_locations) {
DEBUG_ASSERT(std::all_of(desired_locations.begin(), desired_locations.end(), HostLocIsRegister));
DEBUG_ASSERT_MSG(!ValueLocation(def_inst), "def_inst has already been defined");
DEBUG_ASSERT_MSG(ValueLocation(use_inst), "use_inst has not been defined");
if (IsLastUse(use_inst)) {
HostLoc current_location = *ValueLocation(use_inst);
auto& loc_info = LocInfo(current_location);
if (loc_info.IsIdle()) {
loc_info.is_being_used = true;
loc_info.def = def_inst;
DEBUG_ASSERT(loc_info.IsUseDef());
if (HostLocIsSpill(current_location)) {
HostLoc new_location = SelectARegister(desired_locations);
if (IsRegisterOccupied(new_location)) {
SpillRegister(new_location);
}
EmitMove(new_location, current_location);
LocInfo(new_location) = LocInfo(current_location);
LocInfo(current_location) = {};
return new_location;
} else { } else {
return current_location; ASSERT_MSG(false, "Invalid RegAlloc::EmitMove");
}
}
} }
}
bool is_floating_point = HostLocIsXMM(*desired_locations.begin()); static void EmitExchange(BlockOfCode* code, HostLoc a, HostLoc b) {
if (is_floating_point) { if (HostLocIsGPR(a) && HostLocIsGPR(b)) {
DEBUG_ASSERT(use_inst->GetType() == IR::Type::F32 || use_inst->GetType() == IR::Type::F64); code->xchg(HostLocToReg64(a), HostLocToReg64(b));
} } else if (HostLocIsXMM(a) && HostLocIsXMM(b)) {
HostLoc use_reg = UseHostLocReg(use_inst, is_floating_point ? any_xmm : any_gpr); ASSERT_MSG(false, "Check your code: Exchanging XMM registers is unnecessary");
HostLoc def_reg = DefHostLocReg(def_inst, desired_locations);
if (is_floating_point) {
code->movapd(HostLocToXmm(def_reg), HostLocToXmm(use_reg));
} else { } else {
code->mov(HostLocToReg64(def_reg), HostLocToReg64(use_reg)); ASSERT_MSG(false, "Invalid RegAlloc::EmitExchange");
} }
return def_reg;
} }
std::tuple<OpArg, HostLoc> RegAlloc::UseDefOpArgHostLocReg(IR::Value use_value, IR::Inst* def_inst, HostLocList desired_locations) { bool HostLocInfo::IsLocked() const {
DEBUG_ASSERT(std::all_of(desired_locations.begin(), desired_locations.end(), HostLocIsRegister)); return is_being_used;
DEBUG_ASSERT_MSG(!ValueLocation(def_inst), "def_inst has already been defined");
DEBUG_ASSERT_MSG(use_value.IsImmediate() || ValueLocation(use_value.GetInst()), "use_inst has not been defined");
if (!use_value.IsImmediate()) {
const IR::Inst* use_inst = use_value.GetInst();
if (IsLastUse(use_inst)) {
HostLoc current_location = *ValueLocation(use_inst);
auto& loc_info = LocInfo(current_location);
if (!loc_info.IsIdle()) {
if (HostLocIsSpill(current_location)) {
loc_info.is_being_used = true;
DEBUG_ASSERT(loc_info.IsUse());
return std::make_tuple(SpillToOpArg(current_location), DefHostLocReg(def_inst, desired_locations));
} else {
loc_info.is_being_used = true;
loc_info.def = def_inst;
DEBUG_ASSERT(loc_info.IsUseDef());
return std::make_tuple(HostLocToX64(current_location), current_location);
}
}
}
}
OpArg use_oparg = UseOpArg(use_value, any_gpr);
HostLoc def_reg = DefHostLocReg(def_inst, desired_locations);
return std::make_tuple(use_oparg, def_reg);
} }
HostLoc RegAlloc::UseHostLocReg(IR::Value use_value, HostLocList desired_locations) { bool HostLocInfo::IsEmpty() const {
if (!use_value.IsImmediate()) { return !is_being_used && values.empty();
return UseHostLocReg(use_value.GetInst(), desired_locations);
}
return LoadImmediateIntoHostLocReg(use_value, ScratchHostLocReg(desired_locations));
} }
HostLoc RegAlloc::UseHostLocReg(IR::Inst* use_inst, HostLocList desired_locations) { bool HostLocInfo::IsLastUse() const {
HostLoc current_location; return !is_being_used && std::all_of(values.begin(), values.end(), [](const auto& inst) { return !inst->HasUses(); });
bool was_being_used;
std::tie(current_location, was_being_used) = UseHostLoc(use_inst, desired_locations);
if (HostLocIsRegister(current_location)) {
return current_location;
} else if (HostLocIsSpill(current_location)) {
HostLoc new_location = SelectARegister(desired_locations);
if (IsRegisterOccupied(new_location)) {
SpillRegister(new_location);
}
EmitMove(new_location, current_location);
if (!was_being_used) {
LocInfo(new_location) = LocInfo(current_location);
LocInfo(current_location) = {};
DEBUG_ASSERT(LocInfo(new_location).IsUse());
} else {
LocInfo(new_location).is_being_used = true;
DEBUG_ASSERT(LocInfo(new_location).IsScratch());
}
return new_location;
}
ASSERT_MSG(false, "Unknown current_location type");
} }
OpArg RegAlloc::UseOpArg(IR::Value use_value, HostLocList desired_locations) { bool HostLocInfo::ContainsValue(const IR::Inst* inst) const {
return std::find(values.begin(), values.end(), inst) != values.end();
}
void HostLocInfo::ReadLock() {
ASSERT(!is_scratch);
is_being_used = true;
}
void HostLocInfo::WriteLock() {
ASSERT(!is_being_used);
is_being_used = true;
is_scratch = true;
}
void HostLocInfo::AddValue(IR::Inst* inst) {
values.push_back(inst);
}
void HostLocInfo::EndOfAllocScope() {
const auto to_erase = std::remove_if(values.begin(), values.end(), [](const auto& inst) { return !inst->HasUses(); });
values.erase(to_erase, values.end());
is_being_used = false;
is_scratch = false;
}
IR::Type Argument::GetType() const {
return value.GetType();
}
bool Argument::IsImmediate() const {
return value.IsImmediate();
}
bool Argument::GetImmediateU1() const {
return value.GetU1();
}
u8 Argument::GetImmediateU8() const {
u64 imm = ImmediateToU64(value);
ASSERT(imm < 0x100);
return u8(imm);
}
u16 Argument::GetImmediateU16() const {
u64 imm = ImmediateToU64(value);
ASSERT(imm < 0x10000);
return u16(imm);
}
u32 Argument::GetImmediateU32() const {
u64 imm = ImmediateToU64(value);
ASSERT(imm < 0x100000000);
return u32(imm);
}
u64 Argument::GetImmediateU64() const {
return ImmediateToU64(value);
}
bool Argument::IsInGpr() const {
return HostLocIsGPR(*reg_alloc.ValueLocation(value.GetInst()));
}
bool Argument::IsInXmm() const {
return HostLocIsXMM(*reg_alloc.ValueLocation(value.GetInst()));
}
bool Argument::IsInMemory() const {
return HostLocIsSpill(*reg_alloc.ValueLocation(value.GetInst()));
}
std::array<Argument, 3> RegAlloc::GetArgumentInfo(IR::Inst* inst) {
std::array<Argument, 3> ret = { Argument{*this}, Argument{*this}, Argument{*this} };
for (size_t i = 0; i < inst->NumArgs(); i++) {
IR::Value arg = inst->GetArg(i);
ret[i].value = arg;
if (!arg.IsImmediate()) {
arg.GetInst()->DecrementRemainingUses();
}
}
return ret;
}
Xbyak::Reg64 RegAlloc::UseGpr(Argument& arg) {
ASSERT(!arg.allocated);
arg.allocated = true;
return HostLocToReg64(UseImpl(arg.value, any_gpr));
}
Xbyak::Xmm RegAlloc::UseXmm(Argument& arg) {
ASSERT(!arg.allocated);
arg.allocated = true;
return HostLocToXmm(UseImpl(arg.value, any_xmm));
}
OpArg RegAlloc::UseOpArg(Argument& arg) {
return UseGpr(arg);
}
void RegAlloc::Use(Argument& arg, HostLoc host_loc) {
ASSERT(!arg.allocated);
arg.allocated = true;
UseImpl(arg.value, {host_loc});
}
Xbyak::Reg64 RegAlloc::UseScratchGpr(Argument& arg) {
ASSERT(!arg.allocated);
arg.allocated = true;
return HostLocToReg64(UseScratchImpl(arg.value, any_gpr));
}
Xbyak::Xmm RegAlloc::UseScratchXmm(Argument& arg) {
ASSERT(!arg.allocated);
arg.allocated = true;
return HostLocToXmm(UseScratchImpl(arg.value, any_xmm));
}
void RegAlloc::UseScratch(Argument& arg, HostLoc host_loc) {
ASSERT(!arg.allocated);
arg.allocated = true;
UseScratchImpl(arg.value, {host_loc});
}
void RegAlloc::DefineValue(IR::Inst* inst, const Xbyak::Reg& reg) {
ASSERT(reg.getKind() == Xbyak::Operand::XMM || reg.getKind() == Xbyak::Operand::REG);
HostLoc hostloc = static_cast<HostLoc>(reg.getIdx() + static_cast<size_t>(reg.getKind() == Xbyak::Operand::XMM ? HostLoc::XMM0 : HostLoc::RAX));
DefineValueImpl(inst, hostloc);
}
void RegAlloc::DefineValue(IR::Inst* inst, Argument& arg) {
ASSERT(!arg.allocated);
arg.allocated = true;
DefineValueImpl(inst, arg.value);
}
Xbyak::Reg64 RegAlloc::ScratchGpr(HostLocList desired_locations) {
return HostLocToReg64(ScratchImpl(desired_locations));
}
Xbyak::Xmm RegAlloc::ScratchXmm(HostLocList desired_locations) {
return HostLocToXmm(ScratchImpl(desired_locations));
}
HostLoc RegAlloc::UseImpl(IR::Value use_value, HostLocList desired_locations) {
if (use_value.IsImmediate()) { if (use_value.IsImmediate()) {
ASSERT_MSG(false, "UseOpArg does not support immediates"); return LoadImmediate(use_value, ScratchImpl(desired_locations));
return {}; // return a None
} }
IR::Inst* use_inst = use_value.GetInst(); IR::Inst* use_inst = use_value.GetInst();
const HostLoc current_location = *ValueLocation(use_inst);
HostLoc current_location; const bool can_use_current_location = std::find(desired_locations.begin(), desired_locations.end(), current_location) != desired_locations.end();
bool was_being_used; if (can_use_current_location) {
std::tie(current_location, was_being_used) = UseHostLoc(use_inst, desired_locations); LocInfo(current_location).ReadLock();
return current_location;
if (HostLocIsRegister(current_location)) {
return HostLocToX64(current_location);
} else if (HostLocIsSpill(current_location)) {
return SpillToOpArg(current_location);
} }
ASSERT_MSG(false, "Unknown current_location type"); if (LocInfo(current_location).IsLocked()) {
} return UseScratchImpl(use_value, desired_locations);
HostLoc RegAlloc::UseScratchHostLocReg(IR::Value use_value, HostLocList desired_locations) {
if (!use_value.IsImmediate()) {
return UseScratchHostLocReg(use_value.GetInst(), desired_locations);
} }
return LoadImmediateIntoHostLocReg(use_value, ScratchHostLocReg(desired_locations)); const HostLoc destination_location = SelectARegister(desired_locations);
} if (IsSameHostLocClass(destination_location, current_location)) {
Exchange(destination_location, current_location);
HostLoc RegAlloc::UseScratchHostLocReg(IR::Inst* use_inst, HostLocList desired_locations) {
DEBUG_ASSERT(std::all_of(desired_locations.begin(), desired_locations.end(), HostLocIsRegister));
DEBUG_ASSERT_MSG(ValueLocation(use_inst), "use_inst has not been defined");
ASSERT_MSG(use_inst->HasUses(), "use_inst ran out of uses. (Use-d an IR::Inst* too many times)");
HostLoc current_location = *ValueLocation(use_inst);
HostLoc new_location = SelectARegister(desired_locations);
if (IsRegisterOccupied(new_location)) {
SpillRegister(new_location);
}
if (HostLocIsSpill(current_location)) {
EmitMove(new_location, current_location);
LocInfo(new_location).is_being_used = true;
use_inst->DecrementRemainingUses();
DEBUG_ASSERT(LocInfo(new_location).IsScratch());
return new_location;
} else if (HostLocIsRegister(current_location)) {
ASSERT(LocInfo(current_location).IsIdle()
|| LocInfo(current_location).IsUse()
|| LocInfo(current_location).IsUseDef());
if (current_location != new_location) {
EmitMove(new_location, current_location);
} else { } else {
ASSERT(LocInfo(current_location).IsIdle()); MoveOutOfTheWay(destination_location);
Move(destination_location, current_location);
} }
LocInfo(destination_location).ReadLock();
LocInfo(new_location).is_being_used = true; return destination_location;
LocInfo(new_location).values.clear();
use_inst->DecrementRemainingUses();
DEBUG_ASSERT(LocInfo(new_location).IsScratch());
return new_location;
}
ASSERT_MSG(false, "Invalid current_location");
} }
HostLoc RegAlloc::ScratchHostLocReg(HostLocList desired_locations) { HostLoc RegAlloc::UseScratchImpl(IR::Value use_value, HostLocList desired_locations) {
DEBUG_ASSERT(std::all_of(desired_locations.begin(), desired_locations.end(), HostLocIsRegister)); if (use_value.IsImmediate()) {
return LoadImmediate(use_value, ScratchImpl(desired_locations));
HostLoc location = SelectARegister(desired_locations);
if (IsRegisterOccupied(location)) {
SpillRegister(location);
} }
// Update state IR::Inst* use_inst = use_value.GetInst();
LocInfo(location).is_being_used = true; const HostLoc current_location = *ValueLocation(use_inst);
DEBUG_ASSERT(LocInfo(location).IsScratch()); const bool can_use_current_location = std::find(desired_locations.begin(), desired_locations.end(), current_location) != desired_locations.end();
if (can_use_current_location && !LocInfo(current_location).IsLocked()) {
MoveOutOfTheWay(current_location);
LocInfo(current_location).WriteLock();
return current_location;
}
const HostLoc destination_location = SelectARegister(desired_locations);
MoveOutOfTheWay(destination_location);
CopyToScratch(destination_location, current_location);
LocInfo(destination_location).WriteLock();
return destination_location;
}
HostLoc RegAlloc::ScratchImpl(HostLocList desired_locations) {
HostLoc location = SelectARegister(desired_locations);
MoveOutOfTheWay(location);
LocInfo(location).WriteLock();
return location; return location;
} }
void RegAlloc::HostCall(IR::Inst* result_def, IR::Value arg0_use, IR::Value arg1_use, IR::Value arg2_use, IR::Value arg3_use) { void RegAlloc::HostCall(IR::Inst* result_def, boost::optional<Argument&> arg0, boost::optional<Argument&> arg1, boost::optional<Argument&> arg2, boost::optional<Argument&> arg3) {
constexpr size_t args_count = 4; constexpr size_t args_count = 4;
constexpr std::array<HostLoc, args_count> args_hostloc = { ABI_PARAM1, ABI_PARAM2, ABI_PARAM3, ABI_PARAM4 }; constexpr std::array<HostLoc, args_count> args_hostloc = { ABI_PARAM1, ABI_PARAM2, ABI_PARAM3, ABI_PARAM4 };
const std::array<IR::Value*, args_count> args = {&arg0_use, &arg1_use, &arg2_use, &arg3_use}; const std::array<boost::optional<Argument&>, args_count> args = { arg0, arg1, arg2, arg3 };
const static std::vector<HostLoc> other_caller_save = [args_hostloc](){ const static std::vector<HostLoc> other_caller_save = [args_hostloc]() {
std::vector<HostLoc> ret(ABI_ALL_CALLER_SAVE.begin(), ABI_ALL_CALLER_SAVE.end()); std::vector<HostLoc> ret(ABI_ALL_CALLER_SAVE.begin(), ABI_ALL_CALLER_SAVE.end());
for (auto hostloc : args_hostloc) for (auto hostloc : args_hostloc)
@ -286,33 +300,45 @@ void RegAlloc::HostCall(IR::Inst* result_def, IR::Value arg0_use, IR::Value arg1
return ret; return ret;
}(); }();
// TODO: This works but almost certainly leads to suboptimal generated code. ScratchGpr({ABI_RETURN});
if (result_def) { if (result_def) {
DefHostLocReg(result_def, {ABI_RETURN}); DefineValueImpl(result_def, ABI_RETURN);
} else {
ScratchHostLocReg({ABI_RETURN});
} }
for (size_t i = 0; i < args_count; i++) { for (size_t i = 0; i < args_count; i++) {
if (!args[i]->IsEmpty()) { if (args[i]) {
UseScratchHostLocReg(*args[i], {args_hostloc[i]}); UseScratch(*args[i], args_hostloc[i]);
} else { }
ScratchHostLocReg({args_hostloc[i]}); }
for (size_t i = 0; i < args_count; i++) {
if (!args[i]) {
// TODO: Force spill
ScratchGpr({args_hostloc[i]});
} }
} }
for (HostLoc caller_saved : other_caller_save) { for (HostLoc caller_saved : other_caller_save) {
ScratchHostLocReg({caller_saved}); ScratchImpl({caller_saved});
} }
} }
void RegAlloc::EndOfAllocScope() {
for (auto& iter : hostloc_info) {
iter.EndOfAllocScope();
}
}
void RegAlloc::AssertNoMoreUses() {
ASSERT(std::all_of(hostloc_info.begin(), hostloc_info.end(), [](const auto& i) { return i.IsEmpty(); }));
}
HostLoc RegAlloc::SelectARegister(HostLocList desired_locations) const { HostLoc RegAlloc::SelectARegister(HostLocList desired_locations) const {
std::vector<HostLoc> candidates = desired_locations; std::vector<HostLoc> candidates = desired_locations;
// Find all locations that have not been allocated.. // Find all locations that have not been allocated..
auto allocated_locs = std::partition(candidates.begin(), candidates.end(), [this](auto loc){ auto allocated_locs = std::partition(candidates.begin(), candidates.end(), [this](auto loc){
return !this->IsRegisterAllocated(loc); return !this->LocInfo(loc).IsLocked();
}); });
candidates.erase(allocated_locs, candidates.end()); candidates.erase(allocated_locs, candidates.end());
ASSERT_MSG(!candidates.empty(), "All candidate registers have already been allocated"); ASSERT_MSG(!candidates.empty(), "All candidate registers have already been allocated");
@ -321,7 +347,7 @@ HostLoc RegAlloc::SelectARegister(HostLocList desired_locations) const {
// TODO: Actually do LRU or something. Currently we just try to pick something without a value if possible. // TODO: Actually do LRU or something. Currently we just try to pick something without a value if possible.
std::partition(candidates.begin(), candidates.end(), [this](auto loc){ std::partition(candidates.begin(), candidates.end(), [this](auto loc){
return !this->IsRegisterOccupied(loc); return this->LocInfo(loc).IsEmpty();
}); });
return candidates.front(); return candidates.front();
@ -329,152 +355,33 @@ HostLoc RegAlloc::SelectARegister(HostLocList desired_locations) const {
boost::optional<HostLoc> RegAlloc::ValueLocation(const IR::Inst* value) const { boost::optional<HostLoc> RegAlloc::ValueLocation(const IR::Inst* value) const {
for (size_t i = 0; i < HostLocCount; i++) for (size_t i = 0; i < HostLocCount; i++)
for (const IR::Inst* v : hostloc_info[i].values) if (hostloc_info[i].ContainsValue(value))
if (v == value)
return boost::make_optional<HostLoc>(static_cast<HostLoc>(i)); return boost::make_optional<HostLoc>(static_cast<HostLoc>(i));
return boost::none; return boost::none;
} }
bool RegAlloc::IsRegisterOccupied(HostLoc loc) const { void RegAlloc::DefineValueImpl(IR::Inst* def_inst, HostLoc host_loc) {
const auto& info = LocInfo(loc); ASSERT_MSG(!ValueLocation(def_inst), "def_inst has already been defined");
LocInfo(host_loc).AddValue(def_inst);
return !info.values.empty() || info.def;
} }
bool RegAlloc::IsRegisterAllocated(HostLoc loc) const { void RegAlloc::DefineValueImpl(IR::Inst* def_inst, const IR::Value& use_inst) {
return LocInfo(loc).is_being_used; ASSERT_MSG(!ValueLocation(def_inst), "def_inst has already been defined");
}
bool RegAlloc::IsLastUse(const IR::Inst* inst) const { if (use_inst.IsImmediate()) {
if (inst->UseCount() > 1) HostLoc location = ScratchImpl(any_gpr);
return false; DefineValueImpl(def_inst, location);
return LocInfo(*ValueLocation(inst)).values.size() == 1; LoadImmediate(use_inst, location);
} return;
void RegAlloc::SpillRegister(HostLoc loc) {
ASSERT_MSG(HostLocIsRegister(loc), "Only registers can be spilled");
ASSERT_MSG(IsRegisterOccupied(loc), "There is no need to spill unoccupied registers");
ASSERT_MSG(!IsRegisterAllocated(loc), "Registers that have been allocated must not be spilt");
HostLoc new_loc = FindFreeSpill();
EmitMove(new_loc, loc);
LocInfo(new_loc) = LocInfo(loc);
LocInfo(loc) = {};
}
HostLoc RegAlloc::FindFreeSpill() const {
for (size_t i = 0; i < SpillCount; i++)
if (!IsRegisterOccupied(HostLocSpill(i)))
return HostLocSpill(i);
ASSERT_MSG(false, "All spill locations are full");
}
void RegAlloc::EndOfAllocScope() {
for (auto& iter : hostloc_info) {
iter.is_being_used = false;
if (iter.def) {
iter.values.clear();
iter.values.emplace_back(iter.def);
iter.def = nullptr;
}
if (!iter.values.empty()) {
auto to_erase = std::remove_if(iter.values.begin(), iter.values.end(),
[](const auto& inst){ return !inst->HasUses(); });
iter.values.erase(to_erase, iter.values.end());
}
}
}
void RegAlloc::AssertNoMoreUses() {
ASSERT(std::all_of(hostloc_info.begin(), hostloc_info.end(), [](const auto& i){ return i.values.empty(); }));
}
void RegAlloc::Reset() {
hostloc_info.fill({});
}
void RegAlloc::EmitMove(HostLoc to, HostLoc from) {
if (HostLocIsXMM(to) && HostLocIsSpill(from)) {
code->movsd(HostLocToXmm(to), SpillToOpArg(from));
} else if (HostLocIsSpill(to) && HostLocIsXMM(from)) {
code->movsd(SpillToOpArg(to), HostLocToXmm(from));
} else if (HostLocIsXMM(to) && HostLocIsXMM(from)) {
code->movaps(HostLocToXmm(to), HostLocToXmm(from));
} else if (HostLocIsGPR(to) && HostLocIsSpill(from)) {
code->mov(HostLocToReg64(to), SpillToOpArg(from));
} else if (HostLocIsSpill(to) && HostLocIsGPR(from)) {
code->mov(SpillToOpArg(to), HostLocToReg64(from));
} else if (HostLocIsGPR(to) && HostLocIsGPR(from)){
code->mov(HostLocToReg64(to), HostLocToReg64(from));
} else {
ASSERT_MSG(false, "Invalid RegAlloc::EmitMove");
}
}
void RegAlloc::EmitExchange(HostLoc a, HostLoc b) {
if (HostLocIsGPR(a) && HostLocIsGPR(b)) {
code->xchg(HostLocToReg64(a), HostLocToReg64(b));
} else if (HostLocIsXMM(a) && HostLocIsXMM(b)) {
ASSERT_MSG(false, "Exchange is unnecessary for XMM registers");
} else {
ASSERT_MSG(false, "Invalid RegAlloc::EmitExchange");
}
}
std::tuple<HostLoc, bool> RegAlloc::UseHostLoc(IR::Inst* use_inst, HostLocList desired_locations) {
DEBUG_ASSERT(std::all_of(desired_locations.begin(), desired_locations.end(), HostLocIsRegister));
DEBUG_ASSERT_MSG(ValueLocation(use_inst), "use_inst has not been defined");
HostLoc current_location = *ValueLocation(use_inst);
auto iter = std::find(desired_locations.begin(), desired_locations.end(), current_location);
if (iter != desired_locations.end()) {
if (LocInfo(current_location).IsDef()) {
HostLoc new_location = SelectARegister(desired_locations);
if (IsRegisterOccupied(new_location)) {
SpillRegister(new_location);
}
EmitMove(new_location, current_location);
LocInfo(new_location).is_being_used = true;
LocInfo(new_location).values.emplace_back(use_inst);
use_inst->DecrementRemainingUses();
DEBUG_ASSERT(LocInfo(new_location).IsUse());
return std::make_tuple(new_location, false);
} else {
bool was_being_used = LocInfo(current_location).is_being_used;
ASSERT(LocInfo(current_location).IsUse() || LocInfo(current_location).IsIdle());
LocInfo(current_location).is_being_used = true;
use_inst->DecrementRemainingUses();
DEBUG_ASSERT(LocInfo(current_location).IsUse());
return std::make_tuple(current_location, was_being_used);
}
} }
if (HostLocIsSpill(current_location)) { ASSERT_MSG(ValueLocation(use_inst.GetInst()), "use_inst must already be defined");
bool was_being_used = LocInfo(current_location).is_being_used; HostLoc location = *ValueLocation(use_inst.GetInst());
LocInfo(current_location).is_being_used = true; DefineValueImpl(def_inst, location);
use_inst->DecrementRemainingUses();
DEBUG_ASSERT(LocInfo(current_location).IsUse());
return std::make_tuple(current_location, was_being_used);
} else if (HostLocIsRegister(current_location)) {
HostLoc new_location = SelectARegister(desired_locations);
ASSERT(LocInfo(current_location).IsIdle());
EmitExchange(new_location, current_location);
std::swap(LocInfo(new_location), LocInfo(current_location));
LocInfo(new_location).is_being_used = true;
use_inst->DecrementRemainingUses();
DEBUG_ASSERT(LocInfo(new_location).IsUse());
return std::make_tuple(new_location, false);
}
ASSERT_MSG(false, "Invalid current_location");
return std::make_tuple(static_cast<HostLoc>(-1), false);
} }
HostLoc RegAlloc::LoadImmediateIntoHostLocReg(IR::Value imm, HostLoc host_loc) { HostLoc RegAlloc::LoadImmediate(IR::Value imm, HostLoc host_loc) {
ASSERT_MSG(imm.IsImmediate(), "imm is not an immediate"); ASSERT_MSG(imm.IsImmediate(), "imm is not an immediate");
Xbyak::Reg64 reg = HostLocToReg64(host_loc); Xbyak::Reg64 reg = HostLocToReg64(host_loc);
@ -487,5 +394,76 @@ HostLoc RegAlloc::LoadImmediateIntoHostLocReg(IR::Value imm, HostLoc host_loc) {
return host_loc; return host_loc;
} }
void RegAlloc::Move(HostLoc to, HostLoc from) {
ASSERT(LocInfo(to).IsEmpty() && !LocInfo(from).IsLocked());
if (LocInfo(from).IsEmpty()) {
return;
}
LocInfo(to) = LocInfo(from);
LocInfo(from) = {};
EmitMove(code, to, from);
}
void RegAlloc::CopyToScratch(HostLoc to, HostLoc from) {
ASSERT(LocInfo(to).IsEmpty() && !LocInfo(from).IsEmpty());
EmitMove(code, to, from);
}
void RegAlloc::Exchange(HostLoc a, HostLoc b) {
ASSERT(!LocInfo(a).IsLocked() && !LocInfo(b).IsLocked());
if (LocInfo(a).IsEmpty()) {
Move(a, b);
return;
}
if (LocInfo(b).IsEmpty()) {
Move(b, a);
return;
}
std::swap(LocInfo(a), LocInfo(b));
EmitExchange(code, a, b);
}
void RegAlloc::MoveOutOfTheWay(HostLoc reg) {
ASSERT(!LocInfo(reg).IsLocked());
if (!LocInfo(reg).IsEmpty()) {
SpillRegister(reg);
}
}
void RegAlloc::SpillRegister(HostLoc loc) {
ASSERT_MSG(HostLocIsRegister(loc), "Only registers can be spilled");
ASSERT_MSG(!LocInfo(loc).IsEmpty(), "There is no need to spill unoccupied registers");
ASSERT_MSG(!LocInfo(loc).IsLocked(), "Registers that have been allocated must not be spilt");
HostLoc new_loc = FindFreeSpill();
Move(new_loc, loc);
}
HostLoc RegAlloc::FindFreeSpill() const {
for (size_t i = 0; i < SpillCount; i++)
if (LocInfo(HostLocSpill(i)).IsEmpty())
return HostLocSpill(i);
ASSERT_MSG(false, "All spill locations are full");
}
HostLocInfo& RegAlloc::LocInfo(HostLoc loc) {
ASSERT(loc != HostLoc::RSP && loc != HostLoc::R15);
return hostloc_info[static_cast<size_t>(loc)];
}
const HostLocInfo& RegAlloc::LocInfo(HostLoc loc) const {
ASSERT(loc != HostLoc::RSP && loc != HostLoc::R15);
return hostloc_info[static_cast<size_t>(loc)];
}
} // namespace BackendX64 } // namespace BackendX64
} // namespace Dynarmic } // namespace Dynarmic

View file

@ -22,62 +22,78 @@
namespace Dynarmic { namespace Dynarmic {
namespace BackendX64 { namespace BackendX64 {
class RegAlloc;
struct HostLocInfo {
public:
bool IsLocked() const;
bool IsEmpty() const;
bool IsLastUse() const;
bool ContainsValue(const IR::Inst* inst) const;
void ReadLock();
void WriteLock();
void AddValue(IR::Inst* inst);
void EndOfAllocScope();
private:
std::vector<IR::Inst*> values;
bool is_being_used = false;
bool is_scratch = false;
};
struct Argument {
public:
IR::Type GetType() const;
bool IsImmediate() const;
bool GetImmediateU1() const;
u8 GetImmediateU8() const;
u16 GetImmediateU16() const;
u32 GetImmediateU32() const;
u64 GetImmediateU64() const;
/// Is this value currently in a GPR?
bool IsInGpr() const;
/// Is this value currently in a XMM?
bool IsInXmm() const;
/// Is this value currently in memory?
bool IsInMemory() const;
private:
friend class RegAlloc;
Argument(RegAlloc& reg_alloc) : reg_alloc(reg_alloc) {}
bool allocated = false;
RegAlloc& reg_alloc;
IR::Value value;
};
class RegAlloc final { class RegAlloc final {
public: public:
explicit RegAlloc(BlockOfCode* code) : code(code) {} explicit RegAlloc(BlockOfCode* code) : code(code) {}
/// Late-def std::array<Argument, 3> GetArgumentInfo(IR::Inst* inst);
Xbyak::Reg64 DefGpr(IR::Inst* def_inst, HostLocList desired_locations = any_gpr) {
return HostLocToReg64(DefHostLocReg(def_inst, desired_locations));
}
Xbyak::Xmm DefXmm(IR::Inst* def_inst, HostLocList desired_locations = any_xmm) {
return HostLocToXmm(DefHostLocReg(def_inst, desired_locations));
}
void RegisterAddDef(IR::Inst* def_inst, const IR::Value& use_inst);
/// Early-use, Late-def
Xbyak::Reg64 UseDefGpr(IR::Value use_value, IR::Inst* def_inst, HostLocList desired_locations = any_gpr) {
return HostLocToReg64(UseDefHostLocReg(use_value, def_inst, desired_locations));
}
Xbyak::Xmm UseDefXmm(IR::Value use_value, IR::Inst* def_inst, HostLocList desired_locations = any_xmm) {
return HostLocToXmm(UseDefHostLocReg(use_value, def_inst, desired_locations));
}
std::tuple<OpArg, Xbyak::Reg64> UseDefOpArgGpr(IR::Value use_value, IR::Inst* def_inst, HostLocList desired_locations = any_gpr) {
OpArg op;
HostLoc host_loc;
std::tie(op, host_loc) = UseDefOpArgHostLocReg(use_value, def_inst, desired_locations);
return std::make_tuple(op, HostLocToReg64(host_loc));
}
std::tuple<OpArg, Xbyak::Xmm> UseDefOpArgXmm(IR::Value use_value, IR::Inst* def_inst, HostLocList desired_locations = any_xmm) {
OpArg op;
HostLoc host_loc;
std::tie(op, host_loc) = UseDefOpArgHostLocReg(use_value, def_inst, desired_locations);
return std::make_tuple(op, HostLocToXmm(host_loc));
}
/// Early-use
Xbyak::Reg64 UseGpr(IR::Value use_value, HostLocList desired_locations = any_gpr) {
return HostLocToReg64(UseHostLocReg(use_value, desired_locations));
}
Xbyak::Xmm UseXmm(IR::Value use_value, HostLocList desired_locations = any_xmm) {
return HostLocToXmm(UseHostLocReg(use_value, desired_locations));
}
OpArg UseOpArg(IR::Value use_value, HostLocList desired_locations);
/// Early-use, Destroyed
Xbyak::Reg64 UseScratchGpr(IR::Value use_value, HostLocList desired_locations = any_gpr) {
return HostLocToReg64(UseScratchHostLocReg(use_value, desired_locations));
}
Xbyak::Xmm UseScratchXmm(IR::Value use_value, HostLocList desired_locations = any_xmm) {
return HostLocToXmm(UseScratchHostLocReg(use_value, desired_locations));
}
/// Early-def, Late-use, single-use
Xbyak::Reg64 ScratchGpr(HostLocList desired_locations = any_gpr) {
return HostLocToReg64(ScratchHostLocReg(desired_locations));
}
Xbyak::Xmm ScratchXmm(HostLocList desired_locations = any_xmm) {
return HostLocToXmm(ScratchHostLocReg(desired_locations));
}
/// Late-def for result register, Early-use for all arguments, Each value is placed into registers according to host ABI. Xbyak::Reg64 UseGpr(Argument& arg);
void HostCall(IR::Inst* result_def = nullptr, IR::Value arg0_use = {}, IR::Value arg1_use = {}, IR::Value arg2_use = {}, IR::Value arg3_use = {}); Xbyak::Xmm UseXmm(Argument& arg);
OpArg UseOpArg(Argument& arg);
void Use(Argument& arg, HostLoc host_loc);
Xbyak::Reg64 UseScratchGpr(Argument& arg);
Xbyak::Xmm UseScratchXmm(Argument& arg);
void UseScratch(Argument& arg, HostLoc host_loc);
void DefineValue(IR::Inst* inst, const Xbyak::Reg& reg);
void DefineValue(IR::Inst* inst, Argument& arg);
Xbyak::Reg64 ScratchGpr(HostLocList desired_locations = any_gpr);
Xbyak::Xmm ScratchXmm(HostLocList desired_locations = any_xmm);
void HostCall(IR::Inst* result_def = nullptr, boost::optional<Argument&> arg0 = {}, boost::optional<Argument&> arg1 = {}, boost::optional<Argument&> arg2 = {}, boost::optional<Argument&> arg3 = {});
// TODO: Values in host flags // TODO: Values in host flags
@ -85,65 +101,32 @@ public:
void AssertNoMoreUses(); void AssertNoMoreUses();
void Reset();
private: private:
friend struct Argument;
HostLoc SelectARegister(HostLocList desired_locations) const; HostLoc SelectARegister(HostLocList desired_locations) const;
boost::optional<HostLoc> ValueLocation(const IR::Inst* value) const; boost::optional<HostLoc> ValueLocation(const IR::Inst* value) const;
bool IsRegisterOccupied(HostLoc loc) const;
bool IsRegisterAllocated(HostLoc loc) const;
bool IsLastUse(const IR::Inst* inst) const;
HostLoc DefHostLocReg(IR::Inst* def_inst, HostLocList desired_locations); HostLoc UseImpl(IR::Value use_value, HostLocList desired_locations);
HostLoc UseDefHostLocReg(IR::Value use_value, IR::Inst* def_inst, HostLocList desired_locations); HostLoc UseScratchImpl(IR::Value use_value, HostLocList desired_locations);
HostLoc UseDefHostLocReg(IR::Inst* use_inst, IR::Inst* def_inst, HostLocList desired_locations); HostLoc ScratchImpl(HostLocList desired_locations);
std::tuple<OpArg, HostLoc> UseDefOpArgHostLocReg(IR::Value use_value, IR::Inst* def_inst, HostLocList desired_locations); void DefineValueImpl(IR::Inst* def_inst, HostLoc host_loc);
HostLoc UseHostLocReg(IR::Value use_value, HostLocList desired_locations); void DefineValueImpl(IR::Inst* def_inst, const IR::Value& use_inst);
HostLoc UseHostLocReg(IR::Inst* use_inst, HostLocList desired_locations);
std::tuple<HostLoc, bool> UseHostLoc(IR::Inst* use_inst, HostLocList desired_locations);
HostLoc UseScratchHostLocReg(IR::Value use_value, HostLocList desired_locations);
HostLoc UseScratchHostLocReg(IR::Inst* use_inst, HostLocList desired_locations);
HostLoc ScratchHostLocReg(HostLocList desired_locations);
void EmitMove(HostLoc to, HostLoc from); BlockOfCode* code = nullptr;
void EmitExchange(HostLoc a, HostLoc b);
HostLoc LoadImmediateIntoHostLocReg(IR::Value imm, HostLoc reg); HostLoc LoadImmediate(IR::Value imm, HostLoc reg);
void Move(HostLoc to, HostLoc from);
void CopyToScratch(HostLoc to, HostLoc from);
void Exchange(HostLoc a, HostLoc b);
void MoveOutOfTheWay(HostLoc reg);
void SpillRegister(HostLoc loc); void SpillRegister(HostLoc loc);
HostLoc FindFreeSpill() const; HostLoc FindFreeSpill() const;
BlockOfCode* code = nullptr;
struct HostLocInfo {
std::vector<IR::Inst*> values; // early value
IR::Inst* def = nullptr; // late value
bool is_being_used = false;
bool IsIdle() const {
return !is_being_used;
}
bool IsScratch() const {
return is_being_used && !def && values.empty();
}
bool IsUse() const {
return is_being_used && !def && !values.empty();
}
bool IsDef() const {
return is_being_used && def && values.empty();
}
bool IsUseDef() const {
return is_being_used && def && !values.empty();
}
};
std::array<HostLocInfo, HostLocCount> hostloc_info; std::array<HostLocInfo, HostLocCount> hostloc_info;
HostLocInfo& LocInfo(HostLoc loc) { HostLocInfo& LocInfo(HostLoc loc);
DEBUG_ASSERT(loc != HostLoc::RSP && loc != HostLoc::R15); const HostLocInfo& LocInfo(HostLoc loc) const;
return hostloc_info[static_cast<size_t>(loc)];
}
const HostLocInfo& LocInfo(HostLoc loc) const {
DEBUG_ASSERT(loc != HostLoc::RSP && loc != HostLoc::R15);
return hostloc_info[static_cast<size_t>(loc)];
}
}; };
} // namespace BackendX64 } // namespace BackendX64

View file

@ -255,13 +255,13 @@ Inst* Inst::GetAssociatedPseudoOperation(Opcode opcode) {
// This is faster than doing a search through the block. // This is faster than doing a search through the block.
switch (opcode) { switch (opcode) {
case IR::Opcode::GetCarryFromOp: case IR::Opcode::GetCarryFromOp:
DEBUG_ASSERT(!carry_inst || carry_inst->GetOpcode() == Opcode::GetCarryFromOp); ASSERT(!carry_inst || carry_inst->GetOpcode() == Opcode::GetCarryFromOp);
return carry_inst; return carry_inst;
case IR::Opcode::GetOverflowFromOp: case IR::Opcode::GetOverflowFromOp:
DEBUG_ASSERT(!overflow_inst || overflow_inst->GetOpcode() == Opcode::GetOverflowFromOp); ASSERT(!overflow_inst || overflow_inst->GetOpcode() == Opcode::GetOverflowFromOp);
return overflow_inst; return overflow_inst;
case IR::Opcode::GetGEFromOp: case IR::Opcode::GetGEFromOp:
DEBUG_ASSERT(!ge_inst || ge_inst->GetOpcode() == Opcode::GetGEFromOp); ASSERT(!ge_inst || ge_inst->GetOpcode() == Opcode::GetGEFromOp);
return ge_inst; return ge_inst;
default: default:
break; break;
@ -278,15 +278,15 @@ Type Inst::GetType() const {
} }
Value Inst::GetArg(size_t index) const { Value Inst::GetArg(size_t index) const {
DEBUG_ASSERT(index < GetNumArgsOf(op)); ASSERT(index < GetNumArgsOf(op));
DEBUG_ASSERT(!args[index].IsEmpty()); ASSERT(!args[index].IsEmpty());
return args[index]; return args[index];
} }
void Inst::SetArg(size_t index, Value value) { void Inst::SetArg(size_t index, Value value) {
DEBUG_ASSERT(index < GetNumArgsOf(op)); ASSERT(index < GetNumArgsOf(op));
DEBUG_ASSERT(AreTypesCompatible(value.GetType(), GetArgTypeOf(op, index))); ASSERT(AreTypesCompatible(value.GetType(), GetArgTypeOf(op, index)));
if (!args[index].IsImmediate()) { if (!args[index].IsImmediate()) {
UndoUse(args[index]); UndoUse(args[index]);
@ -346,15 +346,15 @@ void Inst::UndoUse(const Value& value) {
switch (op){ switch (op){
case Opcode::GetCarryFromOp: case Opcode::GetCarryFromOp:
DEBUG_ASSERT(value.GetInst()->carry_inst->GetOpcode() == Opcode::GetCarryFromOp); ASSERT(value.GetInst()->carry_inst->GetOpcode() == Opcode::GetCarryFromOp);
value.GetInst()->carry_inst = nullptr; value.GetInst()->carry_inst = nullptr;
break; break;
case Opcode::GetOverflowFromOp: case Opcode::GetOverflowFromOp:
DEBUG_ASSERT(value.GetInst()->overflow_inst->GetOpcode() == Opcode::GetOverflowFromOp); ASSERT(value.GetInst()->overflow_inst->GetOpcode() == Opcode::GetOverflowFromOp);
value.GetInst()->overflow_inst = nullptr; value.GetInst()->overflow_inst = nullptr;
break; break;
case Opcode::GetGEFromOp: case Opcode::GetGEFromOp:
DEBUG_ASSERT(value.GetInst()->ge_inst->GetOpcode() == Opcode::GetGEFromOp); ASSERT(value.GetInst()->ge_inst->GetOpcode() == Opcode::GetGEFromOp);
value.GetInst()->ge_inst = nullptr; value.GetInst()->ge_inst = nullptr;
break; break;
default: default:

View file

@ -69,59 +69,59 @@ Type Value::GetType() const {
} }
Arm::Reg Value::GetRegRef() const { Arm::Reg Value::GetRegRef() const {
DEBUG_ASSERT(type == Type::RegRef); ASSERT(type == Type::RegRef);
return inner.imm_regref; return inner.imm_regref;
} }
Arm::ExtReg Value::GetExtRegRef() const { Arm::ExtReg Value::GetExtRegRef() const {
DEBUG_ASSERT(type == Type::ExtRegRef); ASSERT(type == Type::ExtRegRef);
return inner.imm_extregref; return inner.imm_extregref;
} }
Inst* Value::GetInst() const { Inst* Value::GetInst() const {
DEBUG_ASSERT(type == Type::Opaque); ASSERT(type == Type::Opaque);
return inner.inst; return inner.inst;
} }
bool Value::GetU1() const { bool Value::GetU1() const {
if (type == Type::Opaque && inner.inst->GetOpcode() == Opcode::Identity) if (type == Type::Opaque && inner.inst->GetOpcode() == Opcode::Identity)
return inner.inst->GetArg(0).GetU1(); return inner.inst->GetArg(0).GetU1();
DEBUG_ASSERT(type == Type::U1); ASSERT(type == Type::U1);
return inner.imm_u1; return inner.imm_u1;
} }
u8 Value::GetU8() const { u8 Value::GetU8() const {
if (type == Type::Opaque && inner.inst->GetOpcode() == Opcode::Identity) if (type == Type::Opaque && inner.inst->GetOpcode() == Opcode::Identity)
return inner.inst->GetArg(0).GetU8(); return inner.inst->GetArg(0).GetU8();
DEBUG_ASSERT(type == Type::U8); ASSERT(type == Type::U8);
return inner.imm_u8; return inner.imm_u8;
} }
u16 Value::GetU16() const { u16 Value::GetU16() const {
if (type == Type::Opaque && inner.inst->GetOpcode() == Opcode::Identity) if (type == Type::Opaque && inner.inst->GetOpcode() == Opcode::Identity)
return inner.inst->GetArg(0).GetU16(); return inner.inst->GetArg(0).GetU16();
DEBUG_ASSERT(type == Type::U16); ASSERT(type == Type::U16);
return inner.imm_u16; return inner.imm_u16;
} }
u32 Value::GetU32() const { u32 Value::GetU32() const {
if (type == Type::Opaque && inner.inst->GetOpcode() == Opcode::Identity) if (type == Type::Opaque && inner.inst->GetOpcode() == Opcode::Identity)
return inner.inst->GetArg(0).GetU32(); return inner.inst->GetArg(0).GetU32();
DEBUG_ASSERT(type == Type::U32); ASSERT(type == Type::U32);
return inner.imm_u32; return inner.imm_u32;
} }
u64 Value::GetU64() const { u64 Value::GetU64() const {
if (type == Type::Opaque && inner.inst->GetOpcode() == Opcode::Identity) if (type == Type::Opaque && inner.inst->GetOpcode() == Opcode::Identity)
return inner.inst->GetArg(0).GetU64(); return inner.inst->GetArg(0).GetU64();
DEBUG_ASSERT(type == Type::U64); ASSERT(type == Type::U64);
return inner.imm_u64; return inner.imm_u64;
} }
std::array<u8, 8> Value::GetCoprocInfo() const { std::array<u8, 8> Value::GetCoprocInfo() const {
if (type == Type::Opaque && inner.inst->GetOpcode() == Opcode::Identity) if (type == Type::Opaque && inner.inst->GetOpcode() == Opcode::Identity)
return inner.inst->GetArg(0).GetCoprocInfo(); return inner.inst->GetArg(0).GetCoprocInfo();
DEBUG_ASSERT(type == Type::CoprocInfo); ASSERT(type == Type::CoprocInfo);
return inner.imm_coproc; return inner.imm_coproc;
} }