fp/unpacked: Implement FPRound

This commit is contained in:
MerryMage 2018-06-28 21:46:02 +01:00
parent 55d590c01f
commit 8668d61881
2 changed files with 139 additions and 0 deletions

View file

@ -7,6 +7,7 @@
#include "common/fp/info.h"
#include "common/fp/process_exception.h"
#include "common/fp/unpacked.h"
#include "common/safe_ops.h"
namespace Dynarmic::FP {
@ -51,4 +52,128 @@ std::tuple<FPType, bool, FPUnpacked<u64>> FPUnpack(FPT op, FPCR fpcr, FPSR& fpsr
template std::tuple<FPType, bool, FPUnpacked<u64>> FPUnpack<u32>(u32 op, FPCR fpcr, FPSR& fpsr);
template std::tuple<FPType, bool, FPUnpacked<u64>> FPUnpack<u64>(u64 op, FPCR fpcr, FPSR& fpsr);
template<size_t F, typename MantissaT>
std::tuple<bool, int, MantissaT, MantissaT> Normalize(FPUnpacked<MantissaT> op) {
const int highest_set_bit = Common::HighestSetBit(op.mantissa);
const int shift_amount = highest_set_bit - static_cast<int>(F);
const MantissaT mantissa = Safe::LogicalShiftRight(op.mantissa, shift_amount);
const MantissaT error = Safe::LogicalShiftRightDouble(op.mantissa, static_cast<MantissaT>(0), shift_amount);
const int exponent = op.exponent + highest_set_bit;
return std::make_tuple(op.sign, exponent, mantissa, error);
}
template<typename FPT, typename MantissaT>
FPT FPRoundBase(FPUnpacked<MantissaT> op, FPCR fpcr, RoundingMode rounding, FPSR& fpsr) {
ASSERT(op.mantissa != 0);
ASSERT(rounding != RoundingMode::ToNearest_TieAwayFromZero);
constexpr int minimum_exp = FPInfo<FPT>::exponent_min;
constexpr size_t E = FPInfo<FPT>::exponent_width;
constexpr size_t F = FPInfo<FPT>::explicit_mantissa_width;
constexpr bool isFP16 = FPInfo<FPT>::total_width == 16;
auto [sign, exponent, mantissa, error] = Normalize<F>(op);
if (((!isFP16 && fpcr.FZ()) || (isFP16 && fpcr.FZ16())) && exponent < minimum_exp) {
fpsr.UFC(true);
return FPInfo<FPT>::Zero(sign);
}
int biased_exp = std::max<int>(exponent - minimum_exp + 1, 0);
if (biased_exp == 0) {
error = Safe::LogicalShiftRightDouble(mantissa, error, minimum_exp - exponent);
mantissa = Safe::LogicalShiftRight(mantissa, minimum_exp - exponent);
}
if (biased_exp == 0 && (error != 0 || fpcr.UFE())) {
FPProcessException(FPExc::Underflow, fpcr, fpsr);
}
bool round_up = false, overflow_to_inf = false;
switch (rounding) {
case RoundingMode::ToNearest_TieEven: {
constexpr MantissaT half = static_cast<MantissaT>(1) << (Common::BitSize<MantissaT>() - 1);
round_up = (error > half) || (error == half && Common::Bit<0>(mantissa));
overflow_to_inf = true;
break;
}
case RoundingMode::TowardsPlusInfinity:
round_up = error != 0 && !sign;
overflow_to_inf = !sign;
break;
case RoundingMode::TowardsMinusInfinity:
round_up = error != 0 && sign;
overflow_to_inf = sign;
break;
default:
break;
}
if (round_up) {
if ((mantissa & FPInfo<FPT>::mantissa_mask) == FPInfo<FPT>::mantissa_mask) {
// Overflow on rounding up is going to happen
if (mantissa == FPInfo<FPT>::mantissa_mask) {
// Rounding up from denormal to normal
mantissa++;
biased_exp++;
} else {
// Rounding up to next exponent
mantissa = (mantissa + 1) / 2;
biased_exp++;
}
} else {
mantissa++;
}
}
if (error != 0 && rounding == RoundingMode::ToOdd) {
mantissa = Common::ModifyBit<0>(mantissa, true);
}
FPT result = 0;
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable:4127) // C4127: conditional expression is constant
#endif
if (!isFP16 || !fpcr.AHP()) {
#ifdef _MSC_VER
#pragma warning(pop)
#endif
constexpr int max_biased_exp = (1 << E) - 1;
if (biased_exp >= max_biased_exp) {
result = overflow_to_inf ? FPInfo<FPT>::Infinity(sign) : FPInfo<FPT>::MaxNormal(sign);
FPProcessException(FPExc::Overflow, fpcr, fpsr);
FPProcessException(FPExc::Inexact, fpcr, fpsr);
} else {
result = sign ? 1 : 0;
result <<= E;
result += biased_exp;
result <<= F;
result |= static_cast<FPT>(mantissa) & FPInfo<FPT>::mantissa_mask;
if (error != 0) {
FPProcessException(FPExc::Inexact, fpcr, fpsr);
}
}
} else {
constexpr int max_biased_exp = (1 << E);
if (biased_exp >= max_biased_exp) {
result = sign ? 0xFFFF : 0x7FFF;
FPProcessException(FPExc::InvalidOp, fpcr, fpsr);
} else {
result = sign ? 1 : 0;
result <<= E;
result += biased_exp;
result <<= F;
result |= static_cast<FPT>(mantissa) & FPInfo<FPT>::mantissa_mask;
if (error != 0) {
FPProcessException(FPExc::Inexact, fpcr, fpsr);
}
}
}
return result;
}
template u32 FPRoundBase<u32, u64>(FPUnpacked<u64> op, FPCR fpcr, RoundingMode rounding, FPSR& fpsr);
template u64 FPRoundBase<u64, u64>(FPUnpacked<u64> op, FPCR fpcr, RoundingMode rounding, FPSR& fpsr);
} // namespace Dynarmic::FP

View file

@ -40,4 +40,18 @@ inline bool operator==(const FPUnpacked<MantissaT>& a, const FPUnpacked<Mantissa
template<typename FPT>
std::tuple<FPType, bool, FPUnpacked<u64>> FPUnpack(FPT op, FPCR fpcr, FPSR& fpsr);
template<typename FPT, typename MantissaT>
FPT FPRoundBase(FPUnpacked<MantissaT> op, FPCR fpcr, RoundingMode rounding, FPSR& fpsr);
template<typename FPT, typename MantissaT>
FPT FPRound(FPUnpacked<MantissaT> op, FPCR fpcr, RoundingMode rounding, FPSR& fpsr) {
fpcr.AHP(false);
return FPRoundBase<FPT, MantissaT>(op, fpcr, rounding, fpsr);
}
template<typename FPT, typename MantissaT>
FPT FPRound(FPUnpacked<MantissaT> op, FPCR fpcr, FPSR& fpsr) {
return FPRound<FPT, MantissaT>(op, fpcr, fpcr.RMode(), fpsr);
}
} // namespace Dynarmic::FP