IR: Implement FPRecipEstimate

This commit is contained in:
MerryMage 2018-07-25 18:36:40 +01:00
parent 7a673a8a43
commit c1dcfe29f7
8 changed files with 168 additions and 0 deletions

View file

@ -25,6 +25,8 @@ add_library(dynarmic
common/fp/op.h common/fp/op.h
common/fp/op/FPMulAdd.cpp common/fp/op/FPMulAdd.cpp
common/fp/op/FPMulAdd.h common/fp/op/FPMulAdd.h
common/fp/op/FPRecipEstimate.cpp
common/fp/op/FPRecipEstimate.h
common/fp/op/FPRoundInt.cpp common/fp/op/FPRoundInt.cpp
common/fp/op/FPRoundInt.h common/fp/op/FPRoundInt.h
common/fp/op/FPRSqrtEstimate.cpp common/fp/op/FPRSqrtEstimate.cpp

View file

@ -813,6 +813,23 @@ void EmitX64::EmitFPMulAdd64(EmitContext& ctx, IR::Inst* inst) {
EmitFPMulAddFallback<u64>(code, ctx, inst); EmitFPMulAddFallback<u64>(code, ctx, inst);
} }
template<typename FPT>
static void EmitFPRecipEstimate(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
ctx.reg_alloc.HostCall(inst, args[0]);
code.mov(code.ABI_PARAM2.cvt32(), ctx.FPCR());
code.lea(code.ABI_PARAM3, code.ptr[code.r15 + code.GetJitStateInfo().offsetof_fpsr_exc]);
code.CallFunction(&FP::FPRecipEstimate<FPT>);
}
void EmitX64::EmitFPRecipEstimate32(EmitContext& ctx, IR::Inst* inst) {
EmitFPRecipEstimate<u32>(code, ctx, inst);
}
void EmitX64::EmitFPRecipEstimate64(EmitContext& ctx, IR::Inst* inst) {
EmitFPRecipEstimate<u64>(code, ctx, inst);
}
static void EmitFPRound(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst, size_t fsize) { static void EmitFPRound(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst, size_t fsize) {
const auto rounding = static_cast<FP::RoundingMode>(inst->GetArg(1).GetU8()); const auto rounding = static_cast<FP::RoundingMode>(inst->GetArg(1).GetU8());
const bool exact = inst->GetArg(2).GetU1(); const bool exact = inst->GetArg(2).GetU1();

View file

@ -7,6 +7,7 @@
#pragma once #pragma once
#include "common/fp/op/FPMulAdd.h" #include "common/fp/op/FPMulAdd.h"
#include "common/fp/op/FPRecipEstimate.h"
#include "common/fp/op/FPRoundInt.h" #include "common/fp/op/FPRoundInt.h"
#include "common/fp/op/FPRSqrtEstimate.h" #include "common/fp/op/FPRSqrtEstimate.h"
#include "common/fp/op/FPRSqrtStepFused.h" #include "common/fp/op/FPRSqrtStepFused.h"

View file

@ -0,0 +1,121 @@
/* This file is part of the dynarmic project.
* Copyright (c) 2018 MerryMage
* This software may be used and distributed according to the terms of the GNU
* General Public License version 2 or any later version.
*/
#include <array>
#include <tuple>
#include "common/assert.h"
#include "common/common_types.h"
#include "common/fp/fpcr.h"
#include "common/fp/fpsr.h"
#include "common/fp/info.h"
#include "common/fp/op/FPRecipEstimate.h"
#include "common/fp/process_exception.h"
#include "common/fp/process_nan.h"
#include "common/fp/unpacked.h"
#include "common/safe_ops.h"
namespace Dynarmic::FP {
/// Input is a u0.9 fixed point number. Only values in [0.5, 1.0) are valid.
/// Output is a u0.8 fixed point number, with an implied 1 prefixed.
/// i.e.: The output is a value in [1.0, 2.0).
static u8 RecipEstimate(u64 a) {
constexpr u64 offset = 256;
using LUT = std::array<u8, 256>;
static const LUT lut = [] {
LUT result{};
for (u64 i = 0; i < result.size(); i++) {
u64 a = i + offset;
a = a * 2 + 1;
u64 b = (1u << 19) / a;
result[i] = static_cast<u8>((b + 1) / 2);
}
return result;
}();
return lut[a - offset];
}
template<typename FPT>
FPT FPRecipEstimate(FPT op, FPCR fpcr, FPSR& fpsr) {
FPType type;
bool sign;
FPUnpacked value;
std::tie(type, sign, value) = FPUnpack<FPT>(op, fpcr, fpsr);
if (type == FPType::SNaN || type == FPType::QNaN) {
return FPProcessNaN(type, op, fpcr, fpsr);
}
if (type == FPType::Infinity) {
return FPInfo<FPT>::Zero(sign);
}
if (type == FPType::Zero) {
FPProcessException(FPExc::DivideByZero, fpcr, fpsr);
return FPInfo<FPT>::Infinity(sign);
}
if (value.exponent < FPInfo<FPT>::exponent_min - 2) {
const bool overflow_to_inf = [&]{
switch (fpcr.RMode()) {
case RoundingMode::ToNearest_TieEven:
return true;
case RoundingMode::TowardsPlusInfinity:
return !sign;
case RoundingMode::TowardsMinusInfinity:
return sign;
case RoundingMode::TowardsZero:
return false;
default:
UNREACHABLE();
}
return false;
}();
FPProcessException(FPExc::Overflow, fpcr, fpsr);
FPProcessException(FPExc::Inexact, fpcr, fpsr);
return overflow_to_inf ? FPInfo<FPT>::Infinity(sign) : FPInfo<FPT>::MaxNormal(sign);
}
if ((fpcr.FZ() && !std::is_same_v<FPT, u16>) || (fpcr.FZ16() && std::is_same_v<FPT, u16>)) {
if (value.exponent >= -FPInfo<FPT>::exponent_min) {
fpsr.UFC(true);
return FPInfo<FPT>::Zero(sign);
}
}
const u64 scaled = Safe::LogicalShiftRight(value.mantissa, normalized_point_position - 8);
u64 estimate = static_cast<u64>(RecipEstimate(scaled)) << (FPInfo<FPT>::explicit_mantissa_width - 8);
int result_exponent = -value.exponent;
if (result_exponent < FPInfo<FPT>::exponent_min) {
switch (result_exponent) {
case (FPInfo<FPT>::exponent_min - 1):
estimate |= FPInfo<FPT>::implicit_leading_bit;
estimate >>= 1;
break;
case (FPInfo<FPT>::exponent_min - 2):
estimate |= FPInfo<FPT>::implicit_leading_bit;
estimate >>= 2;
result_exponent = 0;
break;
default:
UNREACHABLE();
}
}
const FPT bits_exponent = static_cast<FPT>(result_exponent + FPInfo<FPT>::exponent_bias);
const FPT bits_mantissa = static_cast<FPT>(estimate);
return (bits_exponent << FPInfo<FPT>::explicit_mantissa_width) | (bits_mantissa & FPInfo<FPT>::mantissa_mask);
}
template u32 FPRecipEstimate<u32>(u32 op, FPCR fpcr, FPSR& fpsr);
template u64 FPRecipEstimate<u64>(u64 op, FPCR fpcr, FPSR& fpsr);
} // namespace Dynarmic::FP

View file

@ -0,0 +1,17 @@
/* This file is part of the dynarmic project.
* Copyright (c) 2018 MerryMage
* This software may be used and distributed according to the terms of the GNU
* General Public License version 2 or any later version.
*/
#pragma once
namespace Dynarmic::FP {
class FPCR;
class FPSR;
template<typename FPT>
FPT FPRecipEstimate(FPT op, FPCR fpcr, FPSR& fpsr);
} // namespace Dynarmic::FP

View file

@ -1488,6 +1488,13 @@ U32U64 IREmitter::FPNeg(const U32U64& a) {
} }
} }
U32U64 IREmitter::FPRecipEstimate(const U32U64& a) {
if (a.GetType() == Type::U32) {
return Inst<U32>(Opcode::FPRecipEstimate32, a);
}
return Inst<U64>(Opcode::FPRecipEstimate64, a);
}
U32U64 IREmitter::FPRoundInt(const U32U64& a, FP::RoundingMode rounding, bool exact) { U32U64 IREmitter::FPRoundInt(const U32U64& a, FP::RoundingMode rounding, bool exact) {
if (a.GetType() == Type::U32) { if (a.GetType() == Type::U32) {
return Inst<U32>(Opcode::FPRoundInt32, a, static_cast<u8>(rounding), Imm1(exact)); return Inst<U32>(Opcode::FPRoundInt32, a, static_cast<u8>(rounding), Imm1(exact));

View file

@ -269,6 +269,7 @@ public:
U32U64 FPMul(const U32U64& a, const U32U64& b, bool fpscr_controlled); U32U64 FPMul(const U32U64& a, const U32U64& b, bool fpscr_controlled);
U32U64 FPMulAdd(const U32U64& addend, const U32U64& op1, const U32U64& op2, bool fpscr_controlled); U32U64 FPMulAdd(const U32U64& addend, const U32U64& op1, const U32U64& op2, bool fpscr_controlled);
U32U64 FPNeg(const U32U64& a); U32U64 FPNeg(const U32U64& a);
U32U64 FPRecipEstimate(const U32U64& a);
U32U64 FPRoundInt(const U32U64& a, FP::RoundingMode rounding, bool exact); U32U64 FPRoundInt(const U32U64& a, FP::RoundingMode rounding, bool exact);
U32U64 FPRSqrtEstimate(const U32U64& a); U32U64 FPRSqrtEstimate(const U32U64& a);
U32U64 FPRSqrtStepFused(const U32U64& a, const U32U64& b); U32U64 FPRSqrtStepFused(const U32U64& a, const U32U64& b);

View file

@ -394,6 +394,8 @@ OPCODE(FPMulAdd32, T::U32, T::U32,
OPCODE(FPMulAdd64, T::U64, T::U64, T::U64, T::U64 ) OPCODE(FPMulAdd64, T::U64, T::U64, T::U64, T::U64 )
OPCODE(FPNeg32, T::U32, T::U32 ) OPCODE(FPNeg32, T::U32, T::U32 )
OPCODE(FPNeg64, T::U64, T::U64 ) OPCODE(FPNeg64, T::U64, T::U64 )
OPCODE(FPRecipEstimate32, T::U32, T::U32 )
OPCODE(FPRecipEstimate64, T::U64, T::U64 )
OPCODE(FPRoundInt32, T::U32, T::U32, T::U8, T::U1 ) OPCODE(FPRoundInt32, T::U32, T::U32, T::U8, T::U1 )
OPCODE(FPRoundInt64, T::U64, T::U64, T::U8, T::U1 ) OPCODE(FPRoundInt64, T::U64, T::U64, T::U8, T::U1 )
OPCODE(FPRSqrtEstimate32, T::U32, T::U32 ) OPCODE(FPRSqrtEstimate32, T::U32, T::U32 )