backend/emit_x64_memory: Enforce memory ordering

This commit is contained in:
merry 2022-03-29 20:57:34 +01:00
parent 675efecf47
commit 9cadab8fa9
8 changed files with 333 additions and 206 deletions

View file

@ -74,9 +74,9 @@ protected:
void (*memory_read_128)() = nullptr; // Dummy void (*memory_read_128)() = nullptr; // Dummy
void (*memory_write_128)() = nullptr; // Dummy void (*memory_write_128)() = nullptr; // Dummy
std::map<std::tuple<size_t, int, int>, void (*)()> read_fallbacks; std::map<std::tuple<bool, size_t, int, int>, void (*)()> read_fallbacks;
std::map<std::tuple<size_t, int, int>, void (*)()> write_fallbacks; std::map<std::tuple<bool, size_t, int, int>, void (*)()> write_fallbacks;
std::map<std::tuple<size_t, int, int>, void (*)()> exclusive_write_fallbacks; std::map<std::tuple<bool, size_t, int, int>, void (*)()> exclusive_write_fallbacks;
void GenFastmemFallbacks(); void GenFastmemFallbacks();
const void* terminal_handler_pop_rsb_hint; const void* terminal_handler_pop_rsb_hint;

View file

@ -47,15 +47,19 @@ void A32EmitX64::GenFastmemFallbacks() {
{64, Devirtualize<&A32::UserCallbacks::MemoryWriteExclusive64>(conf.callbacks)}, {64, Devirtualize<&A32::UserCallbacks::MemoryWriteExclusive64>(conf.callbacks)},
}}; }};
for (bool ordered : {false, true}) {
for (int vaddr_idx : idxes) { for (int vaddr_idx : idxes) {
for (int value_idx : idxes) { for (int value_idx : idxes) {
for (const auto& [bitsize, callback] : read_callbacks) { for (const auto& [bitsize, callback] : read_callbacks) {
code.align(); code.align();
read_fallbacks[std::make_tuple(bitsize, vaddr_idx, value_idx)] = code.getCurr<void (*)()>(); read_fallbacks[std::make_tuple(ordered, bitsize, vaddr_idx, value_idx)] = code.getCurr<void (*)()>();
ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, HostLocRegIdx(value_idx)); ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, HostLocRegIdx(value_idx));
if (vaddr_idx != code.ABI_PARAM2.getIdx()) { if (vaddr_idx != code.ABI_PARAM2.getIdx()) {
code.mov(code.ABI_PARAM2, Xbyak::Reg64{vaddr_idx}); code.mov(code.ABI_PARAM2, Xbyak::Reg64{vaddr_idx});
} }
if (ordered) {
code.mfence();
}
callback.EmitCall(code); callback.EmitCall(code);
if (value_idx != code.ABI_RETURN.getIdx()) { if (value_idx != code.ABI_RETURN.getIdx()) {
code.mov(Xbyak::Reg64{value_idx}, code.ABI_RETURN); code.mov(Xbyak::Reg64{value_idx}, code.ABI_RETURN);
@ -63,12 +67,12 @@ void A32EmitX64::GenFastmemFallbacks() {
ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, HostLocRegIdx(value_idx)); ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, HostLocRegIdx(value_idx));
code.ZeroExtendFrom(bitsize, Xbyak::Reg64{value_idx}); code.ZeroExtendFrom(bitsize, Xbyak::Reg64{value_idx});
code.ret(); code.ret();
PerfMapRegister(read_fallbacks[std::make_tuple(bitsize, vaddr_idx, value_idx)], code.getCurr(), fmt::format("a32_read_fallback_{}", bitsize)); PerfMapRegister(read_fallbacks[std::make_tuple(ordered, bitsize, vaddr_idx, value_idx)], code.getCurr(), fmt::format("a32_read_fallback_{}", bitsize));
} }
for (const auto& [bitsize, callback] : write_callbacks) { for (const auto& [bitsize, callback] : write_callbacks) {
code.align(); code.align();
write_fallbacks[std::make_tuple(bitsize, vaddr_idx, value_idx)] = code.getCurr<void (*)()>(); write_fallbacks[std::make_tuple(ordered, bitsize, vaddr_idx, value_idx)] = code.getCurr<void (*)()>();
ABI_PushCallerSaveRegistersAndAdjustStack(code); ABI_PushCallerSaveRegistersAndAdjustStack(code);
if (vaddr_idx == code.ABI_PARAM3.getIdx() && value_idx == code.ABI_PARAM2.getIdx()) { if (vaddr_idx == code.ABI_PARAM3.getIdx() && value_idx == code.ABI_PARAM2.getIdx()) {
code.xchg(code.ABI_PARAM2, code.ABI_PARAM3); code.xchg(code.ABI_PARAM2, code.ABI_PARAM3);
@ -87,14 +91,17 @@ void A32EmitX64::GenFastmemFallbacks() {
} }
code.ZeroExtendFrom(bitsize, code.ABI_PARAM3); code.ZeroExtendFrom(bitsize, code.ABI_PARAM3);
callback.EmitCall(code); callback.EmitCall(code);
if (ordered) {
code.mfence();
}
ABI_PopCallerSaveRegistersAndAdjustStack(code); ABI_PopCallerSaveRegistersAndAdjustStack(code);
code.ret(); code.ret();
PerfMapRegister(write_fallbacks[std::make_tuple(bitsize, vaddr_idx, value_idx)], code.getCurr(), fmt::format("a32_write_fallback_{}", bitsize)); PerfMapRegister(write_fallbacks[std::make_tuple(ordered, bitsize, vaddr_idx, value_idx)], code.getCurr(), fmt::format("a32_write_fallback_{}", bitsize));
} }
for (const auto& [bitsize, callback] : exclusive_write_callbacks) { for (const auto& [bitsize, callback] : exclusive_write_callbacks) {
code.align(); code.align();
exclusive_write_fallbacks[std::make_tuple(bitsize, vaddr_idx, value_idx)] = code.getCurr<void (*)()>(); exclusive_write_fallbacks[std::make_tuple(ordered, bitsize, vaddr_idx, value_idx)] = code.getCurr<void (*)()>();
ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, HostLoc::RAX); ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, HostLoc::RAX);
if (vaddr_idx == code.ABI_PARAM3.getIdx() && value_idx == code.ABI_PARAM2.getIdx()) { if (vaddr_idx == code.ABI_PARAM3.getIdx() && value_idx == code.ABI_PARAM2.getIdx()) {
code.xchg(code.ABI_PARAM2, code.ABI_PARAM3); code.xchg(code.ABI_PARAM2, code.ABI_PARAM3);
@ -117,7 +124,8 @@ void A32EmitX64::GenFastmemFallbacks() {
callback.EmitCall(code); callback.EmitCall(code);
ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, HostLoc::RAX); ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, HostLoc::RAX);
code.ret(); code.ret();
PerfMapRegister(exclusive_write_fallbacks[std::make_tuple(bitsize, vaddr_idx, value_idx)], code.getCurr(), fmt::format("a32_exclusive_write_fallback_{}", bitsize)); PerfMapRegister(exclusive_write_fallbacks[std::make_tuple(ordered, bitsize, vaddr_idx, value_idx)], code.getCurr(), fmt::format("a32_exclusive_write_fallback_{}", bitsize));
}
} }
} }
} }

View file

@ -71,9 +71,9 @@ protected:
void (*memory_exclusive_write_128)(); void (*memory_exclusive_write_128)();
void GenMemory128Accessors(); void GenMemory128Accessors();
std::map<std::tuple<size_t, int, int>, void (*)()> read_fallbacks; std::map<std::tuple<bool, size_t, int, int>, void (*)()> read_fallbacks;
std::map<std::tuple<size_t, int, int>, void (*)()> write_fallbacks; std::map<std::tuple<bool, size_t, int, int>, void (*)()> write_fallbacks;
std::map<std::tuple<size_t, int, int>, void (*)()> exclusive_write_fallbacks; std::map<std::tuple<bool, size_t, int, int>, void (*)()> exclusive_write_fallbacks;
void GenFastmemFallbacks(); void GenFastmemFallbacks();
const void* terminal_handler_pop_rsb_hint; const void* terminal_handler_pop_rsb_hint;

View file

@ -131,6 +131,7 @@ void A64EmitX64::GenFastmemFallbacks() {
{64, Devirtualize<&A64::UserCallbacks::MemoryWriteExclusive64>(conf.callbacks)}, {64, Devirtualize<&A64::UserCallbacks::MemoryWriteExclusive64>(conf.callbacks)},
}}; }};
for (bool ordered : {false, true}) {
for (int vaddr_idx : idxes) { for (int vaddr_idx : idxes) {
if (vaddr_idx == 4 || vaddr_idx == 15) { if (vaddr_idx == 4 || vaddr_idx == 15) {
continue; continue;
@ -138,21 +139,24 @@ void A64EmitX64::GenFastmemFallbacks() {
for (int value_idx : idxes) { for (int value_idx : idxes) {
code.align(); code.align();
read_fallbacks[std::make_tuple(128, vaddr_idx, value_idx)] = code.getCurr<void (*)()>(); read_fallbacks[std::make_tuple(ordered, 128, vaddr_idx, value_idx)] = code.getCurr<void (*)()>();
ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, HostLocXmmIdx(value_idx)); ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, HostLocXmmIdx(value_idx));
if (vaddr_idx != code.ABI_PARAM2.getIdx()) { if (vaddr_idx != code.ABI_PARAM2.getIdx()) {
code.mov(code.ABI_PARAM2, Xbyak::Reg64{vaddr_idx}); code.mov(code.ABI_PARAM2, Xbyak::Reg64{vaddr_idx});
} }
if (ordered) {
code.mfence();
}
code.call(memory_read_128); code.call(memory_read_128);
if (value_idx != 1) { if (value_idx != 1) {
code.movaps(Xbyak::Xmm{value_idx}, xmm1); code.movaps(Xbyak::Xmm{value_idx}, xmm1);
} }
ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, HostLocXmmIdx(value_idx)); ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, HostLocXmmIdx(value_idx));
code.ret(); code.ret();
PerfMapRegister(read_fallbacks[std::make_tuple(128, vaddr_idx, value_idx)], code.getCurr(), "a64_read_fallback_128"); PerfMapRegister(read_fallbacks[std::make_tuple(ordered, 128, vaddr_idx, value_idx)], code.getCurr(), "a64_read_fallback_128");
code.align(); code.align();
write_fallbacks[std::make_tuple(128, vaddr_idx, value_idx)] = code.getCurr<void (*)()>(); write_fallbacks[std::make_tuple(ordered, 128, vaddr_idx, value_idx)] = code.getCurr<void (*)()>();
ABI_PushCallerSaveRegistersAndAdjustStack(code); ABI_PushCallerSaveRegistersAndAdjustStack(code);
if (vaddr_idx != code.ABI_PARAM2.getIdx()) { if (vaddr_idx != code.ABI_PARAM2.getIdx()) {
code.mov(code.ABI_PARAM2, Xbyak::Reg64{vaddr_idx}); code.mov(code.ABI_PARAM2, Xbyak::Reg64{vaddr_idx});
@ -161,12 +165,15 @@ void A64EmitX64::GenFastmemFallbacks() {
code.movaps(xmm1, Xbyak::Xmm{value_idx}); code.movaps(xmm1, Xbyak::Xmm{value_idx});
} }
code.call(memory_write_128); code.call(memory_write_128);
if (ordered) {
code.mfence();
}
ABI_PopCallerSaveRegistersAndAdjustStack(code); ABI_PopCallerSaveRegistersAndAdjustStack(code);
code.ret(); code.ret();
PerfMapRegister(write_fallbacks[std::make_tuple(128, vaddr_idx, value_idx)], code.getCurr(), "a64_write_fallback_128"); PerfMapRegister(write_fallbacks[std::make_tuple(ordered, 128, vaddr_idx, value_idx)], code.getCurr(), "a64_write_fallback_128");
code.align(); code.align();
exclusive_write_fallbacks[std::make_tuple(128, vaddr_idx, value_idx)] = code.getCurr<void (*)()>(); exclusive_write_fallbacks[std::make_tuple(ordered, 128, vaddr_idx, value_idx)] = code.getCurr<void (*)()>();
ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, HostLoc::RAX); ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, HostLoc::RAX);
if (value_idx != 1) { if (value_idx != 1) {
code.movaps(xmm1, Xbyak::Xmm{value_idx}); code.movaps(xmm1, Xbyak::Xmm{value_idx});
@ -185,7 +192,7 @@ void A64EmitX64::GenFastmemFallbacks() {
code.call(memory_exclusive_write_128); code.call(memory_exclusive_write_128);
ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, HostLoc::RAX); ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, HostLoc::RAX);
code.ret(); code.ret();
PerfMapRegister(exclusive_write_fallbacks[std::make_tuple(128, vaddr_idx, value_idx)], code.getCurr(), "a64_write_fallback_128"); PerfMapRegister(exclusive_write_fallbacks[std::make_tuple(ordered, 128, vaddr_idx, value_idx)], code.getCurr(), "a64_exclusive_write_fallback_128");
if (value_idx == 4 || value_idx == 15) { if (value_idx == 4 || value_idx == 15) {
continue; continue;
@ -193,11 +200,14 @@ void A64EmitX64::GenFastmemFallbacks() {
for (const auto& [bitsize, callback] : read_callbacks) { for (const auto& [bitsize, callback] : read_callbacks) {
code.align(); code.align();
read_fallbacks[std::make_tuple(bitsize, vaddr_idx, value_idx)] = code.getCurr<void (*)()>(); read_fallbacks[std::make_tuple(ordered, bitsize, vaddr_idx, value_idx)] = code.getCurr<void (*)()>();
ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, HostLocRegIdx(value_idx)); ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, HostLocRegIdx(value_idx));
if (vaddr_idx != code.ABI_PARAM2.getIdx()) { if (vaddr_idx != code.ABI_PARAM2.getIdx()) {
code.mov(code.ABI_PARAM2, Xbyak::Reg64{vaddr_idx}); code.mov(code.ABI_PARAM2, Xbyak::Reg64{vaddr_idx});
} }
if (ordered) {
code.mfence();
}
callback.EmitCall(code); callback.EmitCall(code);
if (value_idx != code.ABI_RETURN.getIdx()) { if (value_idx != code.ABI_RETURN.getIdx()) {
code.mov(Xbyak::Reg64{value_idx}, code.ABI_RETURN); code.mov(Xbyak::Reg64{value_idx}, code.ABI_RETURN);
@ -205,12 +215,12 @@ void A64EmitX64::GenFastmemFallbacks() {
ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, HostLocRegIdx(value_idx)); ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, HostLocRegIdx(value_idx));
code.ZeroExtendFrom(bitsize, Xbyak::Reg64{value_idx}); code.ZeroExtendFrom(bitsize, Xbyak::Reg64{value_idx});
code.ret(); code.ret();
PerfMapRegister(read_fallbacks[std::make_tuple(bitsize, vaddr_idx, value_idx)], code.getCurr(), fmt::format("a64_read_fallback_{}", bitsize)); PerfMapRegister(read_fallbacks[std::make_tuple(ordered, bitsize, vaddr_idx, value_idx)], code.getCurr(), fmt::format("a64_read_fallback_{}", bitsize));
} }
for (const auto& [bitsize, callback] : write_callbacks) { for (const auto& [bitsize, callback] : write_callbacks) {
code.align(); code.align();
write_fallbacks[std::make_tuple(bitsize, vaddr_idx, value_idx)] = code.getCurr<void (*)()>(); write_fallbacks[std::make_tuple(ordered, bitsize, vaddr_idx, value_idx)] = code.getCurr<void (*)()>();
ABI_PushCallerSaveRegistersAndAdjustStack(code); ABI_PushCallerSaveRegistersAndAdjustStack(code);
if (vaddr_idx == code.ABI_PARAM3.getIdx() && value_idx == code.ABI_PARAM2.getIdx()) { if (vaddr_idx == code.ABI_PARAM3.getIdx() && value_idx == code.ABI_PARAM2.getIdx()) {
code.xchg(code.ABI_PARAM2, code.ABI_PARAM3); code.xchg(code.ABI_PARAM2, code.ABI_PARAM3);
@ -229,14 +239,17 @@ void A64EmitX64::GenFastmemFallbacks() {
} }
code.ZeroExtendFrom(bitsize, code.ABI_PARAM3); code.ZeroExtendFrom(bitsize, code.ABI_PARAM3);
callback.EmitCall(code); callback.EmitCall(code);
if (ordered) {
code.mfence();
}
ABI_PopCallerSaveRegistersAndAdjustStack(code); ABI_PopCallerSaveRegistersAndAdjustStack(code);
code.ret(); code.ret();
PerfMapRegister(write_fallbacks[std::make_tuple(bitsize, vaddr_idx, value_idx)], code.getCurr(), fmt::format("a64_write_fallback_{}", bitsize)); PerfMapRegister(write_fallbacks[std::make_tuple(ordered, bitsize, vaddr_idx, value_idx)], code.getCurr(), fmt::format("a64_write_fallback_{}", bitsize));
} }
for (const auto& [bitsize, callback] : exclusive_write_callbacks) { for (const auto& [bitsize, callback] : exclusive_write_callbacks) {
code.align(); code.align();
exclusive_write_fallbacks[std::make_tuple(bitsize, vaddr_idx, value_idx)] = code.getCurr<void (*)()>(); exclusive_write_fallbacks[std::make_tuple(ordered, bitsize, vaddr_idx, value_idx)] = code.getCurr<void (*)()>();
ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, HostLoc::RAX); ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, HostLoc::RAX);
if (vaddr_idx == code.ABI_PARAM3.getIdx() && value_idx == code.ABI_PARAM2.getIdx()) { if (vaddr_idx == code.ABI_PARAM3.getIdx() && value_idx == code.ABI_PARAM2.getIdx()) {
code.xchg(code.ABI_PARAM2, code.ABI_PARAM3); code.xchg(code.ABI_PARAM2, code.ABI_PARAM3);
@ -259,7 +272,8 @@ void A64EmitX64::GenFastmemFallbacks() {
callback.EmitCall(code); callback.EmitCall(code);
ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, HostLoc::RAX); ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, HostLoc::RAX);
code.ret(); code.ret();
PerfMapRegister(exclusive_write_fallbacks[std::make_tuple(bitsize, vaddr_idx, value_idx)], code.getCurr(), fmt::format("a64_exclusive_write_fallback_{}", bitsize)); PerfMapRegister(exclusive_write_fallbacks[std::make_tuple(ordered, bitsize, vaddr_idx, value_idx)], code.getCurr(), fmt::format("a64_exclusive_write_fallback_{}", bitsize));
}
} }
} }
} }

View file

@ -52,16 +52,23 @@ FakeCall AxxEmitX64::FastmemCallback(u64 rip_) {
template<std::size_t bitsize, auto callback> template<std::size_t bitsize, auto callback>
void AxxEmitX64::EmitMemoryRead(AxxEmitContext& ctx, IR::Inst* inst) { void AxxEmitX64::EmitMemoryRead(AxxEmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst); auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const bool ordered = IsOrdered(args[1].GetImmediateAccType());
const auto fastmem_marker = ShouldFastmem(ctx, inst); const auto fastmem_marker = ShouldFastmem(ctx, inst);
if (!conf.page_table && !fastmem_marker) { if (!conf.page_table && !fastmem_marker) {
// Neither fastmem nor page table: Use callbacks // Neither fastmem nor page table: Use callbacks
if constexpr (bitsize == 128) { if constexpr (bitsize == 128) {
ctx.reg_alloc.HostCall(nullptr, {}, args[0]); ctx.reg_alloc.HostCall(nullptr, {}, args[0]);
if (ordered) {
code.mfence();
}
code.CallFunction(memory_read_128); code.CallFunction(memory_read_128);
ctx.reg_alloc.DefineValue(inst, xmm1); ctx.reg_alloc.DefineValue(inst, xmm1);
} else { } else {
ctx.reg_alloc.HostCall(inst, {}, args[0]); ctx.reg_alloc.HostCall(inst, {}, args[0]);
if (ordered) {
code.mfence();
}
Devirtualize<callback>(conf.callbacks).EmitCall(code); Devirtualize<callback>(conf.callbacks).EmitCall(code);
code.ZeroExtendFrom(bitsize, code.ABI_RETURN); code.ZeroExtendFrom(bitsize, code.ABI_RETURN);
} }
@ -71,7 +78,7 @@ void AxxEmitX64::EmitMemoryRead(AxxEmitContext& ctx, IR::Inst* inst) {
const Xbyak::Reg64 vaddr = ctx.reg_alloc.UseGpr(args[0]); const Xbyak::Reg64 vaddr = ctx.reg_alloc.UseGpr(args[0]);
const int value_idx = bitsize == 128 ? ctx.reg_alloc.ScratchXmm().getIdx() : ctx.reg_alloc.ScratchGpr().getIdx(); const int value_idx = bitsize == 128 ? ctx.reg_alloc.ScratchXmm().getIdx() : ctx.reg_alloc.ScratchGpr().getIdx();
const auto wrapped_fn = read_fallbacks[std::make_tuple(bitsize, vaddr.getIdx(), value_idx)]; const auto wrapped_fn = read_fallbacks[std::make_tuple(ordered, bitsize, vaddr.getIdx(), value_idx)];
Xbyak::Label abort, end; Xbyak::Label abort, end;
bool require_abort_handling = false; bool require_abort_handling = false;
@ -80,8 +87,7 @@ void AxxEmitX64::EmitMemoryRead(AxxEmitContext& ctx, IR::Inst* inst) {
// Use fastmem // Use fastmem
const auto src_ptr = EmitFastmemVAddr(code, ctx, abort, vaddr, require_abort_handling); const auto src_ptr = EmitFastmemVAddr(code, ctx, abort, vaddr, require_abort_handling);
const auto location = code.getCurr(); const auto location = EmitReadMemoryMov<bitsize>(code, value_idx, src_ptr, ordered);
EmitReadMemoryMov<bitsize>(code, value_idx, src_ptr);
fastmem_patch_info.emplace( fastmem_patch_info.emplace(
Common::BitCast<u64>(location), Common::BitCast<u64>(location),
@ -96,7 +102,7 @@ void AxxEmitX64::EmitMemoryRead(AxxEmitContext& ctx, IR::Inst* inst) {
ASSERT(conf.page_table); ASSERT(conf.page_table);
const auto src_ptr = EmitVAddrLookup(code, ctx, bitsize, abort, vaddr); const auto src_ptr = EmitVAddrLookup(code, ctx, bitsize, abort, vaddr);
require_abort_handling = true; require_abort_handling = true;
EmitReadMemoryMov<bitsize>(code, value_idx, src_ptr); EmitReadMemoryMov<bitsize>(code, value_idx, src_ptr, ordered);
} }
code.L(end); code.L(end);
@ -118,6 +124,7 @@ void AxxEmitX64::EmitMemoryRead(AxxEmitContext& ctx, IR::Inst* inst) {
template<std::size_t bitsize, auto callback> template<std::size_t bitsize, auto callback>
void AxxEmitX64::EmitMemoryWrite(AxxEmitContext& ctx, IR::Inst* inst) { void AxxEmitX64::EmitMemoryWrite(AxxEmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst); auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const bool ordered = IsOrdered(args[2].GetImmediateAccType());
const auto fastmem_marker = ShouldFastmem(ctx, inst); const auto fastmem_marker = ShouldFastmem(ctx, inst);
if (!conf.page_table && !fastmem_marker) { if (!conf.page_table && !fastmem_marker) {
@ -132,13 +139,18 @@ void AxxEmitX64::EmitMemoryWrite(AxxEmitContext& ctx, IR::Inst* inst) {
ctx.reg_alloc.HostCall(nullptr, {}, args[0], args[1]); ctx.reg_alloc.HostCall(nullptr, {}, args[0], args[1]);
Devirtualize<callback>(conf.callbacks).EmitCall(code); Devirtualize<callback>(conf.callbacks).EmitCall(code);
} }
if (ordered) {
code.mfence();
}
return; return;
} }
const Xbyak::Reg64 vaddr = ctx.reg_alloc.UseGpr(args[0]); const Xbyak::Reg64 vaddr = ctx.reg_alloc.UseGpr(args[0]);
const int value_idx = bitsize == 128 ? ctx.reg_alloc.UseXmm(args[1]).getIdx() : ctx.reg_alloc.UseGpr(args[1]).getIdx(); const int value_idx = bitsize == 128
? ctx.reg_alloc.UseXmm(args[1]).getIdx()
: (ordered ? ctx.reg_alloc.UseScratchGpr(args[1]).getIdx() : ctx.reg_alloc.UseGpr(args[1]).getIdx());
const auto wrapped_fn = write_fallbacks[std::make_tuple(bitsize, vaddr.getIdx(), value_idx)]; const auto wrapped_fn = write_fallbacks[std::make_tuple(ordered, bitsize, vaddr.getIdx(), value_idx)];
Xbyak::Label abort, end; Xbyak::Label abort, end;
bool require_abort_handling = false; bool require_abort_handling = false;
@ -147,8 +159,7 @@ void AxxEmitX64::EmitMemoryWrite(AxxEmitContext& ctx, IR::Inst* inst) {
// Use fastmem // Use fastmem
const auto dest_ptr = EmitFastmemVAddr(code, ctx, abort, vaddr, require_abort_handling); const auto dest_ptr = EmitFastmemVAddr(code, ctx, abort, vaddr, require_abort_handling);
const auto location = code.getCurr(); const auto location = EmitWriteMemoryMov<bitsize>(code, dest_ptr, value_idx, ordered);
EmitWriteMemoryMov<bitsize>(code, dest_ptr, value_idx);
fastmem_patch_info.emplace( fastmem_patch_info.emplace(
Common::BitCast<u64>(location), Common::BitCast<u64>(location),
@ -163,7 +174,7 @@ void AxxEmitX64::EmitMemoryWrite(AxxEmitContext& ctx, IR::Inst* inst) {
ASSERT(conf.page_table); ASSERT(conf.page_table);
const auto dest_ptr = EmitVAddrLookup(code, ctx, bitsize, abort, vaddr); const auto dest_ptr = EmitVAddrLookup(code, ctx, bitsize, abort, vaddr);
require_abort_handling = true; require_abort_handling = true;
EmitWriteMemoryMov<bitsize>(code, dest_ptr, value_idx); EmitWriteMemoryMov<bitsize>(code, dest_ptr, value_idx, ordered);
} }
code.L(end); code.L(end);
@ -180,6 +191,7 @@ template<std::size_t bitsize, auto callback>
void AxxEmitX64::EmitExclusiveReadMemory(AxxEmitContext& ctx, IR::Inst* inst) { void AxxEmitX64::EmitExclusiveReadMemory(AxxEmitContext& ctx, IR::Inst* inst) {
ASSERT(conf.global_monitor != nullptr); ASSERT(conf.global_monitor != nullptr);
auto args = ctx.reg_alloc.GetArgumentInfo(inst); auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const bool ordered = IsOrdered(args[1].GetImmediateAccType());
if constexpr (bitsize != 128) { if constexpr (bitsize != 128) {
using T = mp::unsigned_integer_of_size<bitsize>; using T = mp::unsigned_integer_of_size<bitsize>;
@ -188,6 +200,9 @@ void AxxEmitX64::EmitExclusiveReadMemory(AxxEmitContext& ctx, IR::Inst* inst) {
code.mov(code.byte[r15 + offsetof(AxxJitState, exclusive_state)], u8(1)); code.mov(code.byte[r15 + offsetof(AxxJitState, exclusive_state)], u8(1));
code.mov(code.ABI_PARAM1, reinterpret_cast<u64>(&conf)); code.mov(code.ABI_PARAM1, reinterpret_cast<u64>(&conf));
if (ordered) {
code.mfence();
}
code.CallLambda( code.CallLambda(
[](AxxUserConfig& conf, Axx::VAddr vaddr) -> T { [](AxxUserConfig& conf, Axx::VAddr vaddr) -> T {
return conf.global_monitor->ReadAndMark<T>(conf.processor_id, vaddr, [&]() -> T { return conf.global_monitor->ReadAndMark<T>(conf.processor_id, vaddr, [&]() -> T {
@ -205,6 +220,9 @@ void AxxEmitX64::EmitExclusiveReadMemory(AxxEmitContext& ctx, IR::Inst* inst) {
code.mov(code.ABI_PARAM1, reinterpret_cast<u64>(&conf)); code.mov(code.ABI_PARAM1, reinterpret_cast<u64>(&conf));
ctx.reg_alloc.AllocStackSpace(16 + ABI_SHADOW_SPACE); ctx.reg_alloc.AllocStackSpace(16 + ABI_SHADOW_SPACE);
code.lea(code.ABI_PARAM3, ptr[rsp + ABI_SHADOW_SPACE]); code.lea(code.ABI_PARAM3, ptr[rsp + ABI_SHADOW_SPACE]);
if (ordered) {
code.mfence();
}
code.CallLambda( code.CallLambda(
[](AxxUserConfig& conf, Axx::VAddr vaddr, Vector& ret) { [](AxxUserConfig& conf, Axx::VAddr vaddr, Vector& ret) {
ret = conf.global_monitor->ReadAndMark<Vector>(conf.processor_id, vaddr, [&]() -> Vector { ret = conf.global_monitor->ReadAndMark<Vector>(conf.processor_id, vaddr, [&]() -> Vector {
@ -222,6 +240,7 @@ template<std::size_t bitsize, auto callback>
void AxxEmitX64::EmitExclusiveWriteMemory(AxxEmitContext& ctx, IR::Inst* inst) { void AxxEmitX64::EmitExclusiveWriteMemory(AxxEmitContext& ctx, IR::Inst* inst) {
ASSERT(conf.global_monitor != nullptr); ASSERT(conf.global_monitor != nullptr);
auto args = ctx.reg_alloc.GetArgumentInfo(inst); auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const bool ordered = IsOrdered(args[2].GetImmediateAccType());
if constexpr (bitsize != 128) { if constexpr (bitsize != 128) {
ctx.reg_alloc.HostCall(inst, {}, args[0], args[1]); ctx.reg_alloc.HostCall(inst, {}, args[0], args[1]);
@ -251,6 +270,9 @@ void AxxEmitX64::EmitExclusiveWriteMemory(AxxEmitContext& ctx, IR::Inst* inst) {
? 0 ? 0
: 1; : 1;
}); });
if (ordered) {
code.mfence();
}
} else { } else {
ctx.reg_alloc.AllocStackSpace(16 + ABI_SHADOW_SPACE); ctx.reg_alloc.AllocStackSpace(16 + ABI_SHADOW_SPACE);
code.lea(code.ABI_PARAM3, ptr[rsp + ABI_SHADOW_SPACE]); code.lea(code.ABI_PARAM3, ptr[rsp + ABI_SHADOW_SPACE]);
@ -264,6 +286,9 @@ void AxxEmitX64::EmitExclusiveWriteMemory(AxxEmitContext& ctx, IR::Inst* inst) {
? 0 ? 0
: 1; : 1;
}); });
if (ordered) {
code.mfence();
}
ctx.reg_alloc.ReleaseStackSpace(16 + ABI_SHADOW_SPACE); ctx.reg_alloc.ReleaseStackSpace(16 + ABI_SHADOW_SPACE);
} }
code.L(end); code.L(end);
@ -278,13 +303,14 @@ void AxxEmitX64::EmitExclusiveReadMemoryInline(AxxEmitContext& ctx, IR::Inst* in
} }
auto args = ctx.reg_alloc.GetArgumentInfo(inst); auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const bool ordered = IsOrdered(args[1].GetImmediateAccType());
const Xbyak::Reg64 vaddr = ctx.reg_alloc.UseGpr(args[0]); const Xbyak::Reg64 vaddr = ctx.reg_alloc.UseGpr(args[0]);
const int value_idx = bitsize == 128 ? ctx.reg_alloc.ScratchXmm().getIdx() : ctx.reg_alloc.ScratchGpr().getIdx(); const int value_idx = bitsize == 128 ? ctx.reg_alloc.ScratchXmm().getIdx() : ctx.reg_alloc.ScratchGpr().getIdx();
const Xbyak::Reg64 tmp = ctx.reg_alloc.ScratchGpr(); const Xbyak::Reg64 tmp = ctx.reg_alloc.ScratchGpr();
const Xbyak::Reg64 tmp2 = ctx.reg_alloc.ScratchGpr(); const Xbyak::Reg64 tmp2 = ctx.reg_alloc.ScratchGpr();
const auto wrapped_fn = read_fallbacks[std::make_tuple(bitsize, vaddr.getIdx(), value_idx)]; const auto wrapped_fn = read_fallbacks[std::make_tuple(ordered, bitsize, vaddr.getIdx(), value_idx)];
EmitExclusiveLock(code, conf, tmp, tmp2.cvt32()); EmitExclusiveLock(code, conf, tmp, tmp2.cvt32());
@ -299,8 +325,7 @@ void AxxEmitX64::EmitExclusiveReadMemoryInline(AxxEmitContext& ctx, IR::Inst* in
const auto src_ptr = EmitFastmemVAddr(code, ctx, abort, vaddr, require_abort_handling); const auto src_ptr = EmitFastmemVAddr(code, ctx, abort, vaddr, require_abort_handling);
const auto location = code.getCurr(); const auto location = EmitReadMemoryMov<bitsize>(code, value_idx, src_ptr, ordered);
EmitReadMemoryMov<bitsize>(code, value_idx, src_ptr);
fastmem_patch_info.emplace( fastmem_patch_info.emplace(
Common::BitCast<u64>(location), Common::BitCast<u64>(location),
@ -325,7 +350,7 @@ void AxxEmitX64::EmitExclusiveReadMemoryInline(AxxEmitContext& ctx, IR::Inst* in
} }
code.mov(tmp, Common::BitCast<u64>(GetExclusiveMonitorValuePointer(conf.global_monitor, conf.processor_id))); code.mov(tmp, Common::BitCast<u64>(GetExclusiveMonitorValuePointer(conf.global_monitor, conf.processor_id)));
EmitWriteMemoryMov<bitsize>(code, tmp, value_idx); EmitWriteMemoryMov<bitsize>(code, tmp, value_idx, false);
EmitExclusiveUnlock(code, conf, tmp, tmp2.cvt32()); EmitExclusiveUnlock(code, conf, tmp, tmp2.cvt32());
@ -345,6 +370,7 @@ void AxxEmitX64::EmitExclusiveWriteMemoryInline(AxxEmitContext& ctx, IR::Inst* i
} }
auto args = ctx.reg_alloc.GetArgumentInfo(inst); auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const bool ordered = IsOrdered(args[2].GetImmediateAccType());
const auto value = [&] { const auto value = [&] {
if constexpr (bitsize == 128) { if constexpr (bitsize == 128) {
@ -362,7 +388,7 @@ void AxxEmitX64::EmitExclusiveWriteMemoryInline(AxxEmitContext& ctx, IR::Inst* i
const Xbyak::Reg32 status = ctx.reg_alloc.ScratchGpr().cvt32(); const Xbyak::Reg32 status = ctx.reg_alloc.ScratchGpr().cvt32();
const Xbyak::Reg64 tmp = ctx.reg_alloc.ScratchGpr(); const Xbyak::Reg64 tmp = ctx.reg_alloc.ScratchGpr();
const auto fallback_fn = exclusive_write_fallbacks[std::make_tuple(bitsize, vaddr.getIdx(), value.getIdx())]; const auto wrapped_fn = exclusive_write_fallbacks[std::make_tuple(ordered, bitsize, vaddr.getIdx(), value.getIdx())];
EmitExclusiveLock(code, conf, tmp, eax); EmitExclusiveLock(code, conf, tmp, eax);
@ -393,7 +419,7 @@ void AxxEmitX64::EmitExclusiveWriteMemoryInline(AxxEmitContext& ctx, IR::Inst* i
code.movq(rcx, xmm0); code.movq(rcx, xmm0);
} }
} else { } else {
EmitReadMemoryMov<bitsize>(code, rax.getIdx(), tmp); EmitReadMemoryMov<bitsize>(code, rax.getIdx(), tmp, false);
} }
const auto fastmem_marker = ShouldFastmem(ctx, inst); const auto fastmem_marker = ShouldFastmem(ctx, inst);
@ -435,13 +461,13 @@ void AxxEmitX64::EmitExclusiveWriteMemoryInline(AxxEmitContext& ctx, IR::Inst* i
code.SwitchToFarCode(); code.SwitchToFarCode();
code.L(abort); code.L(abort);
code.call(fallback_fn); code.call(wrapped_fn);
fastmem_patch_info.emplace( fastmem_patch_info.emplace(
Common::BitCast<u64>(location), Common::BitCast<u64>(location),
FastmemPatchInfo{ FastmemPatchInfo{
Common::BitCast<u64>(code.getCurr()), Common::BitCast<u64>(code.getCurr()),
Common::BitCast<u64>(fallback_fn), Common::BitCast<u64>(wrapped_fn),
*fastmem_marker, *fastmem_marker,
conf.recompile_on_exclusive_fastmem_failure, conf.recompile_on_exclusive_fastmem_failure,
}); });
@ -452,7 +478,7 @@ void AxxEmitX64::EmitExclusiveWriteMemoryInline(AxxEmitContext& ctx, IR::Inst* i
code.jmp(end, code.T_NEAR); code.jmp(end, code.T_NEAR);
code.SwitchToNearCode(); code.SwitchToNearCode();
} else { } else {
code.call(fallback_fn); code.call(wrapped_fn);
code.cmp(al, 0); code.cmp(al, 0);
code.setz(status.cvt8()); code.setz(status.cvt8());
code.movzx(status.cvt32(), status.cvt8()); code.movzx(status.cvt32(), status.cvt8());

View file

@ -10,6 +10,7 @@
#include "dynarmic/backend/x64/exclusive_monitor_friend.h" #include "dynarmic/backend/x64/exclusive_monitor_friend.h"
#include "dynarmic/common/spin_lock_x64.h" #include "dynarmic/common/spin_lock_x64.h"
#include "dynarmic/interface/exclusive_monitor.h" #include "dynarmic/interface/exclusive_monitor.h"
#include "dynarmic/ir/acc_type.h"
namespace Dynarmic::Backend::X64 { namespace Dynarmic::Backend::X64 {
@ -198,49 +199,113 @@ template<>
} }
template<std::size_t bitsize> template<std::size_t bitsize>
void EmitReadMemoryMov(BlockOfCode& code, int value_idx, const Xbyak::RegExp& addr) { const void* EmitReadMemoryMov(BlockOfCode& code, int value_idx, const Xbyak::RegExp& addr, bool ordered) {
if (ordered) {
if constexpr (bitsize == 128) {
code.mfence();
} else {
code.xor_(Xbyak::Reg32{value_idx}, Xbyak::Reg32{value_idx});
}
const void* fastmem_location = code.getCurr();
switch (bitsize) {
case 8:
code.lock();
code.xadd(code.byte[addr], Xbyak::Reg32{value_idx}.cvt8());
break;
case 16:
code.lock();
code.xadd(word[addr], Xbyak::Reg32{value_idx});
break;
case 32:
code.lock();
code.xadd(dword[addr], Xbyak::Reg32{value_idx});
break;
case 64:
code.lock();
code.xadd(qword[addr], Xbyak::Reg64{value_idx});
break;
case 128:
// TODO (HACK): Detect CPUs where this load is not atomic
code.movaps(Xbyak::Xmm{value_idx}, xword[addr]);
break;
default:
ASSERT_FALSE("Invalid bitsize");
}
return fastmem_location;
}
const void* fastmem_location = code.getCurr();
switch (bitsize) { switch (bitsize) {
case 8: case 8:
code.movzx(Xbyak::Reg32{value_idx}, code.byte[addr]); code.movzx(Xbyak::Reg32{value_idx}, code.byte[addr]);
return; break;
case 16: case 16:
code.movzx(Xbyak::Reg32{value_idx}, word[addr]); code.movzx(Xbyak::Reg32{value_idx}, word[addr]);
return; break;
case 32: case 32:
code.mov(Xbyak::Reg32{value_idx}, dword[addr]); code.mov(Xbyak::Reg32{value_idx}, dword[addr]);
return; break;
case 64: case 64:
code.mov(Xbyak::Reg64{value_idx}, qword[addr]); code.mov(Xbyak::Reg64{value_idx}, qword[addr]);
return; break;
case 128: case 128:
code.movups(Xbyak::Xmm{value_idx}, xword[addr]); code.movups(Xbyak::Xmm{value_idx}, xword[addr]);
return; break;
default: default:
ASSERT_FALSE("Invalid bitsize"); ASSERT_FALSE("Invalid bitsize");
} }
return fastmem_location;
} }
template<std::size_t bitsize> template<std::size_t bitsize>
void EmitWriteMemoryMov(BlockOfCode& code, const Xbyak::RegExp& addr, int value_idx) { const void* EmitWriteMemoryMov(BlockOfCode& code, const Xbyak::RegExp& addr, int value_idx, bool ordered) {
if (ordered) {
const void* fastmem_location = code.getCurr();
switch (bitsize) { switch (bitsize) {
case 8: case 8:
code.mov(code.byte[addr], Xbyak::Reg64{value_idx}.cvt8()); code.xchg(code.byte[addr], Xbyak::Reg64{value_idx}.cvt8());
return; break;
case 16: case 16:
code.mov(word[addr], Xbyak::Reg16{value_idx}); code.xchg(word[addr], Xbyak::Reg16{value_idx});
return; break;
case 32: case 32:
code.mov(dword[addr], Xbyak::Reg32{value_idx}); code.xchg(dword[addr], Xbyak::Reg32{value_idx});
return; break;
case 64: case 64:
code.mov(qword[addr], Xbyak::Reg64{value_idx}); code.xchg(qword[addr], Xbyak::Reg64{value_idx});
return; break;
case 128: case 128:
code.movups(xword[addr], Xbyak::Xmm{value_idx}); code.movaps(xword[addr], Xbyak::Xmm{value_idx});
return; code.mfence();
break;
default: default:
ASSERT_FALSE("Invalid bitsize"); ASSERT_FALSE("Invalid bitsize");
} }
return fastmem_location;
}
const void* fastmem_location = code.getCurr();
switch (bitsize) {
case 8:
code.mov(code.byte[addr], Xbyak::Reg64{value_idx}.cvt8());
break;
case 16:
code.mov(word[addr], Xbyak::Reg16{value_idx});
break;
case 32:
code.mov(dword[addr], Xbyak::Reg32{value_idx});
break;
case 64:
code.mov(qword[addr], Xbyak::Reg64{value_idx});
break;
case 128:
code.movups(xword[addr], Xbyak::Xmm{value_idx});
break;
default:
ASSERT_FALSE("Invalid bitsize");
}
return fastmem_location;
} }
template<typename UserConfig> template<typename UserConfig>
@ -284,6 +349,10 @@ void EmitExclusiveTestAndClear(BlockOfCode& code, const UserConfig& conf, Xbyak:
} }
} }
inline bool IsOrdered(IR::AccType acctype) {
return acctype == IR::AccType::ORDERED || acctype == IR::AccType::ORDEREDRW || acctype == IR::AccType::LIMITEDORDERED;
}
} // namespace } // namespace
} // namespace Dynarmic::Backend::X64 } // namespace Dynarmic::Backend::X64

View file

@ -208,6 +208,11 @@ IR::Cond Argument::GetImmediateCond() const {
return value.GetCond(); return value.GetCond();
} }
IR::AccType Argument::GetImmediateAccType() const {
ASSERT(IsImmediate() && GetType() == IR::Type::AccType);
return value.GetAccType();
}
bool Argument::IsInGpr() const { bool Argument::IsInGpr() const {
if (IsImmediate()) if (IsImmediate())
return false; return false;

View file

@ -21,6 +21,10 @@
#include "dynarmic/ir/microinstruction.h" #include "dynarmic/ir/microinstruction.h"
#include "dynarmic/ir/value.h" #include "dynarmic/ir/value.h"
namespace Dynarmic::IR {
enum class AccType;
} // namespace Dynarmic::IR
namespace Dynarmic::Backend::X64 { namespace Dynarmic::Backend::X64 {
class RegAlloc; class RegAlloc;
@ -75,6 +79,7 @@ public:
u64 GetImmediateS32() const; u64 GetImmediateS32() const;
u64 GetImmediateU64() const; u64 GetImmediateU64() const;
IR::Cond GetImmediateCond() const; IR::Cond GetImmediateCond() const;
IR::AccType GetImmediateAccType() const;
/// Is this value currently in a GPR? /// Is this value currently in a GPR?
bool IsInGpr() const; bool IsInGpr() const;