frontend: Introduce FPSCR register helper class

Encapsulates all of the FPSCR state.
This commit is contained in:
Lioncash 2016-08-24 08:58:32 -04:00 committed by MerryMage
parent b5a86889cd
commit eba3a06d80
5 changed files with 236 additions and 59 deletions

View file

@ -1226,15 +1226,15 @@ static void FPThreeOp32(BlockOfCode* code, RegAlloc& reg_alloc, IR::Block& block
X64Reg operand = reg_alloc.UseRegister(b, any_xmm); X64Reg operand = reg_alloc.UseRegister(b, any_xmm);
X64Reg gpr_scratch = reg_alloc.ScratchRegister(any_gpr); X64Reg gpr_scratch = reg_alloc.ScratchRegister(any_gpr);
if (block.location.FPSCR_FTZ()) { if (block.location.FPSCR().FTZ()) {
DenormalsAreZero32(code, result, gpr_scratch); DenormalsAreZero32(code, result, gpr_scratch);
DenormalsAreZero32(code, operand, gpr_scratch); DenormalsAreZero32(code, operand, gpr_scratch);
} }
(code->*fn)(result, R(operand)); (code->*fn)(result, R(operand));
if (block.location.FPSCR_FTZ()) { if (block.location.FPSCR().FTZ()) {
FlushToZero32(code, result, gpr_scratch); FlushToZero32(code, result, gpr_scratch);
} }
if (block.location.FPSCR_DN()) { if (block.location.FPSCR().DN()) {
DefaultNaN32(code, result); DefaultNaN32(code, result);
} }
} }
@ -1247,15 +1247,15 @@ static void FPThreeOp64(BlockOfCode* code, RegAlloc& reg_alloc, IR::Block& block
X64Reg operand = reg_alloc.UseRegister(b, any_xmm); X64Reg operand = reg_alloc.UseRegister(b, any_xmm);
X64Reg gpr_scratch = reg_alloc.ScratchRegister(any_gpr); X64Reg gpr_scratch = reg_alloc.ScratchRegister(any_gpr);
if (block.location.FPSCR_FTZ()) { if (block.location.FPSCR().FTZ()) {
DenormalsAreZero64(code, result, gpr_scratch); DenormalsAreZero64(code, result, gpr_scratch);
DenormalsAreZero64(code, operand, gpr_scratch); DenormalsAreZero64(code, operand, gpr_scratch);
} }
(code->*fn)(result, R(operand)); (code->*fn)(result, R(operand));
if (block.location.FPSCR_FTZ()) { if (block.location.FPSCR().FTZ()) {
FlushToZero64(code, result, gpr_scratch); FlushToZero64(code, result, gpr_scratch);
} }
if (block.location.FPSCR_DN()) { if (block.location.FPSCR().DN()) {
DefaultNaN64(code, result); DefaultNaN64(code, result);
} }
} }
@ -1266,14 +1266,14 @@ static void FPTwoOp32(BlockOfCode* code, RegAlloc& reg_alloc, IR::Block& block,
X64Reg result = reg_alloc.UseDefRegister(a, inst, any_xmm); X64Reg result = reg_alloc.UseDefRegister(a, inst, any_xmm);
X64Reg gpr_scratch = reg_alloc.ScratchRegister(any_gpr); X64Reg gpr_scratch = reg_alloc.ScratchRegister(any_gpr);
if (block.location.FPSCR_FTZ()) { if (block.location.FPSCR().FTZ()) {
DenormalsAreZero32(code, result, gpr_scratch); DenormalsAreZero32(code, result, gpr_scratch);
} }
(code->*fn)(result, R(result)); (code->*fn)(result, R(result));
if (block.location.FPSCR_FTZ()) { if (block.location.FPSCR().FTZ()) {
FlushToZero32(code, result, gpr_scratch); FlushToZero32(code, result, gpr_scratch);
} }
if (block.location.FPSCR_DN()) { if (block.location.FPSCR().DN()) {
DefaultNaN32(code, result); DefaultNaN32(code, result);
} }
} }
@ -1284,14 +1284,14 @@ static void FPTwoOp64(BlockOfCode* code, RegAlloc& reg_alloc, IR::Block& block,
X64Reg result = reg_alloc.UseDefRegister(a, inst, any_xmm); X64Reg result = reg_alloc.UseDefRegister(a, inst, any_xmm);
X64Reg gpr_scratch = reg_alloc.ScratchRegister(any_gpr); X64Reg gpr_scratch = reg_alloc.ScratchRegister(any_gpr);
if (block.location.FPSCR_FTZ()) { if (block.location.FPSCR().FTZ()) {
DenormalsAreZero64(code, result, gpr_scratch); DenormalsAreZero64(code, result, gpr_scratch);
} }
(code->*fn)(result, R(result)); (code->*fn)(result, R(result));
if (block.location.FPSCR_FTZ()) { if (block.location.FPSCR().FTZ()) {
FlushToZero64(code, result, gpr_scratch); FlushToZero64(code, result, gpr_scratch);
} }
if (block.location.FPSCR_DN()) { if (block.location.FPSCR().DN()) {
DefaultNaN64(code, result); DefaultNaN64(code, result);
} }
} }
@ -1402,14 +1402,14 @@ void EmitX64::EmitFPSingleToDouble(IR::Block& block, IR::Inst* inst) {
X64Reg result = reg_alloc.UseDefRegister(a, inst, any_xmm); X64Reg result = reg_alloc.UseDefRegister(a, inst, any_xmm);
X64Reg gpr_scratch = reg_alloc.ScratchRegister(any_gpr); X64Reg gpr_scratch = reg_alloc.ScratchRegister(any_gpr);
if (block.location.FPSCR_FTZ()) { if (block.location.FPSCR().FTZ()) {
DenormalsAreZero32(code, result, gpr_scratch); DenormalsAreZero32(code, result, gpr_scratch);
} }
code->CVTSS2SD(result, R(result)); code->CVTSS2SD(result, R(result));
if (block.location.FPSCR_FTZ()) { if (block.location.FPSCR().FTZ()) {
FlushToZero64(code, result, gpr_scratch); FlushToZero64(code, result, gpr_scratch);
} }
if (block.location.FPSCR_DN()) { if (block.location.FPSCR().DN()) {
DefaultNaN64(code, result); DefaultNaN64(code, result);
} }
} }
@ -1420,14 +1420,14 @@ void EmitX64::EmitFPDoubleToSingle(IR::Block& block, IR::Inst* inst) {
X64Reg result = reg_alloc.UseDefRegister(a, inst, any_xmm); X64Reg result = reg_alloc.UseDefRegister(a, inst, any_xmm);
X64Reg gpr_scratch = reg_alloc.ScratchRegister(any_gpr); X64Reg gpr_scratch = reg_alloc.ScratchRegister(any_gpr);
if (block.location.FPSCR_FTZ()) { if (block.location.FPSCR().FTZ()) {
DenormalsAreZero64(code, result, gpr_scratch); DenormalsAreZero64(code, result, gpr_scratch);
} }
code->CVTSD2SS(result, R(result)); code->CVTSD2SS(result, R(result));
if (block.location.FPSCR_FTZ()) { if (block.location.FPSCR().FTZ()) {
FlushToZero32(code, result, gpr_scratch); FlushToZero32(code, result, gpr_scratch);
} }
if (block.location.FPSCR_DN()) { if (block.location.FPSCR().DN()) {
DefaultNaN32(code, result); DefaultNaN32(code, result);
} }
} }
@ -1443,7 +1443,7 @@ void EmitX64::EmitFPSingleToS32(IR::Block& block, IR::Inst* inst) {
// ARM saturates on conversion; this differs from x64 which returns a sentinel value. // ARM saturates on conversion; this differs from x64 which returns a sentinel value.
// Conversion to double is lossless, and allows for clamping. // Conversion to double is lossless, and allows for clamping.
if (block.location.FPSCR_FTZ()) { if (block.location.FPSCR().FTZ()) {
DenormalsAreZero32(code, from, gpr_scratch); DenormalsAreZero32(code, from, gpr_scratch);
} }
code->CVTSS2SD(from, R(from)); code->CVTSS2SD(from, R(from));
@ -1481,8 +1481,8 @@ void EmitX64::EmitFPSingleToU32(IR::Block& block, IR::Inst* inst) {
// //
// FIXME: Inexact exception not correctly signalled with the below code // FIXME: Inexact exception not correctly signalled with the below code
if (block.location.FPSCR_RMode() != Arm::FPRoundingMode::RoundTowardsZero && !round_towards_zero) { if (block.location.FPSCR().RMode() != Arm::FPSCR::RoundingMode::TowardsZero && !round_towards_zero) {
if (block.location.FPSCR_FTZ()) { if (block.location.FPSCR().FTZ()) {
DenormalsAreZero32(code, from, gpr_scratch); DenormalsAreZero32(code, from, gpr_scratch);
} }
code->CVTSS2SD(from, R(from)); code->CVTSS2SD(from, R(from));
@ -1503,7 +1503,7 @@ void EmitX64::EmitFPSingleToU32(IR::Block& block, IR::Inst* inst) {
X64Reg xmm_mask = reg_alloc.ScratchRegister(any_xmm); X64Reg xmm_mask = reg_alloc.ScratchRegister(any_xmm);
X64Reg gpr_mask = reg_alloc.ScratchRegister(any_gpr); X64Reg gpr_mask = reg_alloc.ScratchRegister(any_gpr);
if (block.location.FPSCR_FTZ()) { if (block.location.FPSCR().FTZ()) {
DenormalsAreZero32(code, from, gpr_scratch); DenormalsAreZero32(code, from, gpr_scratch);
} }
code->CVTSS2SD(from, R(from)); code->CVTSS2SD(from, R(from));
@ -1539,7 +1539,7 @@ void EmitX64::EmitFPDoubleToS32(IR::Block& block, IR::Inst* inst) {
// ARM saturates on conversion; this differs from x64 which returns a sentinel value. // ARM saturates on conversion; this differs from x64 which returns a sentinel value.
if (block.location.FPSCR_FTZ()) { if (block.location.FPSCR().FTZ()) {
DenormalsAreZero64(code, from, gpr_scratch); DenormalsAreZero64(code, from, gpr_scratch);
} }
// First time is to set flags // First time is to set flags
@ -1574,8 +1574,8 @@ void EmitX64::EmitFPDoubleToU32(IR::Block& block, IR::Inst* inst) {
// TODO: Use VCVTPD2UDQ when AVX512VL is available. // TODO: Use VCVTPD2UDQ when AVX512VL is available.
// FIXME: Inexact exception not correctly signalled with the below code // FIXME: Inexact exception not correctly signalled with the below code
if (block.location.FPSCR_RMode() != Arm::FPRoundingMode::RoundTowardsZero && !round_towards_zero) { if (block.location.FPSCR().RMode() != Arm::FPSCR::RoundingMode::TowardsZero && !round_towards_zero) {
if (block.location.FPSCR_FTZ()) { if (block.location.FPSCR().FTZ()) {
DenormalsAreZero64(code, from, gpr_scratch); DenormalsAreZero64(code, from, gpr_scratch);
} }
ZeroIfNaN64(code, from); ZeroIfNaN64(code, from);
@ -1595,7 +1595,7 @@ void EmitX64::EmitFPDoubleToU32(IR::Block& block, IR::Inst* inst) {
X64Reg xmm_mask = reg_alloc.ScratchRegister(any_xmm); X64Reg xmm_mask = reg_alloc.ScratchRegister(any_xmm);
X64Reg gpr_mask = reg_alloc.ScratchRegister(any_gpr); X64Reg gpr_mask = reg_alloc.ScratchRegister(any_gpr);
if (block.location.FPSCR_FTZ()) { if (block.location.FPSCR().FTZ()) {
DenormalsAreZero64(code, from, gpr_scratch); DenormalsAreZero64(code, from, gpr_scratch);
} }
ZeroIfNaN64(code, from); ZeroIfNaN64(code, from);

188
src/frontend/arm/FPSCR.h Normal file
View file

@ -0,0 +1,188 @@
/* This file is part of the dynarmic project.
* Copyright (c) 2016 MerryMage
* This software may be used and distributed according to the terms of the GNU
* General Public License version 2 or any later version.
*/
#pragma once
#include "common/bit_util.h"
#include "common/common_types.h"
namespace Dynarmic {
namespace Arm {
/**
* Representation of the Floating-Point Status and Control Register.
*/
class FPSCR final
{
public:
enum class RoundingMode {
ToNearest,
TowardsPlusInfinity,
TowardsMinusInfinity,
TowardsZero
};
FPSCR() = default;
FPSCR(const FPSCR&) = default;
FPSCR(FPSCR&&) = default;
/* implicit */ FPSCR(u32 data) : value{data} {}
FPSCR& operator=(const FPSCR&) = default;
FPSCR& operator=(FPSCR&&) = default;
FPSCR& operator=(u32 data) {
value = data;
return *this;
}
/// Negative condition flag.
bool N() const {
return Common::Bit<31>(value);
}
/// Zero condition flag.
bool Z() const {
return Common::Bit<30>(value);
}
/// Carry condition flag.
bool C() const {
return Common::Bit<29>(value);
}
/// Overflow condition flag.
bool V() const {
return Common::Bit<28>(value);
}
/// Cumulative saturation flag.
bool QC() const {
return Common::Bit<27>(value);
}
/// Alternate half-precision control flag.
bool AHP() const {
return Common::Bit<26>(value);
}
/// Default NaN mode control bit.
bool DN() const {
return Common::Bit<25>(value);
}
/// Flush-to-zero mode control bit.
bool FTZ() const {
return Common::Bit<24>(value);
}
/// Rounding mode control field.
RoundingMode RMode() const {
return static_cast<RoundingMode>(Common::Bits<22, 23>(value));
}
/// Indicates the stride of a vector.
u32 Stride() const {
return Common::Bits<20, 21>(value) + 1;
}
/// Indicates the length of a vector.
u32 Len() const {
return Common::Bits<16, 18>(value) + 1;
}
/// Input denormal exception trap enable flag.
bool IDE() const {
return Common::Bit<15>(value);
}
/// Inexact exception trap enable flag.
bool IXE() const {
return Common::Bit<12>(value);
}
/// Underflow exception trap enable flag.
bool UFE() const {
return Common::Bit<11>(value);
}
/// Overflow exception trap enable flag.
bool OFE() const {
return Common::Bit<10>(value);
}
/// Division by zero exception trap enable flag.
bool DZE() const {
return Common::Bit<9>(value);
}
/// Invalid operation exception trap enable flag.
bool IOE() const {
return Common::Bit<8>(value);
}
/// Input denormal cumulative exception bit.
bool IDC() const {
return Common::Bit<7>(value);
}
/// Inexact cumulative exception bit.
bool IXC() const {
return Common::Bit<4>(value);
}
/// Underflow cumulative exception bit.
bool UFC() const {
return Common::Bit<3>(value);
}
/// Overflow cumulative exception bit.
bool OFC() const {
return Common::Bit<2>(value);
}
/// Division by zero cumulative exception bit.
bool DZC() const {
return Common::Bit<1>(value);
}
/// Invalid operation cumulative exception bit.
bool IOC() const {
return Common::Bit<0>(value);
}
/**
* Whether or not the FPSCR indicates RunFast mode.
*
* RunFast mode is enabled when:
* - Flush-to-zero is enabled
* - Default NaNs are enabled.
* - All exception enable bits are cleared.
*/
bool InRunFastMode() const {
constexpr u32 mask = 0x03001F00;
constexpr u32 expected = 0x03000000;
return (value & mask) == expected;
}
/// Gets the underlying raw value within the FPSCR.
u32 Value() const {
return value;
}
private:
u32 value = 0;
};
inline bool operator==(FPSCR lhs, FPSCR rhs) {
return lhs.Value() == rhs.Value();
}
inline bool operator!=(FPSCR lhs, FPSCR rhs) {
return !operator==(lhs, rhs);
}
} // namespace Arm
} // namespace Dynarmic

View file

@ -13,6 +13,7 @@
#include "common/assert.h" #include "common/assert.h"
#include "common/bit_util.h" #include "common/bit_util.h"
#include "common/common_types.h" #include "common/common_types.h"
#include "frontend/arm/FPSCR.h"
namespace Dynarmic { namespace Dynarmic {
namespace Arm { namespace Arm {
@ -64,13 +65,6 @@ enum class SignExtendRotation {
ROR_24 ///< ROR #24 ROR_24 ///< ROR #24
}; };
enum class FPRoundingMode {
RoundToNearest,
RoundTowardsPositiveInfinity,
RoundTowardsNegativeInfinity,
RoundTowardsZero,
};
/** /**
* LocationDescriptor describes the location of a basic block. * LocationDescriptor describes the location of a basic block.
* The location is not solely based on the PC because other flags influence the way * The location is not solely based on the PC because other flags influence the way
@ -80,18 +74,13 @@ enum class FPRoundingMode {
struct LocationDescriptor { struct LocationDescriptor {
static constexpr u32 FPSCR_MODE_MASK = 0x03F79F00; static constexpr u32 FPSCR_MODE_MASK = 0x03F79F00;
LocationDescriptor(u32 arm_pc, bool tflag, bool eflag, u32 fpscr) LocationDescriptor(u32 arm_pc, bool tflag, bool eflag, FPSCR fpscr)
: arm_pc(arm_pc), tflag(tflag), eflag(eflag), fpscr(fpscr & FPSCR_MODE_MASK) {} : arm_pc(arm_pc), tflag(tflag), eflag(eflag), fpscr(fpscr.Value() & FPSCR_MODE_MASK) {}
u32 PC() const { return arm_pc; } u32 PC() const { return arm_pc; }
bool TFlag() const { return tflag; } bool TFlag() const { return tflag; }
bool EFlag() const { return eflag; } bool EFlag() const { return eflag; }
u32 FPSCR() const { return fpscr; } Arm::FPSCR FPSCR() const { return fpscr; }
bool FPSCR_FTZ() const { return Common::Bit<24>(fpscr); }
bool FPSCR_DN() const { return Common::Bit<25>(fpscr); }
u32 FPSCR_Len() const { return Common::Bits<16, 18>(fpscr) + 1; }
u32 FPSCR_Stride() const { return Common::Bits<20, 21>(fpscr) + 1; }
FPRoundingMode FPSCR_RMode() const { return static_cast<FPRoundingMode>(Common::Bits<22, 23>(fpscr)); }
bool operator == (const LocationDescriptor& o) const { bool operator == (const LocationDescriptor& o) const {
return std::tie(arm_pc, tflag, eflag, fpscr) == std::tie(o.arm_pc, o.tflag, o.eflag, o.fpscr); return std::tie(arm_pc, tflag, eflag, fpscr) == std::tie(o.arm_pc, o.tflag, o.eflag, o.fpscr);
@ -121,7 +110,7 @@ struct LocationDescriptor {
// This value MUST BE UNIQUE. // This value MUST BE UNIQUE.
// This calculation has to match up with EmitX64::EmitTerminalPopRSBHint // This calculation has to match up with EmitX64::EmitTerminalPopRSBHint
u64 pc_u64 = u64(arm_pc); u64 pc_u64 = u64(arm_pc);
u64 fpscr_u64 = u64(fpscr) << 32; u64 fpscr_u64 = u64(fpscr.Value()) << 32;
u64 t_u64 = tflag ? (1ull << 35) : 0; u64 t_u64 = tflag ? (1ull << 35) : 0;
u64 e_u64 = eflag ? (1ull << 39) : 0; u64 e_u64 = eflag ? (1ull << 39) : 0;
return pc_u64 | fpscr_u64 | t_u64 | e_u64; return pc_u64 | fpscr_u64 | t_u64 | e_u64;
@ -129,9 +118,9 @@ struct LocationDescriptor {
private: private:
u32 arm_pc; u32 arm_pc;
bool tflag; ///< Thumb / ARM bool tflag; ///< Thumb / ARM
bool eflag; ///< Big / Little Endian bool eflag; ///< Big / Little Endian
u32 fpscr; ///< Floating point status control register Arm::FPSCR fpscr; ///< Floating point status control register
}; };
struct LocationDescriptorHash { struct LocationDescriptorHash {

View file

@ -21,7 +21,7 @@ std::string DumpBlock(const IR::Block& block) {
loc.PC(), loc.PC(),
loc.TFlag() ? "T" : "!T", loc.TFlag() ? "T" : "!T",
loc.EFlag() ? "E" : "!E", loc.EFlag() ? "E" : "!E",
loc.FPSCR()); loc.FPSCR().Value());
}; };
ret += Common::StringFromFormat("Block: location=%s\n", loc_to_string(block.location).c_str()); ret += Common::StringFromFormat("Block: location=%s\n", loc_to_string(block.location).c_str());

View file

@ -18,7 +18,7 @@ static ExtReg ToExtReg(bool sz, size_t base, bool bit) {
} }
bool ArmTranslatorVisitor::vfp2_VADD(Cond cond, bool D, size_t Vn, size_t Vd, bool sz, bool N, bool M, size_t Vm) { bool ArmTranslatorVisitor::vfp2_VADD(Cond cond, bool D, size_t Vn, size_t Vd, bool sz, bool N, bool M, size_t Vm) {
if (ir.current_location.FPSCR_Len() != 1 || ir.current_location.FPSCR_Stride() != 1) if (ir.current_location.FPSCR().Len() != 1 || ir.current_location.FPSCR().Stride() != 1)
return InterpretThisInstruction(); // TODO: Vectorised floating point instructions return InterpretThisInstruction(); // TODO: Vectorised floating point instructions
ExtReg d = ToExtReg(sz, Vd, D); ExtReg d = ToExtReg(sz, Vd, D);
@ -37,7 +37,7 @@ bool ArmTranslatorVisitor::vfp2_VADD(Cond cond, bool D, size_t Vn, size_t Vd, bo
} }
bool ArmTranslatorVisitor::vfp2_VSUB(Cond cond, bool D, size_t Vn, size_t Vd, bool sz, bool N, bool M, size_t Vm) { bool ArmTranslatorVisitor::vfp2_VSUB(Cond cond, bool D, size_t Vn, size_t Vd, bool sz, bool N, bool M, size_t Vm) {
if (ir.current_location.FPSCR_Len() != 1 || ir.current_location.FPSCR_Stride() != 1) if (ir.current_location.FPSCR().Len() != 1 || ir.current_location.FPSCR().Stride() != 1)
return InterpretThisInstruction(); // TODO: Vectorised floating point instructions return InterpretThisInstruction(); // TODO: Vectorised floating point instructions
ExtReg d = ToExtReg(sz, Vd, D); ExtReg d = ToExtReg(sz, Vd, D);
@ -56,7 +56,7 @@ bool ArmTranslatorVisitor::vfp2_VSUB(Cond cond, bool D, size_t Vn, size_t Vd, bo
} }
bool ArmTranslatorVisitor::vfp2_VMUL(Cond cond, bool D, size_t Vn, size_t Vd, bool sz, bool N, bool M, size_t Vm) { bool ArmTranslatorVisitor::vfp2_VMUL(Cond cond, bool D, size_t Vn, size_t Vd, bool sz, bool N, bool M, size_t Vm) {
if (ir.current_location.FPSCR_Len() != 1 || ir.current_location.FPSCR_Stride() != 1) if (ir.current_location.FPSCR().Len() != 1 || ir.current_location.FPSCR().Stride() != 1)
return InterpretThisInstruction(); // TODO: Vectorised floating point instructions return InterpretThisInstruction(); // TODO: Vectorised floating point instructions
ExtReg d = ToExtReg(sz, Vd, D); ExtReg d = ToExtReg(sz, Vd, D);
@ -75,7 +75,7 @@ bool ArmTranslatorVisitor::vfp2_VMUL(Cond cond, bool D, size_t Vn, size_t Vd, bo
} }
bool ArmTranslatorVisitor::vfp2_VMLA(Cond cond, bool D, size_t Vn, size_t Vd, bool sz, bool N, bool M, size_t Vm) { bool ArmTranslatorVisitor::vfp2_VMLA(Cond cond, bool D, size_t Vn, size_t Vd, bool sz, bool N, bool M, size_t Vm) {
if (ir.current_location.FPSCR_Len() != 1 || ir.current_location.FPSCR_Stride() != 1) if (ir.current_location.FPSCR().Len() != 1 || ir.current_location.FPSCR().Stride() != 1)
return InterpretThisInstruction(); // TODO: Vectorised floating point instructions return InterpretThisInstruction(); // TODO: Vectorised floating point instructions
ExtReg d = ToExtReg(sz, Vd, D); ExtReg d = ToExtReg(sz, Vd, D);
@ -95,7 +95,7 @@ bool ArmTranslatorVisitor::vfp2_VMLA(Cond cond, bool D, size_t Vn, size_t Vd, bo
} }
bool ArmTranslatorVisitor::vfp2_VMLS(Cond cond, bool D, size_t Vn, size_t Vd, bool sz, bool N, bool M, size_t Vm) { bool ArmTranslatorVisitor::vfp2_VMLS(Cond cond, bool D, size_t Vn, size_t Vd, bool sz, bool N, bool M, size_t Vm) {
if (ir.current_location.FPSCR_Len() != 1 || ir.current_location.FPSCR_Stride() != 1) if (ir.current_location.FPSCR().Len() != 1 || ir.current_location.FPSCR().Stride() != 1)
return InterpretThisInstruction(); // TODO: Vectorised floating point instructions return InterpretThisInstruction(); // TODO: Vectorised floating point instructions
ExtReg d = ToExtReg(sz, Vd, D); ExtReg d = ToExtReg(sz, Vd, D);
@ -115,7 +115,7 @@ bool ArmTranslatorVisitor::vfp2_VMLS(Cond cond, bool D, size_t Vn, size_t Vd, bo
} }
bool ArmTranslatorVisitor::vfp2_VNMUL(Cond cond, bool D, size_t Vn, size_t Vd, bool sz, bool N, bool M, size_t Vm) { bool ArmTranslatorVisitor::vfp2_VNMUL(Cond cond, bool D, size_t Vn, size_t Vd, bool sz, bool N, bool M, size_t Vm) {
if (ir.current_location.FPSCR_Len() != 1 || ir.current_location.FPSCR_Stride() != 1) if (ir.current_location.FPSCR().Len() != 1 || ir.current_location.FPSCR().Stride() != 1)
return InterpretThisInstruction(); // TODO: Vectorised floating point instructions return InterpretThisInstruction(); // TODO: Vectorised floating point instructions
ExtReg d = ToExtReg(sz, Vd, D); ExtReg d = ToExtReg(sz, Vd, D);
@ -134,7 +134,7 @@ bool ArmTranslatorVisitor::vfp2_VNMUL(Cond cond, bool D, size_t Vn, size_t Vd, b
} }
bool ArmTranslatorVisitor::vfp2_VNMLA(Cond cond, bool D, size_t Vn, size_t Vd, bool sz, bool N, bool M, size_t Vm) { bool ArmTranslatorVisitor::vfp2_VNMLA(Cond cond, bool D, size_t Vn, size_t Vd, bool sz, bool N, bool M, size_t Vm) {
if (ir.current_location.FPSCR_Len() != 1 || ir.current_location.FPSCR_Stride() != 1) if (ir.current_location.FPSCR().Len() != 1 || ir.current_location.FPSCR().Stride() != 1)
return InterpretThisInstruction(); // TODO: Vectorised floating point instructions return InterpretThisInstruction(); // TODO: Vectorised floating point instructions
ExtReg d = ToExtReg(sz, Vd, D); ExtReg d = ToExtReg(sz, Vd, D);
@ -154,7 +154,7 @@ bool ArmTranslatorVisitor::vfp2_VNMLA(Cond cond, bool D, size_t Vn, size_t Vd, b
} }
bool ArmTranslatorVisitor::vfp2_VNMLS(Cond cond, bool D, size_t Vn, size_t Vd, bool sz, bool N, bool M, size_t Vm) { bool ArmTranslatorVisitor::vfp2_VNMLS(Cond cond, bool D, size_t Vn, size_t Vd, bool sz, bool N, bool M, size_t Vm) {
if (ir.current_location.FPSCR_Len() != 1 || ir.current_location.FPSCR_Stride() != 1) if (ir.current_location.FPSCR().Len() != 1 || ir.current_location.FPSCR().Stride() != 1)
return InterpretThisInstruction(); // TODO: Vectorised floating point instructions return InterpretThisInstruction(); // TODO: Vectorised floating point instructions
ExtReg d = ToExtReg(sz, Vd, D); ExtReg d = ToExtReg(sz, Vd, D);
@ -174,7 +174,7 @@ bool ArmTranslatorVisitor::vfp2_VNMLS(Cond cond, bool D, size_t Vn, size_t Vd, b
} }
bool ArmTranslatorVisitor::vfp2_VDIV(Cond cond, bool D, size_t Vn, size_t Vd, bool sz, bool N, bool M, size_t Vm) { bool ArmTranslatorVisitor::vfp2_VDIV(Cond cond, bool D, size_t Vn, size_t Vd, bool sz, bool N, bool M, size_t Vm) {
if (ir.current_location.FPSCR_Len() != 1 || ir.current_location.FPSCR_Stride() != 1) if (ir.current_location.FPSCR().Len() != 1 || ir.current_location.FPSCR().Stride() != 1)
return InterpretThisInstruction(); // TODO: Vectorised floating point instructions return InterpretThisInstruction(); // TODO: Vectorised floating point instructions
ExtReg d = ToExtReg(sz, Vd, D); ExtReg d = ToExtReg(sz, Vd, D);
@ -297,7 +297,7 @@ bool ArmTranslatorVisitor::vfp2_VMOV_f64_2u32(Cond cond, Reg t2, Reg t, bool M,
} }
bool ArmTranslatorVisitor::vfp2_VMOV_reg(Cond cond, bool D, size_t Vd, bool sz, bool M, size_t Vm) { bool ArmTranslatorVisitor::vfp2_VMOV_reg(Cond cond, bool D, size_t Vd, bool sz, bool M, size_t Vm) {
if (ir.current_location.FPSCR_Len() != 1 || ir.current_location.FPSCR_Stride() != 1) if (ir.current_location.FPSCR().Len() != 1 || ir.current_location.FPSCR().Stride() != 1)
return InterpretThisInstruction(); // TODO: Vectorised floating point instructions return InterpretThisInstruction(); // TODO: Vectorised floating point instructions
ExtReg d = ToExtReg(sz, Vd, D); ExtReg d = ToExtReg(sz, Vd, D);
@ -310,7 +310,7 @@ bool ArmTranslatorVisitor::vfp2_VMOV_reg(Cond cond, bool D, size_t Vd, bool sz,
} }
bool ArmTranslatorVisitor::vfp2_VABS(Cond cond, bool D, size_t Vd, bool sz, bool M, size_t Vm) { bool ArmTranslatorVisitor::vfp2_VABS(Cond cond, bool D, size_t Vd, bool sz, bool M, size_t Vm) {
if (ir.current_location.FPSCR_Len() != 1 || ir.current_location.FPSCR_Stride() != 1) if (ir.current_location.FPSCR().Len() != 1 || ir.current_location.FPSCR().Stride() != 1)
return InterpretThisInstruction(); // TODO: Vectorised floating point instructions return InterpretThisInstruction(); // TODO: Vectorised floating point instructions
ExtReg d = ToExtReg(sz, Vd, D); ExtReg d = ToExtReg(sz, Vd, D);
@ -327,7 +327,7 @@ bool ArmTranslatorVisitor::vfp2_VABS(Cond cond, bool D, size_t Vd, bool sz, bool
} }
bool ArmTranslatorVisitor::vfp2_VNEG(Cond cond, bool D, size_t Vd, bool sz, bool M, size_t Vm) { bool ArmTranslatorVisitor::vfp2_VNEG(Cond cond, bool D, size_t Vd, bool sz, bool M, size_t Vm) {
if (ir.current_location.FPSCR_Len() != 1 || ir.current_location.FPSCR_Stride() != 1) if (ir.current_location.FPSCR().Len() != 1 || ir.current_location.FPSCR().Stride() != 1)
return InterpretThisInstruction(); // TODO: Vectorised floating point instructions return InterpretThisInstruction(); // TODO: Vectorised floating point instructions
ExtReg d = ToExtReg(sz, Vd, D); ExtReg d = ToExtReg(sz, Vd, D);
@ -344,7 +344,7 @@ bool ArmTranslatorVisitor::vfp2_VNEG(Cond cond, bool D, size_t Vd, bool sz, bool
} }
bool ArmTranslatorVisitor::vfp2_VSQRT(Cond cond, bool D, size_t Vd, bool sz, bool M, size_t Vm) { bool ArmTranslatorVisitor::vfp2_VSQRT(Cond cond, bool D, size_t Vd, bool sz, bool M, size_t Vm) {
if (ir.current_location.FPSCR_Len() != 1 || ir.current_location.FPSCR_Stride() != 1) if (ir.current_location.FPSCR().Len() != 1 || ir.current_location.FPSCR().Stride() != 1)
return InterpretThisInstruction(); // TODO: Vectorised floating point instructions return InterpretThisInstruction(); // TODO: Vectorised floating point instructions
ExtReg d = ToExtReg(sz, Vd, D); ExtReg d = ToExtReg(sz, Vd, D);