Merge pull request #479 from lioncash/rsqrts

A64: Handle half-precision variants of FRSQRTS
This commit is contained in:
Merry 2019-04-15 08:28:30 +01:00 committed by MerryMage
commit 699ad98b2a
10 changed files with 133 additions and 82 deletions

View file

@ -946,52 +946,54 @@ template<size_t fsize>
static void EmitFPRSqrtStepFused(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst) { static void EmitFPRSqrtStepFused(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst) {
using FPT = mp::unsigned_integer_of_size<fsize>; using FPT = mp::unsigned_integer_of_size<fsize>;
if (code.DoesCpuSupport(Xbyak::util::Cpu::tFMA) && code.DoesCpuSupport(Xbyak::util::Cpu::tAVX)) { if constexpr (fsize != 16) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst); if (code.DoesCpuSupport(Xbyak::util::Cpu::tFMA) && code.DoesCpuSupport(Xbyak::util::Cpu::tAVX)) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
Xbyak::Label end, fallback; Xbyak::Label end, fallback;
const Xbyak::Xmm operand1 = ctx.reg_alloc.UseXmm(args[0]); const Xbyak::Xmm operand1 = ctx.reg_alloc.UseXmm(args[0]);
const Xbyak::Xmm operand2 = ctx.reg_alloc.UseXmm(args[1]); const Xbyak::Xmm operand2 = ctx.reg_alloc.UseXmm(args[1]);
const Xbyak::Xmm result = ctx.reg_alloc.ScratchXmm(); const Xbyak::Xmm result = ctx.reg_alloc.ScratchXmm();
code.vmovaps(result, code.MConst(xword, FP::FPValue<FPT, false, 0, 3>())); code.vmovaps(result, code.MConst(xword, FP::FPValue<FPT, false, 0, 3>()));
FCODE(vfnmadd231s)(result, operand1, operand2); FCODE(vfnmadd231s)(result, operand1, operand2);
// Detect if the intermediate result is infinity or NaN or nearly an infinity. // Detect if the intermediate result is infinity or NaN or nearly an infinity.
// Why do we need to care about infinities? This is because x86 doesn't allow us // Why do we need to care about infinities? This is because x86 doesn't allow us
// to fuse the divide-by-two with the rest of the FMA operation. Therefore the // to fuse the divide-by-two with the rest of the FMA operation. Therefore the
// intermediate value may overflow and we would like to handle this case. // intermediate value may overflow and we would like to handle this case.
const Xbyak::Reg32 tmp = ctx.reg_alloc.ScratchGpr().cvt32(); const Xbyak::Reg32 tmp = ctx.reg_alloc.ScratchGpr().cvt32();
code.vpextrw(tmp, result, fsize == 32 ? 1 : 3); code.vpextrw(tmp, result, fsize == 32 ? 1 : 3);
code.and_(tmp.cvt16(), fsize == 32 ? 0x7f80 : 0x7ff0); code.and_(tmp.cvt16(), fsize == 32 ? 0x7f80 : 0x7ff0);
code.cmp(tmp.cvt16(), fsize == 32 ? 0x7f00 : 0x7fe0); code.cmp(tmp.cvt16(), fsize == 32 ? 0x7f00 : 0x7fe0);
ctx.reg_alloc.Release(tmp); ctx.reg_alloc.Release(tmp);
code.jae(fallback, code.T_NEAR); code.jae(fallback, code.T_NEAR);
FCODE(vmuls)(result, result, code.MConst(xword, FP::FPValue<FPT, false, -1, 1>())); FCODE(vmuls)(result, result, code.MConst(xword, FP::FPValue<FPT, false, -1, 1>()));
code.L(end); code.L(end);
code.SwitchToFarCode(); code.SwitchToFarCode();
code.L(fallback); code.L(fallback);
code.sub(rsp, 8); code.sub(rsp, 8);
ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, HostLocXmmIdx(result.getIdx())); ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, HostLocXmmIdx(result.getIdx()));
code.movq(code.ABI_PARAM1, operand1); code.movq(code.ABI_PARAM1, operand1);
code.movq(code.ABI_PARAM2, operand2); code.movq(code.ABI_PARAM2, operand2);
code.mov(code.ABI_PARAM3.cvt32(), ctx.FPCR().Value()); code.mov(code.ABI_PARAM3.cvt32(), ctx.FPCR().Value());
code.lea(code.ABI_PARAM4, code.ptr[code.r15 + code.GetJitStateInfo().offsetof_fpsr_exc]); code.lea(code.ABI_PARAM4, code.ptr[code.r15 + code.GetJitStateInfo().offsetof_fpsr_exc]);
code.CallFunction(&FP::FPRSqrtStepFused<FPT>); code.CallFunction(&FP::FPRSqrtStepFused<FPT>);
code.movq(result, code.ABI_RETURN); code.movq(result, code.ABI_RETURN);
ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, HostLocXmmIdx(result.getIdx())); ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, HostLocXmmIdx(result.getIdx()));
code.add(rsp, 8); code.add(rsp, 8);
code.jmp(end, code.T_NEAR); code.jmp(end, code.T_NEAR);
code.SwitchToNearCode(); code.SwitchToNearCode();
ctx.reg_alloc.DefineValue(inst, result); ctx.reg_alloc.DefineValue(inst, result);
return; return;
}
} }
auto args = ctx.reg_alloc.GetArgumentInfo(inst); auto args = ctx.reg_alloc.GetArgumentInfo(inst);
@ -1001,6 +1003,10 @@ static void EmitFPRSqrtStepFused(BlockOfCode& code, EmitContext& ctx, IR::Inst*
code.CallFunction(&FP::FPRSqrtStepFused<FPT>); code.CallFunction(&FP::FPRSqrtStepFused<FPT>);
} }
void EmitX64::EmitFPRSqrtStepFused16(EmitContext& ctx, IR::Inst* inst) {
EmitFPRSqrtStepFused<16>(code, ctx, inst);
}
void EmitX64::EmitFPRSqrtStepFused32(EmitContext& ctx, IR::Inst* inst) { void EmitX64::EmitFPRSqrtStepFused32(EmitContext& ctx, IR::Inst* inst) {
EmitFPRSqrtStepFused<32>(code, ctx, inst); EmitFPRSqrtStepFused<32>(code, ctx, inst);
} }

View file

@ -1273,51 +1273,57 @@ static void EmitRSqrtStepFused(BlockOfCode& code, EmitContext& ctx, IR::Inst* in
} }
}; };
if (code.DoesCpuSupport(Xbyak::util::Cpu::tFMA) && code.DoesCpuSupport(Xbyak::util::Cpu::tAVX)) { if constexpr (fsize != 16) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst); if (code.DoesCpuSupport(Xbyak::util::Cpu::tFMA) && code.DoesCpuSupport(Xbyak::util::Cpu::tAVX)) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const Xbyak::Xmm result = ctx.reg_alloc.ScratchXmm(); const Xbyak::Xmm result = ctx.reg_alloc.ScratchXmm();
const Xbyak::Xmm operand1 = ctx.reg_alloc.UseXmm(args[0]); const Xbyak::Xmm operand1 = ctx.reg_alloc.UseXmm(args[0]);
const Xbyak::Xmm operand2 = ctx.reg_alloc.UseXmm(args[1]); const Xbyak::Xmm operand2 = ctx.reg_alloc.UseXmm(args[1]);
const Xbyak::Xmm tmp = ctx.reg_alloc.ScratchXmm(); const Xbyak::Xmm tmp = ctx.reg_alloc.ScratchXmm();
const Xbyak::Xmm mask = ctx.reg_alloc.ScratchXmm(); const Xbyak::Xmm mask = ctx.reg_alloc.ScratchXmm();
Xbyak::Label end, fallback; Xbyak::Label end, fallback;
code.vmovaps(result, GetVectorOf<fsize, false, 0, 3>(code)); code.vmovaps(result, GetVectorOf<fsize, false, 0, 3>(code));
FCODE(vfnmadd231p)(result, operand1, operand2); FCODE(vfnmadd231p)(result, operand1, operand2);
// An explanation for this is given in EmitFPRSqrtStepFused. // An explanation for this is given in EmitFPRSqrtStepFused.
code.vmovaps(mask, GetVectorOf<fsize, fsize == 32 ? 0x7f000000 : 0x7fe0000000000000>(code)); code.vmovaps(mask, GetVectorOf<fsize, fsize == 32 ? 0x7f000000 : 0x7fe0000000000000>(code));
FCODE(vandp)(tmp, result, mask); FCODE(vandp)(tmp, result, mask);
if constexpr (fsize == 32) { if constexpr (fsize == 32) {
code.vpcmpeqd(tmp, tmp, mask); code.vpcmpeqd(tmp, tmp, mask);
} else { } else {
code.vpcmpeqq(tmp, tmp, mask); code.vpcmpeqq(tmp, tmp, mask);
}
code.ptest(tmp, tmp);
code.jnz(fallback, code.T_NEAR);
FCODE(vmulp)(result, result, GetVectorOf<fsize, false, -1, 1>(code));
code.L(end);
code.SwitchToFarCode();
code.L(fallback);
code.sub(rsp, 8);
ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, HostLocXmmIdx(result.getIdx()));
EmitThreeOpFallbackWithoutRegAlloc(code, ctx, result, operand1, operand2, fallback_fn);
ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, HostLocXmmIdx(result.getIdx()));
code.add(rsp, 8);
code.jmp(end, code.T_NEAR);
code.SwitchToNearCode();
ctx.reg_alloc.DefineValue(inst, result);
return;
} }
code.ptest(tmp, tmp);
code.jnz(fallback, code.T_NEAR);
FCODE(vmulp)(result, result, GetVectorOf<fsize, false, -1, 1>(code));
code.L(end);
code.SwitchToFarCode();
code.L(fallback);
code.sub(rsp, 8);
ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, HostLocXmmIdx(result.getIdx()));
EmitThreeOpFallbackWithoutRegAlloc(code, ctx, result, operand1, operand2, fallback_fn);
ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, HostLocXmmIdx(result.getIdx()));
code.add(rsp, 8);
code.jmp(end, code.T_NEAR);
code.SwitchToNearCode();
ctx.reg_alloc.DefineValue(inst, result);
return;
} }
EmitThreeOpFallback(code, ctx, inst, fallback_fn); EmitThreeOpFallback(code, ctx, inst, fallback_fn);
} }
void EmitX64::EmitFPVectorRSqrtStepFused16(EmitContext& ctx, IR::Inst* inst) {
EmitRSqrtStepFused<16>(code, ctx, inst);
}
void EmitX64::EmitFPVectorRSqrtStepFused32(EmitContext& ctx, IR::Inst* inst) { void EmitX64::EmitFPVectorRSqrtStepFused32(EmitContext& ctx, IR::Inst* inst) {
EmitRSqrtStepFused<32>(code, ctx, inst); EmitRSqrtStepFused<32>(code, ctx, inst);
} }

View file

@ -19,9 +19,9 @@ template<typename FPT>
FPT FPRSqrtStepFused(FPT op1, FPT op2, FPCR fpcr, FPSR& fpsr) { FPT FPRSqrtStepFused(FPT op1, FPT op2, FPCR fpcr, FPSR& fpsr) {
op1 = FPNeg(op1); op1 = FPNeg(op1);
const auto [type1, sign1, value1] = FPUnpack<FPT>(op1, fpcr, fpsr); const auto [type1, sign1, value1] = FPUnpack(op1, fpcr, fpsr);
const auto [type2, sign2, value2] = FPUnpack<FPT>(op2, fpcr, fpsr); const auto [type2, sign2, value2] = FPUnpack(op2, fpcr, fpsr);
if (const auto maybe_nan = FPProcessNaNs(type1, type2, op1, op2, fpcr, fpsr)) { if (const auto maybe_nan = FPProcessNaNs(type1, type2, op1, op2, fpcr, fpsr)) {
return *maybe_nan; return *maybe_nan;
} }
@ -37,7 +37,7 @@ FPT FPRSqrtStepFused(FPT op1, FPT op2, FPCR fpcr, FPSR& fpsr) {
} }
if (inf1 || inf2) { if (inf1 || inf2) {
return FPInfo<FPT>::Infinity(sign1 != sign2); return FPT(FPInfo<FPT>::Infinity(sign1 != sign2));
} }
// result_value = (3.0 + (value1 * value2)) / 2.0 // result_value = (3.0 + (value1 * value2)) / 2.0
@ -45,11 +45,12 @@ FPT FPRSqrtStepFused(FPT op1, FPT op2, FPCR fpcr, FPSR& fpsr) {
result_value.exponent--; result_value.exponent--;
if (result_value.mantissa == 0) { if (result_value.mantissa == 0) {
return FPInfo<FPT>::Zero(fpcr.RMode() == RoundingMode::TowardsMinusInfinity); return FPT(FPInfo<FPT>::Zero(fpcr.RMode() == RoundingMode::TowardsMinusInfinity));
} }
return FPRound<FPT>(result_value, fpcr, fpsr); return FPRound<FPT>(result_value, fpcr, fpsr);
} }
template u16 FPRSqrtStepFused<u16>(u16 op1, u16 op2, FPCR fpcr, FPSR& fpsr);
template u32 FPRSqrtStepFused<u32>(u32 op1, u32 op2, FPCR fpcr, FPSR& fpsr); template u32 FPRSqrtStepFused<u32>(u32 op1, u32 op2, FPCR fpcr, FPSR& fpsr);
template u64 FPRSqrtStepFused<u64>(u64 op1, u64 op2, FPCR fpcr, FPSR& fpsr); template u64 FPRSqrtStepFused<u64>(u64 op1, u64 op2, FPCR fpcr, FPSR& fpsr);

View file

@ -386,7 +386,7 @@ INST(FMULX_vec_2, "FMULX", "01011
INST(FCMEQ_reg_2, "FCMEQ (register)", "010111100z1mmmmm111001nnnnnddddd") INST(FCMEQ_reg_2, "FCMEQ (register)", "010111100z1mmmmm111001nnnnnddddd")
INST(FRECPS_1, "FRECPS", "01011110010mmmmm001111nnnnnddddd") INST(FRECPS_1, "FRECPS", "01011110010mmmmm001111nnnnnddddd")
INST(FRECPS_2, "FRECPS", "010111100z1mmmmm111111nnnnnddddd") INST(FRECPS_2, "FRECPS", "010111100z1mmmmm111111nnnnnddddd")
//INST(FRSQRTS_1, "FRSQRTS", "01011110110mmmmm001111nnnnnddddd") INST(FRSQRTS_1, "FRSQRTS", "01011110110mmmmm001111nnnnnddddd")
INST(FRSQRTS_2, "FRSQRTS", "010111101z1mmmmm111111nnnnnddddd") INST(FRSQRTS_2, "FRSQRTS", "010111101z1mmmmm111111nnnnnddddd")
//INST(FCMGE_reg_1, "FCMGE (register)", "01111110010mmmmm001001nnnnnddddd") //INST(FCMGE_reg_1, "FCMGE (register)", "01111110010mmmmm001001nnnnnddddd")
INST(FCMGE_reg_2, "FCMGE (register)", "011111100z1mmmmm111001nnnnnddddd") INST(FCMGE_reg_2, "FCMGE (register)", "011111100z1mmmmm111001nnnnnddddd")
@ -576,7 +576,7 @@ INST(INS_elt, "INS (element)", "01101
//INST(FMULX_vec_3, "FMULX", "0Q001110010mmmmm000111nnnnnddddd") //INST(FMULX_vec_3, "FMULX", "0Q001110010mmmmm000111nnnnnddddd")
//INST(FCMEQ_reg_3, "FCMEQ (register)", "0Q001110010mmmmm001001nnnnnddddd") //INST(FCMEQ_reg_3, "FCMEQ (register)", "0Q001110010mmmmm001001nnnnnddddd")
INST(FRECPS_3, "FRECPS", "0Q001110010mmmmm001111nnnnnddddd") INST(FRECPS_3, "FRECPS", "0Q001110010mmmmm001111nnnnnddddd")
//INST(FRSQRTS_3, "FRSQRTS", "0Q001110110mmmmm001111nnnnnddddd") INST(FRSQRTS_3, "FRSQRTS", "0Q001110110mmmmm001111nnnnnddddd")
//INST(FCMGE_reg_3, "FCMGE (register)", "0Q101110010mmmmm001001nnnnnddddd") //INST(FCMGE_reg_3, "FCMGE (register)", "0Q101110010mmmmm001001nnnnnddddd")
//INST(FACGE_3, "FACGE", "0Q101110010mmmmm001011nnnnnddddd") //INST(FACGE_3, "FACGE", "0Q101110010mmmmm001011nnnnnddddd")
//INST(FABD_3, "FABD", "0Q101110110mmmmm000101nnnnnddddd") //INST(FABD_3, "FABD", "0Q101110110mmmmm000101nnnnnddddd")

View file

@ -316,6 +316,17 @@ bool TranslatorVisitor::FRECPS_2(bool sz, Vec Vm, Vec Vn, Vec Vd) {
return true; return true;
} }
bool TranslatorVisitor::FRSQRTS_1(Vec Vm, Vec Vn, Vec Vd) {
const size_t esize = 16;
const IR::U16 operand1 = V_scalar(esize, Vn);
const IR::U16 operand2 = V_scalar(esize, Vm);
const IR::U16 result = ir.FPRSqrtStepFused(operand1, operand2);
V_scalar(esize, Vd, result);
return true;
}
bool TranslatorVisitor::FRSQRTS_2(bool sz, Vec Vm, Vec Vn, Vec Vd) { bool TranslatorVisitor::FRSQRTS_2(bool sz, Vec Vm, Vec Vn, Vec Vd) {
const size_t esize = sz ? 64 : 32; const size_t esize = sz ? 64 : 32;

View file

@ -965,6 +965,18 @@ bool TranslatorVisitor::FRECPS_4(bool Q, bool sz, Vec Vm, Vec Vn, Vec Vd) {
return true; return true;
} }
bool TranslatorVisitor::FRSQRTS_3(bool Q, Vec Vm, Vec Vn, Vec Vd) {
const size_t esize = 16;
const size_t datasize = Q ? 128 : 64;
const IR::U128 operand1 = V(datasize, Vn);
const IR::U128 operand2 = V(datasize, Vm);
const IR::U128 result = ir.FPVectorRSqrtStepFused(esize, operand1, operand2);
V(datasize, Vd, result);
return true;
}
bool TranslatorVisitor::FRSQRTS_4(bool Q, bool sz, Vec Vm, Vec Vn, Vec Vd) { bool TranslatorVisitor::FRSQRTS_4(bool Q, bool sz, Vec Vm, Vec Vn, Vec Vd) {
if (sz && !Q) { if (sz && !Q) {
return ReservedValue(); return ReservedValue();

View file

@ -1997,11 +1997,20 @@ U16U32U64 IREmitter::FPRSqrtEstimate(const U16U32U64& a) {
} }
} }
U32U64 IREmitter::FPRSqrtStepFused(const U32U64& a, const U32U64& b) { U16U32U64 IREmitter::FPRSqrtStepFused(const U16U32U64& a, const U16U32U64& b) {
if (a.GetType() == Type::U32) { ASSERT(a.GetType() == b.GetType());
switch (a.GetType()) {
case Type::U16:
return Inst<U16>(Opcode::FPRSqrtStepFused16, a, b);
case Type::U32:
return Inst<U32>(Opcode::FPRSqrtStepFused32, a, b); return Inst<U32>(Opcode::FPRSqrtStepFused32, a, b);
case Type::U64:
return Inst<U64>(Opcode::FPRSqrtStepFused64, a, b);
default:
UNREACHABLE();
return U16U32U64{};
} }
return Inst<U64>(Opcode::FPRSqrtStepFused64, a, b);
} }
U32U64 IREmitter::FPSqrt(const U32U64& a) { U32U64 IREmitter::FPSqrt(const U32U64& a) {
@ -2335,6 +2344,8 @@ U128 IREmitter::FPVectorRSqrtEstimate(size_t esize, const U128& a) {
U128 IREmitter::FPVectorRSqrtStepFused(size_t esize, const U128& a, const U128& b) { U128 IREmitter::FPVectorRSqrtStepFused(size_t esize, const U128& a, const U128& b) {
switch (esize) { switch (esize) {
case 16:
return Inst<U128>(Opcode::FPVectorRSqrtStepFused16, a, b);
case 32: case 32:
return Inst<U128>(Opcode::FPVectorRSqrtStepFused32, a, b); return Inst<U128>(Opcode::FPVectorRSqrtStepFused32, a, b);
case 64: case 64:

View file

@ -310,7 +310,7 @@ public:
U16U32U64 FPRecipStepFused(const U16U32U64& a, const U16U32U64& b); U16U32U64 FPRecipStepFused(const U16U32U64& a, const U16U32U64& b);
U16U32U64 FPRoundInt(const U16U32U64& a, FP::RoundingMode rounding, bool exact); U16U32U64 FPRoundInt(const U16U32U64& a, FP::RoundingMode rounding, bool exact);
U16U32U64 FPRSqrtEstimate(const U16U32U64& a); U16U32U64 FPRSqrtEstimate(const U16U32U64& a);
U32U64 FPRSqrtStepFused(const U32U64& a, const U32U64& b); U16U32U64 FPRSqrtStepFused(const U16U32U64& a, const U16U32U64& b);
U32U64 FPSqrt(const U32U64& a); U32U64 FPSqrt(const U32U64& a);
U32U64 FPSub(const U32U64& a, const U32U64& b, bool fpcr_controlled); U32U64 FPSub(const U32U64& a, const U32U64& b, bool fpcr_controlled);
U16 FPDoubleToHalf(const U64& a, FP::RoundingMode rounding); U16 FPDoubleToHalf(const U64& a, FP::RoundingMode rounding);

View file

@ -287,6 +287,7 @@ bool Inst::ReadsFromAndWritesToFPSRCumulativeExceptionBits() const {
case Opcode::FPRSqrtEstimate16: case Opcode::FPRSqrtEstimate16:
case Opcode::FPRSqrtEstimate32: case Opcode::FPRSqrtEstimate32:
case Opcode::FPRSqrtEstimate64: case Opcode::FPRSqrtEstimate64:
case Opcode::FPRSqrtStepFused16:
case Opcode::FPRSqrtStepFused32: case Opcode::FPRSqrtStepFused32:
case Opcode::FPRSqrtStepFused64: case Opcode::FPRSqrtStepFused64:
case Opcode::FPSqrt32: case Opcode::FPSqrt32:
@ -350,6 +351,7 @@ bool Inst::ReadsFromAndWritesToFPSRCumulativeExceptionBits() const {
case Opcode::FPVectorRSqrtEstimate16: case Opcode::FPVectorRSqrtEstimate16:
case Opcode::FPVectorRSqrtEstimate32: case Opcode::FPVectorRSqrtEstimate32:
case Opcode::FPVectorRSqrtEstimate64: case Opcode::FPVectorRSqrtEstimate64:
case Opcode::FPVectorRSqrtStepFused16:
case Opcode::FPVectorRSqrtStepFused32: case Opcode::FPVectorRSqrtStepFused32:
case Opcode::FPVectorRSqrtStepFused64: case Opcode::FPVectorRSqrtStepFused64:
case Opcode::FPVectorSqrt32: case Opcode::FPVectorSqrt32:

View file

@ -506,6 +506,7 @@ OPCODE(FPRoundInt64, U64, U64,
OPCODE(FPRSqrtEstimate16, U16, U16 ) OPCODE(FPRSqrtEstimate16, U16, U16 )
OPCODE(FPRSqrtEstimate32, U32, U32 ) OPCODE(FPRSqrtEstimate32, U32, U32 )
OPCODE(FPRSqrtEstimate64, U64, U64 ) OPCODE(FPRSqrtEstimate64, U64, U64 )
OPCODE(FPRSqrtStepFused16, U16, U16, U16 )
OPCODE(FPRSqrtStepFused32, U32, U32, U32 ) OPCODE(FPRSqrtStepFused32, U32, U32, U32 )
OPCODE(FPRSqrtStepFused64, U64, U64, U64 ) OPCODE(FPRSqrtStepFused64, U64, U64, U64 )
OPCODE(FPSqrt32, U32, U32 ) OPCODE(FPSqrt32, U32, U32 )
@ -585,6 +586,7 @@ OPCODE(FPVectorRoundInt64, U128, U128
OPCODE(FPVectorRSqrtEstimate16, U128, U128 ) OPCODE(FPVectorRSqrtEstimate16, U128, U128 )
OPCODE(FPVectorRSqrtEstimate32, U128, U128 ) OPCODE(FPVectorRSqrtEstimate32, U128, U128 )
OPCODE(FPVectorRSqrtEstimate64, U128, U128 ) OPCODE(FPVectorRSqrtEstimate64, U128, U128 )
OPCODE(FPVectorRSqrtStepFused16, U128, U128, U128 )
OPCODE(FPVectorRSqrtStepFused32, U128, U128, U128 ) OPCODE(FPVectorRSqrtStepFused32, U128, U128, U128 )
OPCODE(FPVectorRSqrtStepFused64, U128, U128, U128 ) OPCODE(FPVectorRSqrtStepFused64, U128, U128, U128 )
OPCODE(FPVectorSqrt32, U128, U128 ) OPCODE(FPVectorSqrt32, U128, U128 )