emit_x64_vector_floating_point: Correct FMA in FTZ mode

x64 rounds before flushing to zero
AArch64 rounds after flushing to zero

This difference of behaviour is noticable if something would round to a smallest normalized number
This commit is contained in:
MerryMage 2018-07-31 18:12:39 +01:00
parent 8ef195db3c
commit bb93353f94
3 changed files with 130 additions and 92 deletions

View file

@ -39,10 +39,12 @@ namespace {
constexpr u64 f32_negative_zero = 0x80000000u; constexpr u64 f32_negative_zero = 0x80000000u;
constexpr u64 f32_nan = 0x7fc00000u; constexpr u64 f32_nan = 0x7fc00000u;
constexpr u64 f32_non_sign_mask = 0x7fffffffu; constexpr u64 f32_non_sign_mask = 0x7fffffffu;
constexpr u64 f32_smallest_normal = 0x00800000u;
constexpr u64 f64_negative_zero = 0x8000000000000000u; constexpr u64 f64_negative_zero = 0x8000000000000000u;
constexpr u64 f64_nan = 0x7ff8000000000000u; constexpr u64 f64_nan = 0x7ff8000000000000u;
constexpr u64 f64_non_sign_mask = 0x7fffffffffffffffu; constexpr u64 f64_non_sign_mask = 0x7fffffffffffffffu;
constexpr u64 f64_smallest_normal = 0x0010000000000000u;
constexpr u64 f64_penultimate_positive_denormal = 0x000ffffffffffffeu; constexpr u64 f64_penultimate_positive_denormal = 0x000ffffffffffffeu;
constexpr u64 f64_min_s32 = 0xc1e0000000000000u; // -2147483648 as a double constexpr u64 f64_min_s32 = 0xc1e0000000000000u; // -2147483648 as a double
@ -590,14 +592,52 @@ static void EmitFPMulAdd(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst) {
using FPT = mp::unsigned_integer_of_size<fsize>; using FPT = mp::unsigned_integer_of_size<fsize>;
if (code.DoesCpuSupport(Xbyak::util::Cpu::tFMA)) { if (code.DoesCpuSupport(Xbyak::util::Cpu::tFMA)) {
FPFourOp<fsize>(code, ctx, inst, [&](Xbyak::Xmm result, Xbyak::Xmm operand2, Xbyak::Xmm operand3) { auto args = ctx.reg_alloc.GetArgumentInfo(inst);
Xbyak::Label end, fallback;
const Xbyak::Xmm operand1 = ctx.reg_alloc.UseXmm(args[0]);
const Xbyak::Xmm operand2 = ctx.reg_alloc.UseXmm(args[1]);
const Xbyak::Xmm operand3 = ctx.reg_alloc.UseXmm(args[2]);
const Xbyak::Xmm result = ctx.reg_alloc.ScratchXmm();
const Xbyak::Xmm tmp = ctx.reg_alloc.ScratchXmm();
code.movaps(result, operand1);
FCODE(vfmadd231s)(result, operand2, operand3); FCODE(vfmadd231s)(result, operand2, operand3);
}, [](FPT a, FPT b, FPT c, FP::FPCR fpcr) -> FPT {
if (FP::IsQNaN(a) && ((FP::IsInf(b) && FP::IsZero(c, fpcr)) || (FP::IsZero(b, fpcr) && FP::IsInf(c)))) { code.movaps(tmp, code.MConst(xword, fsize == 32 ? f32_non_sign_mask : f64_non_sign_mask));
return FP::FPInfo<FPT>::DefaultNaN(); code.andps(tmp, result);
} FCODE(ucomis)(result, code.MConst(xword, fsize == 32 ? f32_smallest_normal : f64_smallest_normal));
return *FP::ProcessNaNs(a, b, c); code.jz(fallback, code.T_NEAR);
}); code.L(end);
code.SwitchToFarCode();
code.L(fallback);
code.sub(rsp, 8);
ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, HostLocXmmIdx(result.getIdx()));
code.movq(code.ABI_PARAM1, operand1);
code.movq(code.ABI_PARAM2, operand2);
code.movq(code.ABI_PARAM3, operand3);
code.mov(code.ABI_PARAM4.cvt32(), ctx.FPCR());
#ifdef _WIN32
code.sub(rsp, 16 + ABI_SHADOW_SPACE);
code.lea(rax, code.ptr[code.r15 + code.GetJitStateInfo().offsetof_fpsr_exc]);
code.mov(qword[rsp + ABI_SHADOW_SPACE], rax);
code.CallFunction(&FP::FPMulAdd<FPT>);
code.add(rsp, 16 + ABI_SHADOW_SPACE);
#else
code.lea(code.ABI_PARAM5, code.ptr[code.r15 + code.GetJitStateInfo().offsetof_fpsr_exc]);
code.CallFunction(&FP::FPMulAdd<FPT>);
#endif
code.movq(result, code.ABI_RETURN);
ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, HostLocXmmIdx(result.getIdx()));
code.add(rsp, 8);
code.jmp(end, code.T_NEAR);
code.SwitchToNearCode();
ctx.reg_alloc.DefineValue(inst, result);
return; return;
} }

View file

@ -141,6 +141,15 @@ Xbyak::Address GetNegativeZeroVector(BlockOfCode& code) {
} }
} }
template<size_t fsize>
Xbyak::Address GetSmallestNormalVector(BlockOfCode& code) {
if constexpr (fsize == 32) {
return code.MConst(xword, 0x0080'0000'0080'0000, 0x0080'0000'0080'0000);
} else {
return code.MConst(xword, 0x0010'0000'0000'0000, 0x0010'0000'0000'0000);
}
}
template<size_t fsize> template<size_t fsize>
void ForceToDefaultNaN(BlockOfCode& code, EmitContext& ctx, Xbyak::Xmm result) { void ForceToDefaultNaN(BlockOfCode& code, EmitContext& ctx, Xbyak::Xmm result) {
if (ctx.FPSCR_DN()) { if (ctx.FPSCR_DN()) {
@ -310,52 +319,6 @@ void EmitThreeOpVectorOperation(BlockOfCode& code, EmitContext& ctx, IR::Inst* i
ctx.reg_alloc.DefineValue(inst, result); ctx.reg_alloc.DefineValue(inst, result);
} }
template<size_t fsize, template<typename> class Indexer, typename Function>
void EmitFourOpVectorOperation(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst, Function fn, typename NaNHandler<fsize, Indexer, 4>::function_type nan_handler = NaNHandler<fsize, Indexer, 4>::GetDefault()) {
static_assert(fsize == 32 || fsize == 64, "fsize must be either 32 or 64");
if (!ctx.AccurateNaN() || ctx.FPSCR_DN()) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const Xbyak::Xmm xmm_a = ctx.reg_alloc.UseScratchXmm(args[0]);
const Xbyak::Xmm xmm_b = ctx.reg_alloc.UseXmm(args[1]);
const Xbyak::Xmm xmm_c = ctx.reg_alloc.UseXmm(args[2]);
if constexpr (std::is_member_function_pointer_v<Function>) {
(code.*fn)(xmm_a, xmm_b, xmm_c);
} else {
fn(xmm_a, xmm_b, xmm_c);
}
ForceToDefaultNaN<fsize>(code, ctx, xmm_a);
ctx.reg_alloc.DefineValue(inst, xmm_a);
return;
}
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const Xbyak::Xmm result = ctx.reg_alloc.ScratchXmm();
const Xbyak::Xmm xmm_a = ctx.reg_alloc.UseXmm(args[0]);
const Xbyak::Xmm xmm_b = ctx.reg_alloc.UseXmm(args[1]);
const Xbyak::Xmm xmm_c = ctx.reg_alloc.UseXmm(args[2]);
const Xbyak::Xmm nan_mask = ctx.reg_alloc.ScratchXmm();
code.movaps(nan_mask, xmm_b);
code.movaps(result, xmm_a);
FCODE(cmpunordp)(nan_mask, xmm_a);
FCODE(cmpunordp)(nan_mask, xmm_c);
if constexpr (std::is_member_function_pointer_v<Function>) {
(code.*fn)(result, xmm_b, xmm_c);
} else {
fn(result, xmm_b, xmm_c);
}
FCODE(cmpunordp)(nan_mask, result);
HandleNaNs<fsize, 3>(code, ctx, {result, xmm_a, xmm_b, xmm_c}, nan_mask, nan_handler);
ctx.reg_alloc.DefineValue(inst, result);
}
template<typename Lambda> template<typename Lambda>
void EmitTwoOpFallback(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst, Lambda lambda) { void EmitTwoOpFallback(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst, Lambda lambda) {
const auto fn = static_cast<mp::equivalent_function_type_t<Lambda>*>(lambda); const auto fn = static_cast<mp::equivalent_function_type_t<Lambda>*>(lambda);
@ -426,16 +389,9 @@ void EmitThreeOpFallback(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst, La
} }
template<typename Lambda> template<typename Lambda>
void EmitFourOpFallback(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst, Lambda lambda) { void EmitFourOpFallbackWithoutRegAlloc(BlockOfCode& code, EmitContext& ctx, Xbyak::Xmm result, Xbyak::Xmm arg1, Xbyak::Xmm arg2, Xbyak::Xmm arg3, Lambda lambda) {
const auto fn = static_cast<mp::equivalent_function_type_t<Lambda>*>(lambda); const auto fn = static_cast<mp::equivalent_function_type_t<Lambda>*>(lambda);
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const Xbyak::Xmm arg1 = ctx.reg_alloc.UseXmm(args[0]);
const Xbyak::Xmm arg2 = ctx.reg_alloc.UseXmm(args[1]);
const Xbyak::Xmm arg3 = ctx.reg_alloc.UseXmm(args[2]);
ctx.reg_alloc.EndOfAllocScope();
ctx.reg_alloc.HostCall(nullptr);
#ifdef _WIN32 #ifdef _WIN32
constexpr u32 stack_space = 5 * 16; constexpr u32 stack_space = 5 * 16;
code.sub(rsp, stack_space + ABI_SHADOW_SPACE); code.sub(rsp, stack_space + ABI_SHADOW_SPACE);
@ -463,12 +419,24 @@ void EmitFourOpFallback(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst, Lam
code.CallFunction(fn); code.CallFunction(fn);
#ifdef _WIN32 #ifdef _WIN32
code.movaps(xmm0, xword[rsp + ABI_SHADOW_SPACE + 1 * 16]); code.movaps(result, xword[rsp + ABI_SHADOW_SPACE + 1 * 16]);
#else #else
code.movaps(xmm0, xword[rsp + ABI_SHADOW_SPACE + 0 * 16]); code.movaps(result, xword[rsp + ABI_SHADOW_SPACE + 0 * 16]);
#endif #endif
code.add(rsp, stack_space + ABI_SHADOW_SPACE); code.add(rsp, stack_space + ABI_SHADOW_SPACE);
}
template<typename Lambda>
void EmitFourOpFallback(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst, Lambda lambda) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const Xbyak::Xmm arg1 = ctx.reg_alloc.UseXmm(args[0]);
const Xbyak::Xmm arg2 = ctx.reg_alloc.UseXmm(args[1]);
const Xbyak::Xmm arg3 = ctx.reg_alloc.UseXmm(args[2]);
ctx.reg_alloc.EndOfAllocScope();
ctx.reg_alloc.HostCall(nullptr);
EmitFourOpFallbackWithoutRegAlloc(code, ctx, xmm0, arg1, arg2, arg3, lambda);
ctx.reg_alloc.DefineValue(inst, xmm0); ctx.reg_alloc.DefineValue(inst, xmm0);
} }
@ -770,37 +738,48 @@ template<size_t fsize>
void EmitFPVectorMulAdd(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst) { void EmitFPVectorMulAdd(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst) {
using FPT = mp::unsigned_integer_of_size<fsize>; using FPT = mp::unsigned_integer_of_size<fsize>;
if (code.DoesCpuSupport(Xbyak::util::Cpu::tFMA)) { const auto fallback_fn = [](VectorArray<FPT>& result, const VectorArray<FPT>& addend, const VectorArray<FPT>& op1, const VectorArray<FPT>& op2, FP::FPCR fpcr, FP::FPSR& fpsr) {
const auto x64_instruction = fsize == 32 ? &Xbyak::CodeGenerator::vfmadd231ps : &Xbyak::CodeGenerator::vfmadd231pd;
EmitFourOpVectorOperation<fsize, DefaultIndexer>(code, ctx, inst, x64_instruction,
static_cast<void(*)(std::array<VectorArray<FPT>, 4>& values, FP::FPCR fpcr)>(
[](std::array<VectorArray<FPT>, 4>& values, FP::FPCR fpcr) {
VectorArray<FPT>& result = values[0];
const VectorArray<FPT>& a = values[1];
const VectorArray<FPT>& b = values[2];
const VectorArray<FPT>& c = values[3];
for (size_t i = 0; i < result.size(); i++) {
if (FP::IsQNaN(a[i]) && ((FP::IsInf(b[i]) && FP::IsZero(c[i], fpcr)) || (FP::IsZero(b[i], fpcr) && FP::IsInf(c[i])))) {
result[i] = FP::FPInfo<FPT>::DefaultNaN();
} else if (auto r = FP::ProcessNaNs(a[i], b[i], c[i])) {
result[i] = *r;
} else if (FP::IsNaN(result[i])) {
result[i] = FP::FPInfo<FPT>::DefaultNaN();
}
}
}
)
);
return;
}
EmitFourOpFallback(code, ctx, inst,
[](VectorArray<FPT>& result, const VectorArray<FPT>& addend, const VectorArray<FPT>& op1, const VectorArray<FPT>& op2, FP::FPCR fpcr, FP::FPSR& fpsr) {
for (size_t i = 0; i < result.size(); i++) { for (size_t i = 0; i < result.size(); i++) {
result[i] = FP::FPMulAdd<FPT>(addend[i], op1[i], op2[i], fpcr, fpsr); result[i] = FP::FPMulAdd<FPT>(addend[i], op1[i], op2[i], fpcr, fpsr);
} }
};
if (code.DoesCpuSupport(Xbyak::util::Cpu::tFMA) && code.DoesCpuSupport(Xbyak::util::Cpu::tAVX)) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const Xbyak::Xmm result = ctx.reg_alloc.ScratchXmm();
const Xbyak::Xmm xmm_a = ctx.reg_alloc.UseXmm(args[0]);
const Xbyak::Xmm xmm_b = ctx.reg_alloc.UseXmm(args[1]);
const Xbyak::Xmm xmm_c = ctx.reg_alloc.UseXmm(args[2]);
const Xbyak::Xmm tmp = ctx.reg_alloc.ScratchXmm();
Xbyak::Label end, fallback;
code.movaps(result, xmm_a);
FCODE(vfmadd231p)(result, xmm_b, xmm_c);
code.movaps(tmp, GetNegativeZeroVector<fsize>(code));
code.andnps(tmp, result);
FCODE(vcmpeq_uqp)(tmp, tmp, GetSmallestNormalVector<fsize>(code));
code.vptest(tmp, tmp);
code.jnz(fallback, code.T_NEAR);
code.L(end);
code.SwitchToFarCode();
code.L(fallback);
code.sub(rsp, 8);
ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, HostLocXmmIdx(result.getIdx()));
EmitFourOpFallbackWithoutRegAlloc(code, ctx, result, xmm_a, xmm_b, xmm_c, fallback_fn);
ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, HostLocXmmIdx(result.getIdx()));
code.add(rsp, 8);
code.jmp(end, code.T_NEAR);
code.SwitchToNearCode();
ctx.reg_alloc.DefineValue(inst, result);
return;
} }
);
EmitFourOpFallback(code, ctx, inst, fallback_fn);
} }
void EmitX64::EmitFPVectorMulAdd32(EmitContext& ctx, IR::Inst* inst) { void EmitX64::EmitFPVectorMulAdd32(EmitContext& ctx, IR::Inst* inst) {

View file

@ -409,3 +409,22 @@ TEST_CASE("A64: FMLA.4S (denormal)", "[a64]") {
REQUIRE(jit.GetVector(12) == Vector{0x7ff800007fc00000, 0xbff0000068e8e581}); REQUIRE(jit.GetVector(12) == Vector{0x7ff800007fc00000, 0xbff0000068e8e581});
} }
TEST_CASE("A64: FMLA.4S (0x80800000)", "[a64]") {
TestEnv env;
Dynarmic::A64::Jit jit{Dynarmic::A64::UserConfig{&env}};
env.code_mem[0] = 0x4e38cc2b; // FMLA.4S V11, V1, V24
env.code_mem[1] = 0x14000000; // B .
jit.SetPC(0);
jit.SetVector(11, {0xc79b271efff05678, 0xffc0000080800000});
jit.SetVector(1, {0x00636d2400800000, 0x0966320bb26bddee});
jit.SetVector(24, {0x460e8c84fff00000, 0x8ba98d2780800002});
jit.SetFpcr(0x03000000);
env.ticks_left = 2;
jit.Run();
REQUIRE(jit.GetVector(11) == Vector{0xc79b271e7fc00000, 0x7fc0000080000000});
}