Merge pull request #479 from lioncash/rsqrts
A64: Handle half-precision variants of FRSQRTS
This commit is contained in:
commit
699ad98b2a
10 changed files with 133 additions and 82 deletions
|
@ -946,52 +946,54 @@ template<size_t fsize>
|
|||
static void EmitFPRSqrtStepFused(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst) {
|
||||
using FPT = mp::unsigned_integer_of_size<fsize>;
|
||||
|
||||
if (code.DoesCpuSupport(Xbyak::util::Cpu::tFMA) && code.DoesCpuSupport(Xbyak::util::Cpu::tAVX)) {
|
||||
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
|
||||
if constexpr (fsize != 16) {
|
||||
if (code.DoesCpuSupport(Xbyak::util::Cpu::tFMA) && code.DoesCpuSupport(Xbyak::util::Cpu::tAVX)) {
|
||||
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
|
||||
|
||||
Xbyak::Label end, fallback;
|
||||
Xbyak::Label end, fallback;
|
||||
|
||||
const Xbyak::Xmm operand1 = ctx.reg_alloc.UseXmm(args[0]);
|
||||
const Xbyak::Xmm operand2 = ctx.reg_alloc.UseXmm(args[1]);
|
||||
const Xbyak::Xmm result = ctx.reg_alloc.ScratchXmm();
|
||||
const Xbyak::Xmm operand1 = ctx.reg_alloc.UseXmm(args[0]);
|
||||
const Xbyak::Xmm operand2 = ctx.reg_alloc.UseXmm(args[1]);
|
||||
const Xbyak::Xmm result = ctx.reg_alloc.ScratchXmm();
|
||||
|
||||
code.vmovaps(result, code.MConst(xword, FP::FPValue<FPT, false, 0, 3>()));
|
||||
FCODE(vfnmadd231s)(result, operand1, operand2);
|
||||
code.vmovaps(result, code.MConst(xword, FP::FPValue<FPT, false, 0, 3>()));
|
||||
FCODE(vfnmadd231s)(result, operand1, operand2);
|
||||
|
||||
// Detect if the intermediate result is infinity or NaN or nearly an infinity.
|
||||
// Why do we need to care about infinities? This is because x86 doesn't allow us
|
||||
// to fuse the divide-by-two with the rest of the FMA operation. Therefore the
|
||||
// intermediate value may overflow and we would like to handle this case.
|
||||
const Xbyak::Reg32 tmp = ctx.reg_alloc.ScratchGpr().cvt32();
|
||||
code.vpextrw(tmp, result, fsize == 32 ? 1 : 3);
|
||||
code.and_(tmp.cvt16(), fsize == 32 ? 0x7f80 : 0x7ff0);
|
||||
code.cmp(tmp.cvt16(), fsize == 32 ? 0x7f00 : 0x7fe0);
|
||||
ctx.reg_alloc.Release(tmp);
|
||||
// Detect if the intermediate result is infinity or NaN or nearly an infinity.
|
||||
// Why do we need to care about infinities? This is because x86 doesn't allow us
|
||||
// to fuse the divide-by-two with the rest of the FMA operation. Therefore the
|
||||
// intermediate value may overflow and we would like to handle this case.
|
||||
const Xbyak::Reg32 tmp = ctx.reg_alloc.ScratchGpr().cvt32();
|
||||
code.vpextrw(tmp, result, fsize == 32 ? 1 : 3);
|
||||
code.and_(tmp.cvt16(), fsize == 32 ? 0x7f80 : 0x7ff0);
|
||||
code.cmp(tmp.cvt16(), fsize == 32 ? 0x7f00 : 0x7fe0);
|
||||
ctx.reg_alloc.Release(tmp);
|
||||
|
||||
code.jae(fallback, code.T_NEAR);
|
||||
code.jae(fallback, code.T_NEAR);
|
||||
|
||||
FCODE(vmuls)(result, result, code.MConst(xword, FP::FPValue<FPT, false, -1, 1>()));
|
||||
code.L(end);
|
||||
FCODE(vmuls)(result, result, code.MConst(xword, FP::FPValue<FPT, false, -1, 1>()));
|
||||
code.L(end);
|
||||
|
||||
code.SwitchToFarCode();
|
||||
code.L(fallback);
|
||||
code.SwitchToFarCode();
|
||||
code.L(fallback);
|
||||
|
||||
code.sub(rsp, 8);
|
||||
ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, HostLocXmmIdx(result.getIdx()));
|
||||
code.movq(code.ABI_PARAM1, operand1);
|
||||
code.movq(code.ABI_PARAM2, operand2);
|
||||
code.mov(code.ABI_PARAM3.cvt32(), ctx.FPCR().Value());
|
||||
code.lea(code.ABI_PARAM4, code.ptr[code.r15 + code.GetJitStateInfo().offsetof_fpsr_exc]);
|
||||
code.CallFunction(&FP::FPRSqrtStepFused<FPT>);
|
||||
code.movq(result, code.ABI_RETURN);
|
||||
ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, HostLocXmmIdx(result.getIdx()));
|
||||
code.add(rsp, 8);
|
||||
code.sub(rsp, 8);
|
||||
ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, HostLocXmmIdx(result.getIdx()));
|
||||
code.movq(code.ABI_PARAM1, operand1);
|
||||
code.movq(code.ABI_PARAM2, operand2);
|
||||
code.mov(code.ABI_PARAM3.cvt32(), ctx.FPCR().Value());
|
||||
code.lea(code.ABI_PARAM4, code.ptr[code.r15 + code.GetJitStateInfo().offsetof_fpsr_exc]);
|
||||
code.CallFunction(&FP::FPRSqrtStepFused<FPT>);
|
||||
code.movq(result, code.ABI_RETURN);
|
||||
ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, HostLocXmmIdx(result.getIdx()));
|
||||
code.add(rsp, 8);
|
||||
|
||||
code.jmp(end, code.T_NEAR);
|
||||
code.SwitchToNearCode();
|
||||
code.jmp(end, code.T_NEAR);
|
||||
code.SwitchToNearCode();
|
||||
|
||||
ctx.reg_alloc.DefineValue(inst, result);
|
||||
return;
|
||||
ctx.reg_alloc.DefineValue(inst, result);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
|
||||
|
@ -1001,6 +1003,10 @@ static void EmitFPRSqrtStepFused(BlockOfCode& code, EmitContext& ctx, IR::Inst*
|
|||
code.CallFunction(&FP::FPRSqrtStepFused<FPT>);
|
||||
}
|
||||
|
||||
void EmitX64::EmitFPRSqrtStepFused16(EmitContext& ctx, IR::Inst* inst) {
|
||||
EmitFPRSqrtStepFused<16>(code, ctx, inst);
|
||||
}
|
||||
|
||||
void EmitX64::EmitFPRSqrtStepFused32(EmitContext& ctx, IR::Inst* inst) {
|
||||
EmitFPRSqrtStepFused<32>(code, ctx, inst);
|
||||
}
|
||||
|
|
|
@ -1273,51 +1273,57 @@ static void EmitRSqrtStepFused(BlockOfCode& code, EmitContext& ctx, IR::Inst* in
|
|||
}
|
||||
};
|
||||
|
||||
if (code.DoesCpuSupport(Xbyak::util::Cpu::tFMA) && code.DoesCpuSupport(Xbyak::util::Cpu::tAVX)) {
|
||||
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
|
||||
if constexpr (fsize != 16) {
|
||||
if (code.DoesCpuSupport(Xbyak::util::Cpu::tFMA) && code.DoesCpuSupport(Xbyak::util::Cpu::tAVX)) {
|
||||
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
|
||||
|
||||
const Xbyak::Xmm result = ctx.reg_alloc.ScratchXmm();
|
||||
const Xbyak::Xmm operand1 = ctx.reg_alloc.UseXmm(args[0]);
|
||||
const Xbyak::Xmm operand2 = ctx.reg_alloc.UseXmm(args[1]);
|
||||
const Xbyak::Xmm tmp = ctx.reg_alloc.ScratchXmm();
|
||||
const Xbyak::Xmm mask = ctx.reg_alloc.ScratchXmm();
|
||||
const Xbyak::Xmm result = ctx.reg_alloc.ScratchXmm();
|
||||
const Xbyak::Xmm operand1 = ctx.reg_alloc.UseXmm(args[0]);
|
||||
const Xbyak::Xmm operand2 = ctx.reg_alloc.UseXmm(args[1]);
|
||||
const Xbyak::Xmm tmp = ctx.reg_alloc.ScratchXmm();
|
||||
const Xbyak::Xmm mask = ctx.reg_alloc.ScratchXmm();
|
||||
|
||||
Xbyak::Label end, fallback;
|
||||
Xbyak::Label end, fallback;
|
||||
|
||||
code.vmovaps(result, GetVectorOf<fsize, false, 0, 3>(code));
|
||||
FCODE(vfnmadd231p)(result, operand1, operand2);
|
||||
code.vmovaps(result, GetVectorOf<fsize, false, 0, 3>(code));
|
||||
FCODE(vfnmadd231p)(result, operand1, operand2);
|
||||
|
||||
// An explanation for this is given in EmitFPRSqrtStepFused.
|
||||
code.vmovaps(mask, GetVectorOf<fsize, fsize == 32 ? 0x7f000000 : 0x7fe0000000000000>(code));
|
||||
FCODE(vandp)(tmp, result, mask);
|
||||
if constexpr (fsize == 32) {
|
||||
code.vpcmpeqd(tmp, tmp, mask);
|
||||
} else {
|
||||
code.vpcmpeqq(tmp, tmp, mask);
|
||||
// An explanation for this is given in EmitFPRSqrtStepFused.
|
||||
code.vmovaps(mask, GetVectorOf<fsize, fsize == 32 ? 0x7f000000 : 0x7fe0000000000000>(code));
|
||||
FCODE(vandp)(tmp, result, mask);
|
||||
if constexpr (fsize == 32) {
|
||||
code.vpcmpeqd(tmp, tmp, mask);
|
||||
} else {
|
||||
code.vpcmpeqq(tmp, tmp, mask);
|
||||
}
|
||||
code.ptest(tmp, tmp);
|
||||
code.jnz(fallback, code.T_NEAR);
|
||||
|
||||
FCODE(vmulp)(result, result, GetVectorOf<fsize, false, -1, 1>(code));
|
||||
code.L(end);
|
||||
|
||||
code.SwitchToFarCode();
|
||||
code.L(fallback);
|
||||
code.sub(rsp, 8);
|
||||
ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, HostLocXmmIdx(result.getIdx()));
|
||||
EmitThreeOpFallbackWithoutRegAlloc(code, ctx, result, operand1, operand2, fallback_fn);
|
||||
ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, HostLocXmmIdx(result.getIdx()));
|
||||
code.add(rsp, 8);
|
||||
code.jmp(end, code.T_NEAR);
|
||||
code.SwitchToNearCode();
|
||||
|
||||
ctx.reg_alloc.DefineValue(inst, result);
|
||||
return;
|
||||
}
|
||||
code.ptest(tmp, tmp);
|
||||
code.jnz(fallback, code.T_NEAR);
|
||||
|
||||
FCODE(vmulp)(result, result, GetVectorOf<fsize, false, -1, 1>(code));
|
||||
code.L(end);
|
||||
|
||||
code.SwitchToFarCode();
|
||||
code.L(fallback);
|
||||
code.sub(rsp, 8);
|
||||
ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, HostLocXmmIdx(result.getIdx()));
|
||||
EmitThreeOpFallbackWithoutRegAlloc(code, ctx, result, operand1, operand2, fallback_fn);
|
||||
ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, HostLocXmmIdx(result.getIdx()));
|
||||
code.add(rsp, 8);
|
||||
code.jmp(end, code.T_NEAR);
|
||||
code.SwitchToNearCode();
|
||||
|
||||
ctx.reg_alloc.DefineValue(inst, result);
|
||||
return;
|
||||
}
|
||||
|
||||
EmitThreeOpFallback(code, ctx, inst, fallback_fn);
|
||||
}
|
||||
|
||||
void EmitX64::EmitFPVectorRSqrtStepFused16(EmitContext& ctx, IR::Inst* inst) {
|
||||
EmitRSqrtStepFused<16>(code, ctx, inst);
|
||||
}
|
||||
|
||||
void EmitX64::EmitFPVectorRSqrtStepFused32(EmitContext& ctx, IR::Inst* inst) {
|
||||
EmitRSqrtStepFused<32>(code, ctx, inst);
|
||||
}
|
||||
|
|
|
@ -19,9 +19,9 @@ template<typename FPT>
|
|||
FPT FPRSqrtStepFused(FPT op1, FPT op2, FPCR fpcr, FPSR& fpsr) {
|
||||
op1 = FPNeg(op1);
|
||||
|
||||
const auto [type1, sign1, value1] = FPUnpack<FPT>(op1, fpcr, fpsr);
|
||||
const auto [type2, sign2, value2] = FPUnpack<FPT>(op2, fpcr, fpsr);
|
||||
|
||||
const auto [type1, sign1, value1] = FPUnpack(op1, fpcr, fpsr);
|
||||
const auto [type2, sign2, value2] = FPUnpack(op2, fpcr, fpsr);
|
||||
|
||||
if (const auto maybe_nan = FPProcessNaNs(type1, type2, op1, op2, fpcr, fpsr)) {
|
||||
return *maybe_nan;
|
||||
}
|
||||
|
@ -37,7 +37,7 @@ FPT FPRSqrtStepFused(FPT op1, FPT op2, FPCR fpcr, FPSR& fpsr) {
|
|||
}
|
||||
|
||||
if (inf1 || inf2) {
|
||||
return FPInfo<FPT>::Infinity(sign1 != sign2);
|
||||
return FPT(FPInfo<FPT>::Infinity(sign1 != sign2));
|
||||
}
|
||||
|
||||
// result_value = (3.0 + (value1 * value2)) / 2.0
|
||||
|
@ -45,11 +45,12 @@ FPT FPRSqrtStepFused(FPT op1, FPT op2, FPCR fpcr, FPSR& fpsr) {
|
|||
result_value.exponent--;
|
||||
|
||||
if (result_value.mantissa == 0) {
|
||||
return FPInfo<FPT>::Zero(fpcr.RMode() == RoundingMode::TowardsMinusInfinity);
|
||||
return FPT(FPInfo<FPT>::Zero(fpcr.RMode() == RoundingMode::TowardsMinusInfinity));
|
||||
}
|
||||
return FPRound<FPT>(result_value, fpcr, fpsr);
|
||||
}
|
||||
|
||||
template u16 FPRSqrtStepFused<u16>(u16 op1, u16 op2, FPCR fpcr, FPSR& fpsr);
|
||||
template u32 FPRSqrtStepFused<u32>(u32 op1, u32 op2, FPCR fpcr, FPSR& fpsr);
|
||||
template u64 FPRSqrtStepFused<u64>(u64 op1, u64 op2, FPCR fpcr, FPSR& fpsr);
|
||||
|
||||
|
|
|
@ -386,7 +386,7 @@ INST(FMULX_vec_2, "FMULX", "01011
|
|||
INST(FCMEQ_reg_2, "FCMEQ (register)", "010111100z1mmmmm111001nnnnnddddd")
|
||||
INST(FRECPS_1, "FRECPS", "01011110010mmmmm001111nnnnnddddd")
|
||||
INST(FRECPS_2, "FRECPS", "010111100z1mmmmm111111nnnnnddddd")
|
||||
//INST(FRSQRTS_1, "FRSQRTS", "01011110110mmmmm001111nnnnnddddd")
|
||||
INST(FRSQRTS_1, "FRSQRTS", "01011110110mmmmm001111nnnnnddddd")
|
||||
INST(FRSQRTS_2, "FRSQRTS", "010111101z1mmmmm111111nnnnnddddd")
|
||||
//INST(FCMGE_reg_1, "FCMGE (register)", "01111110010mmmmm001001nnnnnddddd")
|
||||
INST(FCMGE_reg_2, "FCMGE (register)", "011111100z1mmmmm111001nnnnnddddd")
|
||||
|
@ -576,7 +576,7 @@ INST(INS_elt, "INS (element)", "01101
|
|||
//INST(FMULX_vec_3, "FMULX", "0Q001110010mmmmm000111nnnnnddddd")
|
||||
//INST(FCMEQ_reg_3, "FCMEQ (register)", "0Q001110010mmmmm001001nnnnnddddd")
|
||||
INST(FRECPS_3, "FRECPS", "0Q001110010mmmmm001111nnnnnddddd")
|
||||
//INST(FRSQRTS_3, "FRSQRTS", "0Q001110110mmmmm001111nnnnnddddd")
|
||||
INST(FRSQRTS_3, "FRSQRTS", "0Q001110110mmmmm001111nnnnnddddd")
|
||||
//INST(FCMGE_reg_3, "FCMGE (register)", "0Q101110010mmmmm001001nnnnnddddd")
|
||||
//INST(FACGE_3, "FACGE", "0Q101110010mmmmm001011nnnnnddddd")
|
||||
//INST(FABD_3, "FABD", "0Q101110110mmmmm000101nnnnnddddd")
|
||||
|
|
|
@ -316,6 +316,17 @@ bool TranslatorVisitor::FRECPS_2(bool sz, Vec Vm, Vec Vn, Vec Vd) {
|
|||
return true;
|
||||
}
|
||||
|
||||
bool TranslatorVisitor::FRSQRTS_1(Vec Vm, Vec Vn, Vec Vd) {
|
||||
const size_t esize = 16;
|
||||
|
||||
const IR::U16 operand1 = V_scalar(esize, Vn);
|
||||
const IR::U16 operand2 = V_scalar(esize, Vm);
|
||||
const IR::U16 result = ir.FPRSqrtStepFused(operand1, operand2);
|
||||
|
||||
V_scalar(esize, Vd, result);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool TranslatorVisitor::FRSQRTS_2(bool sz, Vec Vm, Vec Vn, Vec Vd) {
|
||||
const size_t esize = sz ? 64 : 32;
|
||||
|
||||
|
|
|
@ -965,6 +965,18 @@ bool TranslatorVisitor::FRECPS_4(bool Q, bool sz, Vec Vm, Vec Vn, Vec Vd) {
|
|||
return true;
|
||||
}
|
||||
|
||||
bool TranslatorVisitor::FRSQRTS_3(bool Q, Vec Vm, Vec Vn, Vec Vd) {
|
||||
const size_t esize = 16;
|
||||
const size_t datasize = Q ? 128 : 64;
|
||||
|
||||
const IR::U128 operand1 = V(datasize, Vn);
|
||||
const IR::U128 operand2 = V(datasize, Vm);
|
||||
const IR::U128 result = ir.FPVectorRSqrtStepFused(esize, operand1, operand2);
|
||||
|
||||
V(datasize, Vd, result);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool TranslatorVisitor::FRSQRTS_4(bool Q, bool sz, Vec Vm, Vec Vn, Vec Vd) {
|
||||
if (sz && !Q) {
|
||||
return ReservedValue();
|
||||
|
|
|
@ -1997,11 +1997,20 @@ U16U32U64 IREmitter::FPRSqrtEstimate(const U16U32U64& a) {
|
|||
}
|
||||
}
|
||||
|
||||
U32U64 IREmitter::FPRSqrtStepFused(const U32U64& a, const U32U64& b) {
|
||||
if (a.GetType() == Type::U32) {
|
||||
U16U32U64 IREmitter::FPRSqrtStepFused(const U16U32U64& a, const U16U32U64& b) {
|
||||
ASSERT(a.GetType() == b.GetType());
|
||||
|
||||
switch (a.GetType()) {
|
||||
case Type::U16:
|
||||
return Inst<U16>(Opcode::FPRSqrtStepFused16, a, b);
|
||||
case Type::U32:
|
||||
return Inst<U32>(Opcode::FPRSqrtStepFused32, a, b);
|
||||
case Type::U64:
|
||||
return Inst<U64>(Opcode::FPRSqrtStepFused64, a, b);
|
||||
default:
|
||||
UNREACHABLE();
|
||||
return U16U32U64{};
|
||||
}
|
||||
return Inst<U64>(Opcode::FPRSqrtStepFused64, a, b);
|
||||
}
|
||||
|
||||
U32U64 IREmitter::FPSqrt(const U32U64& a) {
|
||||
|
@ -2335,6 +2344,8 @@ U128 IREmitter::FPVectorRSqrtEstimate(size_t esize, const U128& a) {
|
|||
|
||||
U128 IREmitter::FPVectorRSqrtStepFused(size_t esize, const U128& a, const U128& b) {
|
||||
switch (esize) {
|
||||
case 16:
|
||||
return Inst<U128>(Opcode::FPVectorRSqrtStepFused16, a, b);
|
||||
case 32:
|
||||
return Inst<U128>(Opcode::FPVectorRSqrtStepFused32, a, b);
|
||||
case 64:
|
||||
|
|
|
@ -310,7 +310,7 @@ public:
|
|||
U16U32U64 FPRecipStepFused(const U16U32U64& a, const U16U32U64& b);
|
||||
U16U32U64 FPRoundInt(const U16U32U64& a, FP::RoundingMode rounding, bool exact);
|
||||
U16U32U64 FPRSqrtEstimate(const U16U32U64& a);
|
||||
U32U64 FPRSqrtStepFused(const U32U64& a, const U32U64& b);
|
||||
U16U32U64 FPRSqrtStepFused(const U16U32U64& a, const U16U32U64& b);
|
||||
U32U64 FPSqrt(const U32U64& a);
|
||||
U32U64 FPSub(const U32U64& a, const U32U64& b, bool fpcr_controlled);
|
||||
U16 FPDoubleToHalf(const U64& a, FP::RoundingMode rounding);
|
||||
|
|
|
@ -287,6 +287,7 @@ bool Inst::ReadsFromAndWritesToFPSRCumulativeExceptionBits() const {
|
|||
case Opcode::FPRSqrtEstimate16:
|
||||
case Opcode::FPRSqrtEstimate32:
|
||||
case Opcode::FPRSqrtEstimate64:
|
||||
case Opcode::FPRSqrtStepFused16:
|
||||
case Opcode::FPRSqrtStepFused32:
|
||||
case Opcode::FPRSqrtStepFused64:
|
||||
case Opcode::FPSqrt32:
|
||||
|
@ -350,6 +351,7 @@ bool Inst::ReadsFromAndWritesToFPSRCumulativeExceptionBits() const {
|
|||
case Opcode::FPVectorRSqrtEstimate16:
|
||||
case Opcode::FPVectorRSqrtEstimate32:
|
||||
case Opcode::FPVectorRSqrtEstimate64:
|
||||
case Opcode::FPVectorRSqrtStepFused16:
|
||||
case Opcode::FPVectorRSqrtStepFused32:
|
||||
case Opcode::FPVectorRSqrtStepFused64:
|
||||
case Opcode::FPVectorSqrt32:
|
||||
|
|
|
@ -506,6 +506,7 @@ OPCODE(FPRoundInt64, U64, U64,
|
|||
OPCODE(FPRSqrtEstimate16, U16, U16 )
|
||||
OPCODE(FPRSqrtEstimate32, U32, U32 )
|
||||
OPCODE(FPRSqrtEstimate64, U64, U64 )
|
||||
OPCODE(FPRSqrtStepFused16, U16, U16, U16 )
|
||||
OPCODE(FPRSqrtStepFused32, U32, U32, U32 )
|
||||
OPCODE(FPRSqrtStepFused64, U64, U64, U64 )
|
||||
OPCODE(FPSqrt32, U32, U32 )
|
||||
|
@ -585,6 +586,7 @@ OPCODE(FPVectorRoundInt64, U128, U128
|
|||
OPCODE(FPVectorRSqrtEstimate16, U128, U128 )
|
||||
OPCODE(FPVectorRSqrtEstimate32, U128, U128 )
|
||||
OPCODE(FPVectorRSqrtEstimate64, U128, U128 )
|
||||
OPCODE(FPVectorRSqrtStepFused16, U128, U128, U128 )
|
||||
OPCODE(FPVectorRSqrtStepFused32, U128, U128, U128 )
|
||||
OPCODE(FPVectorRSqrtStepFused64, U128, U128, U128 )
|
||||
OPCODE(FPVectorSqrt32, U128, U128 )
|
||||
|
|
Loading…
Reference in a new issue