IR: Compile-time type-checking of IR

This commit is contained in:
MerryMage 2018-01-05 21:47:23 +00:00
parent 44f7f04b5c
commit f61da0b5a9
13 changed files with 697 additions and 618 deletions

View file

@ -23,230 +23,230 @@ u32 IREmitter::AlignPC(size_t alignment) {
return static_cast<u32>(pc - pc % alignment);
}
IR::Value IREmitter::GetRegister(A32::Reg reg) {
IR::U32 IREmitter::GetRegister(Reg reg) {
if (reg == A32::Reg::PC) {
return Imm32(PC());
}
return Inst(Opcode::A32GetRegister, { IR::Value(reg) });
return Inst<IR::U32>(Opcode::A32GetRegister, IR::Value(reg));
}
IR::Value IREmitter::GetExtendedRegister(A32::ExtReg reg) {
IR::F32F64 IREmitter::GetExtendedRegister(ExtReg reg) {
if (A32::IsSingleExtReg(reg)) {
return Inst(Opcode::A32GetExtendedRegister32, {IR::Value(reg)});
return Inst<IR::F32F64>(Opcode::A32GetExtendedRegister32, IR::Value(reg));
}
if (A32::IsDoubleExtReg(reg)) {
return Inst(Opcode::A32GetExtendedRegister64, {IR::Value(reg)});
return Inst<IR::F32F64>(Opcode::A32GetExtendedRegister64, IR::Value(reg));
}
ASSERT_MSG(false, "Invalid reg.");
}
void IREmitter::SetRegister(const A32::Reg reg, const IR::Value& value) {
void IREmitter::SetRegister(const Reg reg, const IR::U32& value) {
ASSERT(reg != A32::Reg::PC);
Inst(Opcode::A32SetRegister, { IR::Value(reg), value });
Inst(Opcode::A32SetRegister, IR::Value(reg), value);
}
void IREmitter::SetExtendedRegister(const A32::ExtReg reg, const IR::Value& value) {
void IREmitter::SetExtendedRegister(const ExtReg reg, const IR::F32F64& value) {
if (A32::IsSingleExtReg(reg)) {
Inst(Opcode::A32SetExtendedRegister32, {IR::Value(reg), value});
Inst(Opcode::A32SetExtendedRegister32, IR::Value(reg), value);
} else if (A32::IsDoubleExtReg(reg)) {
Inst(Opcode::A32SetExtendedRegister64, {IR::Value(reg), value});
Inst(Opcode::A32SetExtendedRegister64, IR::Value(reg), value);
} else {
ASSERT_MSG(false, "Invalid reg.");
}
}
void IREmitter::ALUWritePC(const IR::Value& value) {
void IREmitter::ALUWritePC(const IR::U32& value) {
// This behaviour is ARM version-dependent.
// The below implementation is for ARMv6k
BranchWritePC(value);
}
void IREmitter::BranchWritePC(const IR::Value& value) {
void IREmitter::BranchWritePC(const IR::U32& value) {
if (!current_location.TFlag()) {
auto new_pc = And(value, Imm32(0xFFFFFFFC));
Inst(Opcode::A32SetRegister, { IR::Value(A32::Reg::PC), new_pc });
Inst(Opcode::A32SetRegister, IR::Value(A32::Reg::PC), new_pc);
} else {
auto new_pc = And(value, Imm32(0xFFFFFFFE));
Inst(Opcode::A32SetRegister, { IR::Value(A32::Reg::PC), new_pc });
Inst(Opcode::A32SetRegister, IR::Value(A32::Reg::PC), new_pc);
}
}
void IREmitter::BXWritePC(const IR::Value& value) {
Inst(Opcode::A32BXWritePC, {value});
void IREmitter::BXWritePC(const IR::U32& value) {
Inst(Opcode::A32BXWritePC, value);
}
void IREmitter::LoadWritePC(const IR::Value& value) {
void IREmitter::LoadWritePC(const IR::U32& value) {
// This behaviour is ARM version-dependent.
// The below implementation is for ARMv6k
BXWritePC(value);
}
void IREmitter::CallSupervisor(const IR::Value& value) {
Inst(Opcode::A32CallSupervisor, {value});
void IREmitter::CallSupervisor(const IR::U32& value) {
Inst(Opcode::A32CallSupervisor, value);
}
IR::Value IREmitter::GetCpsr() {
return Inst(Opcode::A32GetCpsr, {});
IR::U32 IREmitter::GetCpsr() {
return Inst<IR::U32>(Opcode::A32GetCpsr);
}
void IREmitter::SetCpsr(const IR::Value& value) {
Inst(Opcode::A32SetCpsr, {value});
void IREmitter::SetCpsr(const IR::U32& value) {
Inst(Opcode::A32SetCpsr, value);
}
void IREmitter::SetCpsrNZCV(const IR::Value& value) {
Inst(Opcode::A32SetCpsrNZCV, {value});
void IREmitter::SetCpsrNZCV(const IR::U32& value) {
Inst(Opcode::A32SetCpsrNZCV, value);
}
void IREmitter::SetCpsrNZCVQ(const IR::Value& value) {
Inst(Opcode::A32SetCpsrNZCVQ, {value});
void IREmitter::SetCpsrNZCVQ(const IR::U32& value) {
Inst(Opcode::A32SetCpsrNZCVQ, value);
}
IR::Value IREmitter::GetCFlag() {
return Inst(Opcode::A32GetCFlag, {});
IR::U1 IREmitter::GetCFlag() {
return Inst<IR::U1>(Opcode::A32GetCFlag);
}
void IREmitter::SetNFlag(const IR::Value& value) {
Inst(Opcode::A32SetNFlag, {value});
void IREmitter::SetNFlag(const IR::U1& value) {
Inst(Opcode::A32SetNFlag, value);
}
void IREmitter::SetZFlag(const IR::Value& value) {
Inst(Opcode::A32SetZFlag, {value});
void IREmitter::SetZFlag(const IR::U1& value) {
Inst(Opcode::A32SetZFlag, value);
}
void IREmitter::SetCFlag(const IR::Value& value) {
Inst(Opcode::A32SetCFlag, {value});
void IREmitter::SetCFlag(const IR::U1& value) {
Inst(Opcode::A32SetCFlag, value);
}
void IREmitter::SetVFlag(const IR::Value& value) {
Inst(Opcode::A32SetVFlag, {value});
void IREmitter::SetVFlag(const IR::U1& value) {
Inst(Opcode::A32SetVFlag, value);
}
void IREmitter::OrQFlag(const IR::Value& value) {
Inst(Opcode::A32OrQFlag, {value});
void IREmitter::OrQFlag(const IR::U1& value) {
Inst(Opcode::A32OrQFlag, value);
}
IR::Value IREmitter::GetGEFlags() {
return Inst(Opcode::A32GetGEFlags, {});
IR::U32 IREmitter::GetGEFlags() {
return Inst<IR::U32>(Opcode::A32GetGEFlags);
}
void IREmitter::SetGEFlags(const IR::Value& value) {
Inst(Opcode::A32SetGEFlags, {value});
void IREmitter::SetGEFlags(const IR::U32& value) {
Inst(Opcode::A32SetGEFlags, value);
}
void IREmitter::SetGEFlagsCompressed(const IR::Value& value) {
Inst(Opcode::A32SetGEFlagsCompressed, {value});
void IREmitter::SetGEFlagsCompressed(const IR::U32& value) {
Inst(Opcode::A32SetGEFlagsCompressed, value);
}
IR::Value IREmitter::GetFpscr() {
return Inst(Opcode::A32GetFpscr, {});
IR::U32 IREmitter::GetFpscr() {
return Inst<IR::U32>(Opcode::A32GetFpscr);
}
void IREmitter::SetFpscr(const IR::Value& new_fpscr) {
Inst(Opcode::A32SetFpscr, {new_fpscr});
void IREmitter::SetFpscr(const IR::U32& new_fpscr) {
Inst(Opcode::A32SetFpscr, new_fpscr);
}
IR::Value IREmitter::GetFpscrNZCV() {
return Inst(Opcode::A32GetFpscrNZCV, {});
IR::U32 IREmitter::GetFpscrNZCV() {
return Inst<IR::U32>(Opcode::A32GetFpscrNZCV);
}
void IREmitter::SetFpscrNZCV(const IR::Value& new_fpscr_nzcv) {
Inst(Opcode::A32SetFpscrNZCV, {new_fpscr_nzcv});
void IREmitter::SetFpscrNZCV(const IR::U32& new_fpscr_nzcv) {
Inst(Opcode::A32SetFpscrNZCV, new_fpscr_nzcv);
}
void IREmitter::ClearExclusive() {
Inst(Opcode::A32ClearExclusive, {});
Inst(Opcode::A32ClearExclusive);
}
void IREmitter::SetExclusive(const IR::Value& vaddr, size_t byte_size) {
void IREmitter::SetExclusive(const IR::U32& vaddr, size_t byte_size) {
ASSERT(byte_size == 1 || byte_size == 2 || byte_size == 4 || byte_size == 8 || byte_size == 16);
Inst(Opcode::A32SetExclusive, {vaddr, Imm8(u8(byte_size))});
Inst(Opcode::A32SetExclusive, vaddr, Imm8(u8(byte_size)));
}
IR::Value IREmitter::ReadMemory8(const IR::Value& vaddr) {
return Inst(Opcode::A32ReadMemory8, {vaddr});
IR::U8 IREmitter::ReadMemory8(const IR::U32& vaddr) {
return Inst<IR::U8>(Opcode::A32ReadMemory8, vaddr);
}
IR::Value IREmitter::ReadMemory16(const IR::Value& vaddr) {
auto value = Inst(Opcode::A32ReadMemory16, {vaddr});
IR::U16 IREmitter::ReadMemory16(const IR::U32& vaddr) {
auto value = Inst<IR::U16>(Opcode::A32ReadMemory16, vaddr);
return current_location.EFlag() ? ByteReverseHalf(value) : value;
}
IR::Value IREmitter::ReadMemory32(const IR::Value& vaddr) {
auto value = Inst(Opcode::A32ReadMemory32, {vaddr});
IR::U32 IREmitter::ReadMemory32(const IR::U32& vaddr) {
auto value = Inst<IR::U32>(Opcode::A32ReadMemory32, vaddr);
return current_location.EFlag() ? ByteReverseWord(value) : value;
}
IR::Value IREmitter::ReadMemory64(const IR::Value& vaddr) {
auto value = Inst(Opcode::A32ReadMemory64, {vaddr});
IR::U64 IREmitter::ReadMemory64(const IR::U32& vaddr) {
auto value = Inst<IR::U64>(Opcode::A32ReadMemory64, vaddr);
return current_location.EFlag() ? ByteReverseDual(value) : value;
}
void IREmitter::WriteMemory8(const IR::Value& vaddr, const IR::Value& value) {
Inst(Opcode::A32WriteMemory8, {vaddr, value});
void IREmitter::WriteMemory8(const IR::U32& vaddr, const IR::U8& value) {
Inst(Opcode::A32WriteMemory8, vaddr, value);
}
void IREmitter::WriteMemory16(const IR::Value& vaddr, const IR::Value& value) {
void IREmitter::WriteMemory16(const IR::U32& vaddr, const IR::U16& value) {
if (current_location.EFlag()) {
auto v = ByteReverseHalf(value);
Inst(Opcode::A32WriteMemory16, {vaddr, v});
Inst(Opcode::A32WriteMemory16, vaddr, v);
} else {
Inst(Opcode::A32WriteMemory16, {vaddr, value});
Inst(Opcode::A32WriteMemory16, vaddr, value);
}
}
void IREmitter::WriteMemory32(const IR::Value& vaddr, const IR::Value& value) {
void IREmitter::WriteMemory32(const IR::U32& vaddr, const IR::U32& value) {
if (current_location.EFlag()) {
auto v = ByteReverseWord(value);
Inst(Opcode::A32WriteMemory32, {vaddr, v});
Inst(Opcode::A32WriteMemory32, vaddr, v);
} else {
Inst(Opcode::A32WriteMemory32, {vaddr, value});
Inst(Opcode::A32WriteMemory32, vaddr, value);
}
}
void IREmitter::WriteMemory64(const IR::Value& vaddr, const IR::Value& value) {
void IREmitter::WriteMemory64(const IR::U32& vaddr, const IR::U64& value) {
if (current_location.EFlag()) {
auto v = ByteReverseDual(value);
Inst(Opcode::A32WriteMemory64, {vaddr, v});
Inst(Opcode::A32WriteMemory64, vaddr, v);
} else {
Inst(Opcode::A32WriteMemory64, {vaddr, value});
Inst(Opcode::A32WriteMemory64, vaddr, value);
}
}
IR::Value IREmitter::ExclusiveWriteMemory8(const IR::Value& vaddr, const IR::Value& value) {
return Inst(Opcode::A32ExclusiveWriteMemory8, {vaddr, value});
IR::U32 IREmitter::ExclusiveWriteMemory8(const IR::U32& vaddr, const IR::U8& value) {
return Inst<IR::U32>(Opcode::A32ExclusiveWriteMemory8, vaddr, value);
}
IR::Value IREmitter::ExclusiveWriteMemory16(const IR::Value& vaddr, const IR::Value& value) {
IR::U32 IREmitter::ExclusiveWriteMemory16(const IR::U32& vaddr, const IR::U16& value) {
if (current_location.EFlag()) {
auto v = ByteReverseHalf(value);
return Inst(Opcode::A32ExclusiveWriteMemory16, {vaddr, v});
return Inst<IR::U32>(Opcode::A32ExclusiveWriteMemory16, vaddr, v);
} else {
return Inst(Opcode::A32ExclusiveWriteMemory16, {vaddr, value});
return Inst<IR::U32>(Opcode::A32ExclusiveWriteMemory16, vaddr, value);
}
}
IR::Value IREmitter::ExclusiveWriteMemory32(const IR::Value& vaddr, const IR::Value& value) {
IR::U32 IREmitter::ExclusiveWriteMemory32(const IR::U32& vaddr, const IR::U32& value) {
if (current_location.EFlag()) {
auto v = ByteReverseWord(value);
return Inst(Opcode::A32ExclusiveWriteMemory32, {vaddr, v});
return Inst<IR::U32>(Opcode::A32ExclusiveWriteMemory32, vaddr, v);
} else {
return Inst(Opcode::A32ExclusiveWriteMemory32, {vaddr, value});
return Inst<IR::U32>(Opcode::A32ExclusiveWriteMemory32, vaddr, value);
}
}
IR::Value IREmitter::ExclusiveWriteMemory64(const IR::Value& vaddr, const IR::Value& value_lo, const IR::Value& value_hi) {
IR::U32 IREmitter::ExclusiveWriteMemory64(const IR::U32& vaddr, const IR::U32& value_lo, const IR::U32& value_hi) {
if (current_location.EFlag()) {
auto vlo = ByteReverseWord(value_lo);
auto vhi = ByteReverseWord(value_hi);
return Inst(Opcode::A32ExclusiveWriteMemory64, {vaddr, vlo, vhi});
return Inst<IR::U32>(Opcode::A32ExclusiveWriteMemory64, vaddr, vlo, vhi);
} else {
return Inst(Opcode::A32ExclusiveWriteMemory64, {vaddr, value_lo, value_hi});
return Inst<IR::U32>(Opcode::A32ExclusiveWriteMemory64, vaddr, value_lo, value_hi);
}
}
void IREmitter::CoprocInternalOperation(size_t coproc_no, bool two, size_t opc1, A32::CoprocReg CRd, A32::CoprocReg CRn, A32::CoprocReg CRm, size_t opc2) {
void IREmitter::CoprocInternalOperation(size_t coproc_no, bool two, size_t opc1, CoprocReg CRd, CoprocReg CRn, CoprocReg CRm, size_t opc2) {
ASSERT(coproc_no <= 15);
std::array<u8, 8> coproc_info{static_cast<u8>(coproc_no),
static_cast<u8>(two ? 1 : 0),
@ -255,10 +255,10 @@ void IREmitter::CoprocInternalOperation(size_t coproc_no, bool two, size_t opc1,
static_cast<u8>(CRn),
static_cast<u8>(CRm),
static_cast<u8>(opc2)};
Inst(Opcode::A32CoprocInternalOperation, {IR::Value(coproc_info)});
Inst(Opcode::A32CoprocInternalOperation, IR::Value(coproc_info));
}
void IREmitter::CoprocSendOneWord(size_t coproc_no, bool two, size_t opc1, A32::CoprocReg CRn, A32::CoprocReg CRm, size_t opc2, const IR::Value& word) {
void IREmitter::CoprocSendOneWord(size_t coproc_no, bool two, size_t opc1, CoprocReg CRn, CoprocReg CRm, size_t opc2, const IR::U32& word) {
ASSERT(coproc_no <= 15);
std::array<u8, 8> coproc_info{static_cast<u8>(coproc_no),
static_cast<u8>(two ? 1 : 0),
@ -266,19 +266,19 @@ void IREmitter::CoprocSendOneWord(size_t coproc_no, bool two, size_t opc1, A32::
static_cast<u8>(CRn),
static_cast<u8>(CRm),
static_cast<u8>(opc2)};
Inst(Opcode::A32CoprocSendOneWord, {IR::Value(coproc_info), word});
Inst(Opcode::A32CoprocSendOneWord, IR::Value(coproc_info), word);
}
void IREmitter::CoprocSendTwoWords(size_t coproc_no, bool two, size_t opc, A32::CoprocReg CRm, const IR::Value& word1, const IR::Value& word2) {
void IREmitter::CoprocSendTwoWords(size_t coproc_no, bool two, size_t opc, CoprocReg CRm, const IR::U32& word1, const IR::U32& word2) {
ASSERT(coproc_no <= 15);
std::array<u8, 8> coproc_info{static_cast<u8>(coproc_no),
static_cast<u8>(two ? 1 : 0),
static_cast<u8>(opc),
static_cast<u8>(CRm)};
Inst(Opcode::A32CoprocSendTwoWords, {IR::Value(coproc_info), word1, word2});
Inst(Opcode::A32CoprocSendTwoWords, IR::Value(coproc_info), word1, word2);
}
IR::Value IREmitter::CoprocGetOneWord(size_t coproc_no, bool two, size_t opc1, A32::CoprocReg CRn, A32::CoprocReg CRm, size_t opc2) {
IR::U32 IREmitter::CoprocGetOneWord(size_t coproc_no, bool two, size_t opc1, CoprocReg CRn, CoprocReg CRm, size_t opc2) {
ASSERT(coproc_no <= 15);
std::array<u8, 8> coproc_info{static_cast<u8>(coproc_no),
static_cast<u8>(two ? 1 : 0),
@ -286,19 +286,19 @@ IR::Value IREmitter::CoprocGetOneWord(size_t coproc_no, bool two, size_t opc1, A
static_cast<u8>(CRn),
static_cast<u8>(CRm),
static_cast<u8>(opc2)};
return Inst(Opcode::A32CoprocGetOneWord, {IR::Value(coproc_info)});
return Inst<IR::U32>(Opcode::A32CoprocGetOneWord, IR::Value(coproc_info));
}
IR::Value IREmitter::CoprocGetTwoWords(size_t coproc_no, bool two, size_t opc, A32::CoprocReg CRm) {
IR::U64 IREmitter::CoprocGetTwoWords(size_t coproc_no, bool two, size_t opc, CoprocReg CRm) {
ASSERT(coproc_no <= 15);
std::array<u8, 8> coproc_info{static_cast<u8>(coproc_no),
static_cast<u8>(two ? 1 : 0),
static_cast<u8>(opc),
static_cast<u8>(CRm)};
return Inst(Opcode::A32CoprocGetTwoWords, {IR::Value(coproc_info)});
return Inst<IR::U64>(Opcode::A32CoprocGetTwoWords, IR::Value(coproc_info));
}
void IREmitter::CoprocLoadWords(size_t coproc_no, bool two, bool long_transfer, A32::CoprocReg CRd, const IR::Value& address, bool has_option, u8 option) {
void IREmitter::CoprocLoadWords(size_t coproc_no, bool two, bool long_transfer, CoprocReg CRd, const IR::U32& address, bool has_option, u8 option) {
ASSERT(coproc_no <= 15);
std::array<u8, 8> coproc_info{static_cast<u8>(coproc_no),
static_cast<u8>(two ? 1 : 0),
@ -306,10 +306,10 @@ void IREmitter::CoprocLoadWords(size_t coproc_no, bool two, bool long_transfer,
static_cast<u8>(CRd),
static_cast<u8>(has_option ? 1 : 0),
static_cast<u8>(option)};
Inst(Opcode::A32CoprocLoadWords, {IR::Value(coproc_info), address});
Inst(Opcode::A32CoprocLoadWords, IR::Value(coproc_info), address);
}
void IREmitter::CoprocStoreWords(size_t coproc_no, bool two, bool long_transfer, A32::CoprocReg CRd, const IR::Value& address, bool has_option, u8 option) {
void IREmitter::CoprocStoreWords(size_t coproc_no, bool two, bool long_transfer, CoprocReg CRd, const IR::U32& address, bool has_option, u8 option) {
ASSERT(coproc_no <= 15);
std::array<u8, 8> coproc_info{static_cast<u8>(coproc_no),
static_cast<u8>(two ? 1 : 0),
@ -317,7 +317,7 @@ void IREmitter::CoprocStoreWords(size_t coproc_no, bool two, bool long_transfer,
static_cast<u8>(CRd),
static_cast<u8>(has_option ? 1 : 0),
static_cast<u8>(option)};
Inst(Opcode::A32CoprocStoreWords, {IR::Value(coproc_info), address});
Inst(Opcode::A32CoprocStoreWords, IR::Value(coproc_info), address);
}
} // namespace IR

View file

@ -26,65 +26,65 @@ namespace A32 {
*/
class IREmitter : public IR::IREmitter {
public:
explicit IREmitter(A32::LocationDescriptor descriptor) : IR::IREmitter(descriptor), current_location(descriptor) {}
explicit IREmitter(LocationDescriptor descriptor) : IR::IREmitter(descriptor), current_location(descriptor) {}
A32::LocationDescriptor current_location;
LocationDescriptor current_location;
u32 PC();
u32 AlignPC(size_t alignment);
IR::Value GetRegister(A32::Reg source_reg);
IR::Value GetExtendedRegister(A32::ExtReg source_reg);
void SetRegister(const A32::Reg dest_reg, const IR::Value& value);
void SetExtendedRegister(const A32::ExtReg dest_reg, const IR::Value& value);
IR::U32 GetRegister(Reg source_reg);
IR::F32F64 GetExtendedRegister(ExtReg source_reg);
void SetRegister(const Reg dest_reg, const IR::U32& value);
void SetExtendedRegister(const ExtReg dest_reg, const IR::F32F64& value);
void ALUWritePC(const IR::Value& value);
void BranchWritePC(const IR::Value& value);
void BXWritePC(const IR::Value& value);
void LoadWritePC(const IR::Value& value);
void CallSupervisor(const IR::Value& value);
void ALUWritePC(const IR::U32& value);
void BranchWritePC(const IR::U32& value);
void BXWritePC(const IR::U32& value);
void LoadWritePC(const IR::U32& value);
void CallSupervisor(const IR::U32& value);
IR::Value GetCpsr();
void SetCpsr(const IR::Value& value);
void SetCpsrNZCV(const IR::Value& value);
void SetCpsrNZCVQ(const IR::Value& value);
IR::Value GetCFlag();
void SetNFlag(const IR::Value& value);
void SetZFlag(const IR::Value& value);
void SetCFlag(const IR::Value& value);
void SetVFlag(const IR::Value& value);
void OrQFlag(const IR::Value& value);
IR::Value GetGEFlags();
void SetGEFlags(const IR::Value& value);
void SetGEFlagsCompressed(const IR::Value& value);
IR::U32 GetCpsr();
void SetCpsr(const IR::U32& value);
void SetCpsrNZCV(const IR::U32& value);
void SetCpsrNZCVQ(const IR::U32& value);
IR::U1 GetCFlag();
void SetNFlag(const IR::U1& value);
void SetZFlag(const IR::U1& value);
void SetCFlag(const IR::U1& value);
void SetVFlag(const IR::U1& value);
void OrQFlag(const IR::U1& value);
IR::U32 GetGEFlags();
void SetGEFlags(const IR::U32& value);
void SetGEFlagsCompressed(const IR::U32& value);
IR::Value GetFpscr();
void SetFpscr(const IR::Value& new_fpscr);
IR::Value GetFpscrNZCV();
void SetFpscrNZCV(const IR::Value& new_fpscr_nzcv);
IR::U32 GetFpscr();
void SetFpscr(const IR::U32& new_fpscr);
IR::U32 GetFpscrNZCV();
void SetFpscrNZCV(const IR::U32& new_fpscr_nzcv);
void ClearExclusive();
void SetExclusive(const IR::Value& vaddr, size_t byte_size);
IR::Value ReadMemory8(const IR::Value& vaddr);
IR::Value ReadMemory16(const IR::Value& vaddr);
IR::Value ReadMemory32(const IR::Value& vaddr);
IR::Value ReadMemory64(const IR::Value& vaddr);
void WriteMemory8(const IR::Value& vaddr, const IR::Value& value);
void WriteMemory16(const IR::Value& vaddr, const IR::Value& value);
void WriteMemory32(const IR::Value& vaddr, const IR::Value& value);
void WriteMemory64(const IR::Value& vaddr, const IR::Value& value);
IR::Value ExclusiveWriteMemory8(const IR::Value& vaddr, const IR::Value& value);
IR::Value ExclusiveWriteMemory16(const IR::Value& vaddr, const IR::Value& value);
IR::Value ExclusiveWriteMemory32(const IR::Value& vaddr, const IR::Value& value);
IR::Value ExclusiveWriteMemory64(const IR::Value& vaddr, const IR::Value& value_lo, const IR::Value& value_hi);
void SetExclusive(const IR::U32& vaddr, size_t byte_size);
IR::U8 ReadMemory8(const IR::U32& vaddr);
IR::U16 ReadMemory16(const IR::U32& vaddr);
IR::U32 ReadMemory32(const IR::U32& vaddr);
IR::U64 ReadMemory64(const IR::U32& vaddr);
void WriteMemory8(const IR::U32& vaddr, const IR::U8& value);
void WriteMemory16(const IR::U32& vaddr, const IR::U16& value);
void WriteMemory32(const IR::U32& vaddr, const IR::U32& value);
void WriteMemory64(const IR::U32& vaddr, const IR::U64& value);
IR::U32 ExclusiveWriteMemory8(const IR::U32& vaddr, const IR::U8& value);
IR::U32 ExclusiveWriteMemory16(const IR::U32& vaddr, const IR::U16& value);
IR::U32 ExclusiveWriteMemory32(const IR::U32& vaddr, const IR::U32& value);
IR::U32 ExclusiveWriteMemory64(const IR::U32& vaddr, const IR::U32& value_lo, const IR::U32& value_hi);
void CoprocInternalOperation(size_t coproc_no, bool two, size_t opc1, A32::CoprocReg CRd, A32::CoprocReg CRn, A32::CoprocReg CRm, size_t opc2);
void CoprocSendOneWord(size_t coproc_no, bool two, size_t opc1, A32::CoprocReg CRn, A32::CoprocReg CRm, size_t opc2, const IR::Value& word);
void CoprocSendTwoWords(size_t coproc_no, bool two, size_t opc, A32::CoprocReg CRm, const IR::Value& word1, const IR::Value& word2);
IR::Value CoprocGetOneWord(size_t coproc_no, bool two, size_t opc1, A32::CoprocReg CRn, A32::CoprocReg CRm, size_t opc2);
IR::Value CoprocGetTwoWords(size_t coproc_no, bool two, size_t opc, A32::CoprocReg CRm);
void CoprocLoadWords(size_t coproc_no, bool two, bool long_transfer, A32::CoprocReg CRd, const IR::Value& address, bool has_option, u8 option);
void CoprocStoreWords(size_t coproc_no, bool two, bool long_transfer, A32::CoprocReg CRd, const IR::Value& address, bool has_option, u8 option);
void CoprocInternalOperation(size_t coproc_no, bool two, size_t opc1, CoprocReg CRd, CoprocReg CRn, CoprocReg CRm, size_t opc2);
void CoprocSendOneWord(size_t coproc_no, bool two, size_t opc1, CoprocReg CRn, CoprocReg CRm, size_t opc2, const IR::U32& word);
void CoprocSendTwoWords(size_t coproc_no, bool two, size_t opc, CoprocReg CRm, const IR::U32& word1, const IR::U32& word2);
IR::U32 CoprocGetOneWord(size_t coproc_no, bool two, size_t opc1, CoprocReg CRn, CoprocReg CRm, size_t opc2);
IR::U64 CoprocGetTwoWords(size_t coproc_no, bool two, size_t opc, CoprocReg CRm);
void CoprocLoadWords(size_t coproc_no, bool two, bool long_transfer, CoprocReg CRd, const IR::U32& address, bool has_option, u8 option);
void CoprocStoreWords(size_t coproc_no, bool two, bool long_transfer, CoprocReg CRd, const IR::U32& address, bool has_option, u8 option);
};
} // namespace IR

View file

@ -121,7 +121,7 @@ bool ArmTranslatorVisitor::UnpredictableInstruction() {
return false;
}
A32::IREmitter::ResultAndCarry ArmTranslatorVisitor::EmitImmShift(IR::Value value, ShiftType type, Imm5 imm5, IR::Value carry_in) {
IR::ResultAndCarry<IR::U32> ArmTranslatorVisitor::EmitImmShift(IR::U32 value, ShiftType type, Imm5 imm5, IR::U1 carry_in) {
switch (type) {
case ShiftType::LSL:
return ir.LogicalShiftLeft(value, ir.Imm8(imm5), carry_in);
@ -141,7 +141,7 @@ A32::IREmitter::ResultAndCarry ArmTranslatorVisitor::EmitImmShift(IR::Value valu
return {};
}
A32::IREmitter::ResultAndCarry ArmTranslatorVisitor::EmitRegShift(IR::Value value, ShiftType type, IR::Value amount, IR::Value carry_in) {
IR::ResultAndCarry<IR::U32> ArmTranslatorVisitor::EmitRegShift(IR::U32 value, ShiftType type, IR::U8 amount, IR::U1 carry_in) {
switch (type) {
case ShiftType::LSL:
return ir.LogicalShiftLeft(value, amount, carry_in);

View file

@ -9,7 +9,7 @@
namespace Dynarmic {
namespace A32 {
static IR::Value Rotate(A32::IREmitter& ir, Reg m, SignExtendRotation rotate) {
static IR::U32 Rotate(A32::IREmitter& ir, Reg m, SignExtendRotation rotate) {
const u8 rotate_by = static_cast<u8>(static_cast<size_t>(rotate) * 8);
return ir.RotateRight(ir.GetRegister(m), ir.Imm8(rotate_by), ir.Imm1(0)).result;
}

View file

@ -41,7 +41,7 @@ bool ArmTranslatorVisitor::arm_STRT() {
ASSERT_MSG(false, "System instructions unimplemented");
}
static IR::Value GetAddress(A32::IREmitter& ir, bool P, bool U, bool W, Reg n, IR::Value offset) {
static IR::U32 GetAddress(A32::IREmitter& ir, bool P, bool U, bool W, Reg n, IR::U32 offset) {
const bool index = P;
const bool add = U;
const bool wback = !P || W;
@ -608,7 +608,7 @@ bool ArmTranslatorVisitor::arm_STRH_reg(Cond cond, bool P, bool U, bool W, Reg n
return true;
}
static bool LDMHelper(A32::IREmitter& ir, bool W, Reg n, RegList list, IR::Value start_address, IR::Value writeback_address) {
static bool LDMHelper(A32::IREmitter& ir, bool W, Reg n, RegList list, IR::U32 start_address, IR::U32 writeback_address) {
auto address = start_address;
for (size_t i = 0; i <= 14; i++) {
if (Common::Bit(i, list)) {
@ -686,7 +686,7 @@ bool ArmTranslatorVisitor::arm_LDM_eret() {
return InterpretThisInstruction();
}
static bool STMHelper(A32::IREmitter& ir, bool W, Reg n, RegList list, IR::Value start_address, IR::Value writeback_address) {
static bool STMHelper(A32::IREmitter& ir, bool W, Reg n, RegList list, IR::U32 start_address, IR::U32 writeback_address) {
auto address = start_address;
for (size_t i = 0; i <= 14; i++) {
if (Common::Bit(i, list)) {

View file

@ -211,8 +211,7 @@ bool ArmTranslatorVisitor::arm_SMLAWy(Cond cond, Reg d, Reg a, Reg m, bool M, Re
auto m32 = ir.GetRegister(m);
if (M)
m32 = ir.LogicalShiftRight(m32, ir.Imm8(16), ir.Imm1(0)).result;
auto m16 = ir.LeastSignificantHalf(m32);
m16 = ir.SignExtendWordToLong(ir.SignExtendHalfToWord(m16));
auto m16 = ir.SignExtendWordToLong(ir.SignExtendHalfToWord(ir.LeastSignificantHalf(m32)));
auto product = ir.LeastSignificantWord(ir.LogicalShiftRight64(ir.Mul64(n32, m16), ir.Imm8(16)));
auto result_overflow = ir.AddWithCarry(product, ir.GetRegister(a), ir.Imm1(0));
ir.SetRegister(d, result_overflow.result);
@ -229,8 +228,7 @@ bool ArmTranslatorVisitor::arm_SMULWy(Cond cond, Reg d, Reg m, bool M, Reg n) {
auto m32 = ir.GetRegister(m);
if (M)
m32 = ir.LogicalShiftRight(m32, ir.Imm8(16), ir.Imm1(0)).result;
auto m16 = ir.LeastSignificantHalf(m32);
m16 = ir.SignExtendWordToLong(ir.SignExtendHalfToWord(m16));
auto m16 = ir.SignExtendWordToLong(ir.SignExtendHalfToWord(ir.LeastSignificantHalf(m32)));
auto result = ir.LogicalShiftRight64(ir.Mul64(n32, m16), ir.Imm8(16));
ir.SetRegister(d, ir.LeastSignificantWord(result));
}

View file

@ -9,11 +9,11 @@
namespace Dynarmic {
namespace A32 {
static IR::Value Pack2x16To1x32(A32::IREmitter& ir, IR::Value lo, IR::Value hi) {
static IR::U32 Pack2x16To1x32(A32::IREmitter& ir, IR::U32 lo, IR::U32 hi) {
return ir.Or(ir.And(lo, ir.Imm32(0xFFFF)), ir.LogicalShiftLeft(hi, ir.Imm8(16), ir.Imm1(0)).result);
}
static IR::Value MostSignificantHalf(A32::IREmitter& ir, IR::Value value) {
static IR::U16 MostSignificantHalf(A32::IREmitter& ir, IR::U32 value) {
return ir.LeastSignificantHalf(ir.LogicalShiftRight(value, ir.Imm8(16), ir.Imm1(0)).result);
}

View file

@ -49,10 +49,10 @@ struct ArmTranslatorVisitor final {
struct ImmAndCarry {
u32 imm32;
IR::Value carry;
IR::U1 carry;
};
ImmAndCarry ArmExpandImm_C(int rotate, u32 imm8, IR::Value carry_in) {
ImmAndCarry ArmExpandImm_C(int rotate, u32 imm8, IR::U1 carry_in) {
u32 imm32 = imm8;
auto carry_out = carry_in;
if (rotate) {
@ -62,8 +62,8 @@ struct ArmTranslatorVisitor final {
return {imm32, carry_out};
}
A32::IREmitter::ResultAndCarry EmitImmShift(IR::Value value, ShiftType type, Imm5 imm5, IR::Value carry_in);
A32::IREmitter::ResultAndCarry EmitRegShift(IR::Value value, ShiftType type, IR::Value amount, IR::Value carry_in);
IR::ResultAndCarry<IR::U32> EmitImmShift(IR::U32 value, ShiftType type, Imm5 imm5, IR::U1 carry_in);
IR::ResultAndCarry<IR::U32> EmitRegShift(IR::U32 value, ShiftType type, IR::U8 amount, IR::U1 carry_in);
template <typename FnT> bool EmitVfpVectorOperation(bool sz, ExtReg d, ExtReg n, ExtReg m, const FnT& fn);
template <typename FnT> bool EmitVfpVectorOperation(bool sz, ExtReg d, ExtReg m, const FnT& fn);

View file

@ -9,6 +9,9 @@
namespace Dynarmic {
namespace A32 {
using F32 = IR::F32;
using F64 = IR::F64;
static ExtReg ToExtReg(bool sz, size_t base, bool bit) {
if (sz) {
return static_cast<ExtReg>(static_cast<size_t>(ExtReg::D0) + base + (bit ? 16 : 0));
@ -99,10 +102,13 @@ bool ArmTranslatorVisitor::vfp2_VADD(Cond cond, bool D, size_t Vn, size_t Vd, bo
return EmitVfpVectorOperation(sz, d, n, m, [sz, this](ExtReg d, ExtReg n, ExtReg m) {
auto reg_n = ir.GetExtendedRegister(n);
auto reg_m = ir.GetExtendedRegister(m);
auto result = sz
? ir.FPAdd64(reg_n, reg_m, true)
: ir.FPAdd32(reg_n, reg_m, true);
if (sz) {
auto result = ir.FPAdd64(reg_n, reg_m, true);
ir.SetExtendedRegister(d, result);
} else {
auto result = ir.FPAdd32(reg_n, reg_m, true);
ir.SetExtendedRegister(d, result);
}
});
}
return true;
@ -117,10 +123,13 @@ bool ArmTranslatorVisitor::vfp2_VSUB(Cond cond, bool D, size_t Vn, size_t Vd, bo
return EmitVfpVectorOperation(sz, d, n, m, [sz, this](ExtReg d, ExtReg n, ExtReg m) {
auto reg_n = ir.GetExtendedRegister(n);
auto reg_m = ir.GetExtendedRegister(m);
auto result = sz
? ir.FPSub64(reg_n, reg_m, true)
: ir.FPSub32(reg_n, reg_m, true);
if (sz) {
auto result = ir.FPSub64(reg_n, reg_m, true);
ir.SetExtendedRegister(d, result);
} else {
auto result = ir.FPSub32(reg_n, reg_m, true);
ir.SetExtendedRegister(d, result);
}
});
}
return true;
@ -135,10 +144,13 @@ bool ArmTranslatorVisitor::vfp2_VMUL(Cond cond, bool D, size_t Vn, size_t Vd, bo
return EmitVfpVectorOperation(sz, d, n, m, [sz, this](ExtReg d, ExtReg n, ExtReg m) {
auto reg_n = ir.GetExtendedRegister(n);
auto reg_m = ir.GetExtendedRegister(m);
auto result = sz
? ir.FPMul64(reg_n, reg_m, true)
: ir.FPMul32(reg_n, reg_m, true);
if (sz) {
auto result = ir.FPMul64(reg_n, reg_m, true);
ir.SetExtendedRegister(d, result);
} else {
auto result = ir.FPMul32(reg_n, reg_m, true);
ir.SetExtendedRegister(d, result);
}
});
}
return true;
@ -154,10 +166,13 @@ bool ArmTranslatorVisitor::vfp2_VMLA(Cond cond, bool D, size_t Vn, size_t Vd, bo
auto reg_n = ir.GetExtendedRegister(n);
auto reg_m = ir.GetExtendedRegister(m);
auto reg_d = ir.GetExtendedRegister(d);
auto result = sz
? ir.FPAdd64(reg_d, ir.FPMul64(reg_n, reg_m, true), true)
: ir.FPAdd32(reg_d, ir.FPMul32(reg_n, reg_m, true), true);
if (sz) {
auto result = ir.FPAdd64(reg_d, ir.FPMul64(reg_n, reg_m, true), true);
ir.SetExtendedRegister(d, result);
} else {
auto result = ir.FPAdd32(reg_d, ir.FPMul32(reg_n, reg_m, true), true);
ir.SetExtendedRegister(d, result);
}
});
}
return true;
@ -173,10 +188,13 @@ bool ArmTranslatorVisitor::vfp2_VMLS(Cond cond, bool D, size_t Vn, size_t Vd, bo
auto reg_n = ir.GetExtendedRegister(n);
auto reg_m = ir.GetExtendedRegister(m);
auto reg_d = ir.GetExtendedRegister(d);
auto result = sz
? ir.FPAdd64(reg_d, ir.FPNeg64(ir.FPMul64(reg_n, reg_m, true)), true)
: ir.FPAdd32(reg_d, ir.FPNeg32(ir.FPMul32(reg_n, reg_m, true)), true);
if (sz) {
auto result = ir.FPAdd64(reg_d, ir.FPNeg64(ir.FPMul64(reg_n, reg_m, true)), true);
ir.SetExtendedRegister(d, result);
} else {
auto result = ir.FPAdd32(reg_d, ir.FPNeg32(ir.FPMul32(reg_n, reg_m, true)), true);
ir.SetExtendedRegister(d, result);
}
});
}
return true;
@ -191,10 +209,13 @@ bool ArmTranslatorVisitor::vfp2_VNMUL(Cond cond, bool D, size_t Vn, size_t Vd, b
return EmitVfpVectorOperation(sz, d, n, m, [sz, this](ExtReg d, ExtReg n, ExtReg m) {
auto reg_n = ir.GetExtendedRegister(n);
auto reg_m = ir.GetExtendedRegister(m);
auto result = sz
? ir.FPNeg64(ir.FPMul64(reg_n, reg_m, true))
: ir.FPNeg32(ir.FPMul32(reg_n, reg_m, true));
if (sz) {
auto result = ir.FPNeg64(ir.FPMul64(reg_n, reg_m, true));
ir.SetExtendedRegister(d, result);
} else {
auto result = ir.FPNeg32(ir.FPMul32(reg_n, reg_m, true));
ir.SetExtendedRegister(d, result);
}
});
}
return true;
@ -210,10 +231,13 @@ bool ArmTranslatorVisitor::vfp2_VNMLA(Cond cond, bool D, size_t Vn, size_t Vd, b
auto reg_n = ir.GetExtendedRegister(n);
auto reg_m = ir.GetExtendedRegister(m);
auto reg_d = ir.GetExtendedRegister(d);
auto result = sz
? ir.FPAdd64(ir.FPNeg64(reg_d), ir.FPNeg64(ir.FPMul64(reg_n, reg_m, true)), true)
: ir.FPAdd32(ir.FPNeg32(reg_d), ir.FPNeg32(ir.FPMul32(reg_n, reg_m, true)), true);
if (sz) {
auto result = ir.FPAdd64(ir.FPNeg64(reg_d), ir.FPNeg64(ir.FPMul64(reg_n, reg_m, true)), true);
ir.SetExtendedRegister(d, result);
} else {
auto result = ir.FPAdd32(ir.FPNeg32(reg_d), ir.FPNeg32(ir.FPMul32(reg_n, reg_m, true)), true);
ir.SetExtendedRegister(d, result);
}
});
}
return true;
@ -229,10 +253,13 @@ bool ArmTranslatorVisitor::vfp2_VNMLS(Cond cond, bool D, size_t Vn, size_t Vd, b
auto reg_n = ir.GetExtendedRegister(n);
auto reg_m = ir.GetExtendedRegister(m);
auto reg_d = ir.GetExtendedRegister(d);
auto result = sz
? ir.FPAdd64(ir.FPNeg64(reg_d), ir.FPMul64(reg_n, reg_m, true), true)
: ir.FPAdd32(ir.FPNeg32(reg_d), ir.FPMul32(reg_n, reg_m, true), true);
if (sz) {
auto result = ir.FPAdd64(ir.FPNeg64(reg_d), ir.FPMul64(reg_n, reg_m, true), true);
ir.SetExtendedRegister(d, result);
} else {
auto result = ir.FPAdd32(ir.FPNeg32(reg_d), ir.FPMul32(reg_n, reg_m, true), true);
ir.SetExtendedRegister(d, result);
}
});
}
return true;
@ -247,10 +274,13 @@ bool ArmTranslatorVisitor::vfp2_VDIV(Cond cond, bool D, size_t Vn, size_t Vd, bo
return EmitVfpVectorOperation(sz, d, n, m, [sz, this](ExtReg d, ExtReg n, ExtReg m) {
auto reg_n = ir.GetExtendedRegister(n);
auto reg_m = ir.GetExtendedRegister(m);
auto result = sz
? ir.FPDiv64(reg_n, reg_m, true)
: ir.FPDiv32(reg_n, reg_m, true);
if (sz) {
auto result = ir.FPDiv64(reg_n, reg_m, true);
ir.SetExtendedRegister(d, result);
} else {
auto result = ir.FPDiv32(reg_n, reg_m, true);
ir.SetExtendedRegister(d, result);
}
});
}
return true;
@ -379,10 +409,13 @@ bool ArmTranslatorVisitor::vfp2_VABS(Cond cond, bool D, size_t Vd, bool sz, bool
if (ConditionPassed(cond)) {
return EmitVfpVectorOperation(sz, d, m, [sz, this](ExtReg d, ExtReg m) {
auto reg_m = ir.GetExtendedRegister(m);
auto result = sz
? ir.FPAbs64(reg_m)
: ir.FPAbs32(reg_m);
if (sz) {
auto result = ir.FPAbs64(reg_m);
ir.SetExtendedRegister(d, result);
} else {
auto result = ir.FPAbs32(reg_m);
ir.SetExtendedRegister(d, result);
}
});
}
return true;
@ -395,10 +428,13 @@ bool ArmTranslatorVisitor::vfp2_VNEG(Cond cond, bool D, size_t Vd, bool sz, bool
if (ConditionPassed(cond)) {
return EmitVfpVectorOperation(sz, d, m, [sz, this](ExtReg d, ExtReg m) {
auto reg_m = ir.GetExtendedRegister(m);
auto result = sz
? ir.FPNeg64(reg_m)
: ir.FPNeg32(reg_m);
if (sz) {
auto result = ir.FPNeg64(reg_m);
ir.SetExtendedRegister(d, result);
} else {
auto result = ir.FPNeg32(reg_m);
ir.SetExtendedRegister(d, result);
}
});
}
return true;
@ -411,10 +447,13 @@ bool ArmTranslatorVisitor::vfp2_VSQRT(Cond cond, bool D, size_t Vd, bool sz, boo
if (ConditionPassed(cond)) {
return EmitVfpVectorOperation(sz, d, m, [sz, this](ExtReg d, ExtReg m) {
auto reg_m = ir.GetExtendedRegister(m);
auto result = sz
? ir.FPSqrt64(reg_m)
: ir.FPSqrt32(reg_m);
if (sz) {
auto result = ir.FPSqrt64(reg_m);
ir.SetExtendedRegister(d, result);
} else {
auto result = ir.FPSqrt32(reg_m);
ir.SetExtendedRegister(d, result);
}
});
}
return true;
@ -427,10 +466,13 @@ bool ArmTranslatorVisitor::vfp2_VCVT_f_to_f(Cond cond, bool D, size_t Vd, bool s
// VCVT.F32.F64 <Dd> <Sm>
if (ConditionPassed(cond)) {
auto reg_m = ir.GetExtendedRegister(m);
auto result = sz
? ir.FPDoubleToSingle(reg_m, true)
: ir.FPSingleToDouble(reg_m, true);
if (sz) {
auto result = ir.FPDoubleToSingle(reg_m, true);
ir.SetExtendedRegister(d, result);
} else {
auto result = ir.FPSingleToDouble(reg_m, true);
ir.SetExtendedRegister(d, result);
}
}
return true;
}
@ -443,15 +485,18 @@ bool ArmTranslatorVisitor::vfp2_VCVT_to_float(Cond cond, bool D, size_t Vd, bool
// VCVT.F64.{S32,U32} <Sd>, <Dm>
if (ConditionPassed(cond)) {
auto reg_m = ir.GetExtendedRegister(m);
auto result = sz
? is_signed
if (sz) {
auto result = is_signed
? ir.FPS32ToDouble(reg_m, round_to_nearest, true)
: ir.FPU32ToDouble(reg_m, round_to_nearest, true)
: is_signed
: ir.FPU32ToDouble(reg_m, round_to_nearest, true);
ir.SetExtendedRegister(d, result);
} else {
auto result = is_signed
? ir.FPS32ToSingle(reg_m, round_to_nearest, true)
: ir.FPU32ToSingle(reg_m, round_to_nearest, true);
ir.SetExtendedRegister(d, result);
}
}
return true;
}
@ -510,12 +555,11 @@ bool ArmTranslatorVisitor::vfp2_VCMP_zero(Cond cond, bool D, size_t Vd, bool sz,
// VCMP{E}.F64 <Dd>, #0.0
if (ConditionPassed(cond)) {
auto reg_d = ir.GetExtendedRegister(d);
auto zero = sz
? ir.TransferToFP64(ir.Imm64(0))
: ir.TransferToFP32(ir.Imm32(0));
if (sz) {
auto zero = ir.TransferToFP64(ir.Imm64(0));
ir.FPCompare64(reg_d, zero, exc_on_qnan, true);
} else {
auto zero = ir.TransferToFP32(ir.Imm32(0));
ir.FPCompare32(reg_d, zero, exc_on_qnan, true);
}
}

View file

@ -15,527 +15,522 @@ void IREmitter::Unimplemented() {
}
Value IREmitter::Imm1(bool imm1) {
return Value(imm1);
U1 IREmitter::Imm1(bool imm1) {
return U1(Value(imm1));
}
Value IREmitter::Imm8(u8 imm8) {
return Value(imm8);
U8 IREmitter::Imm8(u8 imm8) {
return U8(Value(imm8));
}
Value IREmitter::Imm32(u32 imm32) {
return Value(imm32);
U32 IREmitter::Imm32(u32 imm32) {
return U32(Value(imm32));
}
Value IREmitter::Imm64(u64 imm64) {
return Value(imm64);
U64 IREmitter::Imm64(u64 imm64) {
return U64(Value(imm64));
}
void IREmitter::PushRSB(const LocationDescriptor& return_location) {
Inst(Opcode::PushRSB, {IR::Value(return_location.Value())});
Inst(Opcode::PushRSB, IR::Value(return_location.Value()));
}
Value IREmitter::Pack2x32To1x64(const Value& lo, const Value& hi) {
return Inst(Opcode::Pack2x32To1x64, {lo, hi});
U64 IREmitter::Pack2x32To1x64(const U32& lo, const U32& hi) {
return Inst<U64>(Opcode::Pack2x32To1x64, lo, hi);
}
Value IREmitter::LeastSignificantWord(const Value& value) {
return Inst(Opcode::LeastSignificantWord, {value});
U32 IREmitter::LeastSignificantWord(const U64& value) {
return Inst<U32>(Opcode::LeastSignificantWord, value);
}
IREmitter::ResultAndCarry IREmitter::MostSignificantWord(const Value& value) {
auto result = Inst(Opcode::MostSignificantWord, {value});
auto carry_out = Inst(Opcode::GetCarryFromOp, {result});
ResultAndCarry<U32> IREmitter::MostSignificantWord(const U64& value) {
auto result = Inst<U32>(Opcode::MostSignificantWord, value);
auto carry_out = Inst<U1>(Opcode::GetCarryFromOp, result);
return {result, carry_out};
}
Value IREmitter::LeastSignificantHalf(const Value& value) {
return Inst(Opcode::LeastSignificantHalf, {value});
U16 IREmitter::LeastSignificantHalf(const U32& value) {
return Inst<U16>(Opcode::LeastSignificantHalf, value);
}
Value IREmitter::LeastSignificantByte(const Value& value) {
return Inst(Opcode::LeastSignificantByte, {value});
U8 IREmitter::LeastSignificantByte(const U32& value) {
return Inst<U8>(Opcode::LeastSignificantByte, value);
}
Value IREmitter::MostSignificantBit(const Value& value) {
return Inst(Opcode::MostSignificantBit, {value});
U1 IREmitter::MostSignificantBit(const U32& value) {
return Inst<U1>(Opcode::MostSignificantBit, value);
}
Value IREmitter::IsZero(const Value& value) {
return Inst(Opcode::IsZero, {value});
U1 IREmitter::IsZero(const U32& value) {
return Inst<U1>(Opcode::IsZero, value);
}
Value IREmitter::IsZero64(const Value& value) {
return Inst(Opcode::IsZero64, {value});
U1 IREmitter::IsZero64(const U64& value) {
return Inst<U1>(Opcode::IsZero64, value);
}
IREmitter::ResultAndCarry IREmitter::LogicalShiftLeft(const Value& value_in, const Value& shift_amount, const Value& carry_in) {
auto result = Inst(Opcode::LogicalShiftLeft, {value_in, shift_amount, carry_in});
auto carry_out = Inst(Opcode::GetCarryFromOp, {result});
ResultAndCarry<U32> IREmitter::LogicalShiftLeft(const U32& value_in, const U8& shift_amount, const U1& carry_in) {
auto result = Inst<U32>(Opcode::LogicalShiftLeft, value_in, shift_amount, carry_in);
auto carry_out = Inst<U1>(Opcode::GetCarryFromOp, result);
return {result, carry_out};
}
IREmitter::ResultAndCarry IREmitter::LogicalShiftRight(const Value& value_in, const Value& shift_amount, const Value& carry_in) {
auto result = Inst(Opcode::LogicalShiftRight, {value_in, shift_amount, carry_in});
auto carry_out = Inst(Opcode::GetCarryFromOp, {result});
ResultAndCarry<U32> IREmitter::LogicalShiftRight(const U32& value_in, const U8& shift_amount, const U1& carry_in) {
auto result = Inst<U32>(Opcode::LogicalShiftRight, value_in, shift_amount, carry_in);
auto carry_out = Inst<U1>(Opcode::GetCarryFromOp, result);
return {result, carry_out};
}
Value IREmitter::LogicalShiftRight64(const Value& value_in, const Value& shift_amount) {
return Inst(Opcode::LogicalShiftRight64, {value_in, shift_amount});
U64 IREmitter::LogicalShiftRight64(const U64& value_in, const U8& shift_amount) {
return Inst<U64>(Opcode::LogicalShiftRight64, value_in, shift_amount);
}
IREmitter::ResultAndCarry IREmitter::ArithmeticShiftRight(const Value& value_in, const Value& shift_amount, const Value& carry_in) {
auto result = Inst(Opcode::ArithmeticShiftRight, {value_in, shift_amount, carry_in});
auto carry_out = Inst(Opcode::GetCarryFromOp, {result});
ResultAndCarry<U32> IREmitter::ArithmeticShiftRight(const U32& value_in, const U8& shift_amount, const U1& carry_in) {
auto result = Inst<U32>(Opcode::ArithmeticShiftRight, value_in, shift_amount, carry_in);
auto carry_out = Inst<U1>(Opcode::GetCarryFromOp, result);
return {result, carry_out};
}
IREmitter::ResultAndCarry IREmitter::RotateRight(const Value& value_in, const Value& shift_amount, const Value& carry_in) {
auto result = Inst(Opcode::RotateRight, {value_in, shift_amount, carry_in});
auto carry_out = Inst(Opcode::GetCarryFromOp, {result});
ResultAndCarry<U32> IREmitter::RotateRight(const U32& value_in, const U8& shift_amount, const U1& carry_in) {
auto result = Inst<U32>(Opcode::RotateRight, value_in, shift_amount, carry_in);
auto carry_out = Inst<U1>(Opcode::GetCarryFromOp, result);
return {result, carry_out};
}
IREmitter::ResultAndCarry IREmitter::RotateRightExtended(const Value& value_in, const Value& carry_in) {
auto result = Inst(Opcode::RotateRightExtended, {value_in, carry_in});
auto carry_out = Inst(Opcode::GetCarryFromOp, {result});
ResultAndCarry<U32> IREmitter::RotateRightExtended(const U32& value_in, const U1& carry_in) {
auto result = Inst<U32>(Opcode::RotateRightExtended, value_in, carry_in);
auto carry_out = Inst<U1>(Opcode::GetCarryFromOp, result);
return {result, carry_out};
}
IREmitter::ResultAndCarryAndOverflow IREmitter::AddWithCarry(const Value& a, const Value& b, const Value& carry_in) {
auto result = Inst(Opcode::AddWithCarry, {a, b, carry_in});
auto carry_out = Inst(Opcode::GetCarryFromOp, {result});
auto overflow = Inst(Opcode::GetOverflowFromOp, {result});
ResultAndCarryAndOverflow<U32> IREmitter::AddWithCarry(const Value& a, const Value& b, const U1& carry_in) {
auto result = Inst<U32>(Opcode::AddWithCarry, a, b, carry_in);
auto carry_out = Inst<U1>(Opcode::GetCarryFromOp, result);
auto overflow = Inst<U1>(Opcode::GetOverflowFromOp, result);
return {result, carry_out, overflow};
}
Value IREmitter::Add(const Value& a, const Value& b) {
return Inst(Opcode::AddWithCarry, {a, b, Imm1(0)});
U32 IREmitter::Add(const U32& a, const U32& b) {
return Inst<U32>(Opcode::AddWithCarry, a, b, Imm1(0));
}
Value IREmitter::Add64(const Value& a, const Value& b) {
return Inst(Opcode::Add64, {a, b});
U64 IREmitter::Add64(const U64& a, const U64& b) {
return Inst<U64>(Opcode::Add64, a, b);
}
IREmitter::ResultAndCarryAndOverflow IREmitter::SubWithCarry(const Value& a, const Value& b, const Value& carry_in) {
ResultAndCarryAndOverflow<U32> IREmitter::SubWithCarry(const U32& a, const U32& b, const U1& carry_in) {
// This is equivalent to AddWithCarry(a, Not(b), carry_in).
auto result = Inst(Opcode::SubWithCarry, {a, b, carry_in});
auto carry_out = Inst(Opcode::GetCarryFromOp, {result});
auto overflow = Inst(Opcode::GetOverflowFromOp, {result});
auto result = Inst<U32>(Opcode::SubWithCarry, a, b, carry_in);
auto carry_out = Inst<U1>(Opcode::GetCarryFromOp, result);
auto overflow = Inst<U1>(Opcode::GetOverflowFromOp, result);
return {result, carry_out, overflow};
}
Value IREmitter::Sub(const Value& a, const Value& b) {
return Inst(Opcode::SubWithCarry, {a, b, Imm1(1)});
U32 IREmitter::Sub(const U32& a, const U32& b) {
return Inst<U32>(Opcode::SubWithCarry, a, b, Imm1(1));
}
Value IREmitter::Sub64(const Value& a, const Value& b) {
return Inst(Opcode::Sub64, {a, b});
U64 IREmitter::Sub64(const U64& a, const U64& b) {
return Inst<U64>(Opcode::Sub64, a, b);
}
Value IREmitter::Mul(const Value& a, const Value& b) {
return Inst(Opcode::Mul, {a, b});
U32 IREmitter::Mul(const U32& a, const U32& b) {
return Inst<U32>(Opcode::Mul, a, b);
}
Value IREmitter::Mul64(const Value& a, const Value& b) {
return Inst(Opcode::Mul64, {a, b});
U64 IREmitter::Mul64(const U64& a, const U64& b) {
return Inst<U64>(Opcode::Mul64, a, b);
}
Value IREmitter::And(const Value& a, const Value& b) {
return Inst(Opcode::And, {a, b});
U32 IREmitter::And(const U32& a, const U32& b) {
return Inst<U32>(Opcode::And, a, b);
}
Value IREmitter::Eor(const Value& a, const Value& b) {
return Inst(Opcode::Eor, {a, b});
U32 IREmitter::Eor(const U32& a, const U32& b) {
return Inst<U32>(Opcode::Eor, a, b);
}
Value IREmitter::Or(const Value& a, const Value& b) {
return Inst(Opcode::Or, {a, b});
U32 IREmitter::Or(const U32& a, const U32& b) {
return Inst<U32>(Opcode::Or, a, b);
}
Value IREmitter::Not(const Value& a) {
return Inst(Opcode::Not, {a});
U32 IREmitter::Not(const U32& a) {
return Inst<U32>(Opcode::Not, a);
}
Value IREmitter::SignExtendWordToLong(const Value& a) {
return Inst(Opcode::SignExtendWordToLong, {a});
U64 IREmitter::SignExtendWordToLong(const U32& a) {
return Inst<U64>(Opcode::SignExtendWordToLong, a);
}
Value IREmitter::SignExtendHalfToWord(const Value& a) {
return Inst(Opcode::SignExtendHalfToWord, {a});
U32 IREmitter::SignExtendHalfToWord(const U16& a) {
return Inst<U32>(Opcode::SignExtendHalfToWord, a);
}
Value IREmitter::SignExtendByteToWord(const Value& a) {
return Inst(Opcode::SignExtendByteToWord, {a});
U32 IREmitter::SignExtendByteToWord(const U8& a) {
return Inst<U32>(Opcode::SignExtendByteToWord, a);
}
Value IREmitter::ZeroExtendWordToLong(const Value& a) {
return Inst(Opcode::ZeroExtendWordToLong, {a});
U64 IREmitter::ZeroExtendWordToLong(const U32& a) {
return Inst<U64>(Opcode::ZeroExtendWordToLong, a);
}
Value IREmitter::ZeroExtendHalfToWord(const Value& a) {
return Inst(Opcode::ZeroExtendHalfToWord, {a});
U32 IREmitter::ZeroExtendHalfToWord(const U16& a) {
return Inst<U32>(Opcode::ZeroExtendHalfToWord, a);
}
Value IREmitter::ZeroExtendByteToWord(const Value& a) {
return Inst(Opcode::ZeroExtendByteToWord, {a});
U32 IREmitter::ZeroExtendByteToWord(const U8& a) {
return Inst<U32>(Opcode::ZeroExtendByteToWord, a);
}
Value IREmitter::ByteReverseWord(const Value& a) {
return Inst(Opcode::ByteReverseWord, {a});
U32 IREmitter::ByteReverseWord(const U32& a) {
return Inst<U32>(Opcode::ByteReverseWord, a);
}
Value IREmitter::ByteReverseHalf(const Value& a) {
return Inst(Opcode::ByteReverseHalf, {a});
U16 IREmitter::ByteReverseHalf(const U16& a) {
return Inst<U16>(Opcode::ByteReverseHalf, a);
}
Value IREmitter::ByteReverseDual(const Value& a) {
return Inst(Opcode::ByteReverseDual, {a});
U64 IREmitter::ByteReverseDual(const U64& a) {
return Inst<U64>(Opcode::ByteReverseDual, a);
}
Value IREmitter::CountLeadingZeros(const Value& a) {
return Inst(Opcode::CountLeadingZeros, {a});
U32 IREmitter::CountLeadingZeros(const U32& a) {
return Inst<U32>(Opcode::CountLeadingZeros, a);
}
IREmitter::ResultAndOverflow IREmitter::SignedSaturatedAdd(const Value& a, const Value& b) {
auto result = Inst(Opcode::SignedSaturatedAdd, {a, b});
auto overflow = Inst(Opcode::GetOverflowFromOp, {result});
ResultAndOverflow<U32> IREmitter::SignedSaturatedAdd(const U32& a, const U32& b) {
auto result = Inst<U32>(Opcode::SignedSaturatedAdd, a, b);
auto overflow = Inst<U1>(Opcode::GetOverflowFromOp, result);
return {result, overflow};
}
IREmitter::ResultAndOverflow IREmitter::SignedSaturatedSub(const Value& a, const Value& b) {
auto result = Inst(Opcode::SignedSaturatedSub, {a, b});
auto overflow = Inst(Opcode::GetOverflowFromOp, {result});
ResultAndOverflow<U32> IREmitter::SignedSaturatedSub(const U32& a, const U32& b) {
auto result = Inst<U32>(Opcode::SignedSaturatedSub, a, b);
auto overflow = Inst<U1>(Opcode::GetOverflowFromOp, result);
return {result, overflow};
}
IREmitter::ResultAndOverflow IREmitter::UnsignedSaturation(const Value& a, size_t bit_size_to_saturate_to) {
ResultAndOverflow<U32> IREmitter::UnsignedSaturation(const U32& a, size_t bit_size_to_saturate_to) {
ASSERT(bit_size_to_saturate_to <= 31);
auto result = Inst(Opcode::UnsignedSaturation, {a, Imm8(static_cast<u8>(bit_size_to_saturate_to))});
auto overflow = Inst(Opcode::GetOverflowFromOp, {result});
auto result = Inst<U32>(Opcode::UnsignedSaturation, a, Imm8(static_cast<u8>(bit_size_to_saturate_to)));
auto overflow = Inst<U1>(Opcode::GetOverflowFromOp, result);
return {result, overflow};
}
IREmitter::ResultAndOverflow IREmitter::SignedSaturation(const Value& a, size_t bit_size_to_saturate_to) {
ResultAndOverflow<U32> IREmitter::SignedSaturation(const U32& a, size_t bit_size_to_saturate_to) {
ASSERT(bit_size_to_saturate_to >= 1 && bit_size_to_saturate_to <= 32);
auto result = Inst(Opcode::SignedSaturation, {a, Imm8(static_cast<u8>(bit_size_to_saturate_to))});
auto overflow = Inst(Opcode::GetOverflowFromOp, {result});
auto result = Inst<U32>(Opcode::SignedSaturation, a, Imm8(static_cast<u8>(bit_size_to_saturate_to)));
auto overflow = Inst<U1>(Opcode::GetOverflowFromOp, result);
return {result, overflow};
}
IREmitter::ResultAndGE IREmitter::PackedAddU8(const Value& a, const Value& b) {
auto result = Inst(Opcode::PackedAddU8, {a, b});
auto ge = Inst(Opcode::GetGEFromOp, {result});
ResultAndGE<U32> IREmitter::PackedAddU8(const U32& a, const U32& b) {
auto result = Inst<U32>(Opcode::PackedAddU8, a, b);
auto ge = Inst<U32>(Opcode::GetGEFromOp, result);
return {result, ge};
}
IREmitter::ResultAndGE IREmitter::PackedAddS8(const Value& a, const Value& b) {
auto result = Inst(Opcode::PackedAddS8, {a, b});
auto ge = Inst(Opcode::GetGEFromOp, {result});
ResultAndGE<U32> IREmitter::PackedAddS8(const U32& a, const U32& b) {
auto result = Inst<U32>(Opcode::PackedAddS8, a, b);
auto ge = Inst<U32>(Opcode::GetGEFromOp, result);
return {result, ge};
}
IREmitter::ResultAndGE IREmitter::PackedAddU16(const Value& a, const Value& b) {
auto result = Inst(Opcode::PackedAddU16, {a, b});
auto ge = Inst(Opcode::GetGEFromOp, {result});
ResultAndGE<U32> IREmitter::PackedAddU16(const U32& a, const U32& b) {
auto result = Inst<U32>(Opcode::PackedAddU16, a, b);
auto ge = Inst<U32>(Opcode::GetGEFromOp, result);
return {result, ge};
}
IREmitter::ResultAndGE IREmitter::PackedAddS16(const Value& a, const Value& b) {
auto result = Inst(Opcode::PackedAddS16, {a, b});
auto ge = Inst(Opcode::GetGEFromOp, {result});
ResultAndGE<U32> IREmitter::PackedAddS16(const U32& a, const U32& b) {
auto result = Inst<U32>(Opcode::PackedAddS16, a, b);
auto ge = Inst<U32>(Opcode::GetGEFromOp, result);
return {result, ge};
}
IREmitter::ResultAndGE IREmitter::PackedSubU8(const Value& a, const Value& b) {
auto result = Inst(Opcode::PackedSubU8, {a, b});
auto ge = Inst(Opcode::GetGEFromOp, {result});
ResultAndGE<U32> IREmitter::PackedSubU8(const U32& a, const U32& b) {
auto result = Inst<U32>(Opcode::PackedSubU8, a, b);
auto ge = Inst<U32>(Opcode::GetGEFromOp, result);
return {result, ge};
}
IREmitter::ResultAndGE IREmitter::PackedSubS8(const Value& a, const Value& b) {
auto result = Inst(Opcode::PackedSubS8, {a, b});
auto ge = Inst(Opcode::GetGEFromOp, {result});
ResultAndGE<U32> IREmitter::PackedSubS8(const U32& a, const U32& b) {
auto result = Inst<U32>(Opcode::PackedSubS8, a, b);
auto ge = Inst<U32>(Opcode::GetGEFromOp, result);
return {result, ge};
}
IREmitter::ResultAndGE IREmitter::PackedSubU16(const Value& a, const Value& b) {
auto result = Inst(Opcode::PackedSubU16, {a, b});
auto ge = Inst(Opcode::GetGEFromOp, {result});
ResultAndGE<U32> IREmitter::PackedSubU16(const U32& a, const U32& b) {
auto result = Inst<U32>(Opcode::PackedSubU16, a, b);
auto ge = Inst<U32>(Opcode::GetGEFromOp, result);
return {result, ge};
}
IREmitter::ResultAndGE IREmitter::PackedSubS16(const Value& a, const Value& b) {
auto result = Inst(Opcode::PackedSubS16, {a, b});
auto ge = Inst(Opcode::GetGEFromOp, {result});
ResultAndGE<U32> IREmitter::PackedSubS16(const U32& a, const U32& b) {
auto result = Inst<U32>(Opcode::PackedSubS16, a, b);
auto ge = Inst<U32>(Opcode::GetGEFromOp, result);
return {result, ge};
}
IREmitter::ResultAndGE IREmitter::PackedAddSubU16(const Value& a, const Value& b) {
auto result = Inst(Opcode::PackedAddSubU16, {a, b});
auto ge = Inst(Opcode::GetGEFromOp, {result});
ResultAndGE<U32> IREmitter::PackedAddSubU16(const U32& a, const U32& b) {
auto result = Inst<U32>(Opcode::PackedAddSubU16, a, b);
auto ge = Inst<U32>(Opcode::GetGEFromOp, result);
return {result, ge};
}
IREmitter::ResultAndGE IREmitter::PackedAddSubS16(const Value& a, const Value& b) {
auto result = Inst(Opcode::PackedAddSubS16, {a, b});
auto ge = Inst(Opcode::GetGEFromOp, {result});
ResultAndGE<U32> IREmitter::PackedAddSubS16(const U32& a, const U32& b) {
auto result = Inst<U32>(Opcode::PackedAddSubS16, a, b);
auto ge = Inst<U32>(Opcode::GetGEFromOp, result);
return {result, ge};
}
IREmitter::ResultAndGE IREmitter::PackedSubAddU16(const Value& a, const Value& b) {
auto result = Inst(Opcode::PackedSubAddU16, {a, b});
auto ge = Inst(Opcode::GetGEFromOp, {result});
ResultAndGE<U32> IREmitter::PackedSubAddU16(const U32& a, const U32& b) {
auto result = Inst<U32>(Opcode::PackedSubAddU16, a, b);
auto ge = Inst<U32>(Opcode::GetGEFromOp, result);
return {result, ge};
}
IREmitter::ResultAndGE IREmitter::PackedSubAddS16(const Value& a, const Value& b) {
auto result = Inst(Opcode::PackedSubAddS16, {a, b});
auto ge = Inst(Opcode::GetGEFromOp, {result});
ResultAndGE<U32> IREmitter::PackedSubAddS16(const U32& a, const U32& b) {
auto result = Inst<U32>(Opcode::PackedSubAddS16, a, b);
auto ge = Inst<U32>(Opcode::GetGEFromOp, result);
return {result, ge};
}
Value IREmitter::PackedHalvingAddU8(const Value& a, const Value& b) {
return Inst(Opcode::PackedHalvingAddU8, {a, b});
U32 IREmitter::PackedHalvingAddU8(const U32& a, const U32& b) {
return Inst<U32>(Opcode::PackedHalvingAddU8, a, b);
}
Value IREmitter::PackedHalvingAddS8(const Value& a, const Value& b) {
return Inst(Opcode::PackedHalvingAddS8, {a, b});
U32 IREmitter::PackedHalvingAddS8(const U32& a, const U32& b) {
return Inst<U32>(Opcode::PackedHalvingAddS8, a, b);
}
Value IREmitter::PackedHalvingSubU8(const Value& a, const Value& b) {
return Inst(Opcode::PackedHalvingSubU8, {a, b});
U32 IREmitter::PackedHalvingSubU8(const U32& a, const U32& b) {
return Inst<U32>(Opcode::PackedHalvingSubU8, a, b);
}
Value IREmitter::PackedHalvingSubS8(const Value& a, const Value& b) {
return Inst(Opcode::PackedHalvingSubS8, {a, b});
U32 IREmitter::PackedHalvingSubS8(const U32& a, const U32& b) {
return Inst<U32>(Opcode::PackedHalvingSubS8, a, b);
}
Value IREmitter::PackedHalvingAddU16(const Value& a, const Value& b) {
return Inst(Opcode::PackedHalvingAddU16, {a, b});
U32 IREmitter::PackedHalvingAddU16(const U32& a, const U32& b) {
return Inst<U32>(Opcode::PackedHalvingAddU16, a, b);
}
Value IREmitter::PackedHalvingAddS16(const Value& a, const Value& b) {
return Inst(Opcode::PackedHalvingAddS16, {a, b});
U32 IREmitter::PackedHalvingAddS16(const U32& a, const U32& b) {
return Inst<U32>(Opcode::PackedHalvingAddS16, a, b);
}
Value IREmitter::PackedHalvingSubU16(const Value& a, const Value& b) {
return Inst(Opcode::PackedHalvingSubU16, {a, b});
U32 IREmitter::PackedHalvingSubU16(const U32& a, const U32& b) {
return Inst<U32>(Opcode::PackedHalvingSubU16, a, b);
}
Value IREmitter::PackedHalvingSubS16(const Value& a, const Value& b) {
return Inst(Opcode::PackedHalvingSubS16, {a, b});
U32 IREmitter::PackedHalvingSubS16(const U32& a, const U32& b) {
return Inst<U32>(Opcode::PackedHalvingSubS16, a, b);
}
Value IREmitter::PackedHalvingAddSubU16(const Value& a, const Value& b) {
return Inst(Opcode::PackedHalvingAddSubU16, {a, b});
U32 IREmitter::PackedHalvingAddSubU16(const U32& a, const U32& b) {
return Inst<U32>(Opcode::PackedHalvingAddSubU16, a, b);
}
Value IREmitter::PackedHalvingAddSubS16(const Value& a, const Value& b) {
return Inst(Opcode::PackedHalvingAddSubS16, {a, b});
U32 IREmitter::PackedHalvingAddSubS16(const U32& a, const U32& b) {
return Inst<U32>(Opcode::PackedHalvingAddSubS16, a, b);
}
Value IREmitter::PackedHalvingSubAddU16(const Value& a, const Value& b) {
return Inst(Opcode::PackedHalvingSubAddU16, {a, b});
U32 IREmitter::PackedHalvingSubAddU16(const U32& a, const U32& b) {
return Inst<U32>(Opcode::PackedHalvingSubAddU16, a, b);
}
Value IREmitter::PackedHalvingSubAddS16(const Value& a, const Value& b) {
return Inst(Opcode::PackedHalvingSubAddS16, {a, b});
U32 IREmitter::PackedHalvingSubAddS16(const U32& a, const U32& b) {
return Inst<U32>(Opcode::PackedHalvingSubAddS16, a, b);
}
Value IREmitter::PackedSaturatedAddU8(const Value& a, const Value& b) {
return Inst(Opcode::PackedSaturatedAddU8, {a, b});
U32 IREmitter::PackedSaturatedAddU8(const U32& a, const U32& b) {
return Inst<U32>(Opcode::PackedSaturatedAddU8, a, b);
}
Value IREmitter::PackedSaturatedAddS8(const Value& a, const Value& b) {
return Inst(Opcode::PackedSaturatedAddS8, {a, b});
U32 IREmitter::PackedSaturatedAddS8(const U32& a, const U32& b) {
return Inst<U32>(Opcode::PackedSaturatedAddS8, a, b);
}
Value IREmitter::PackedSaturatedSubU8(const Value& a, const Value& b) {
return Inst(Opcode::PackedSaturatedSubU8, {a, b});
U32 IREmitter::PackedSaturatedSubU8(const U32& a, const U32& b) {
return Inst<U32>(Opcode::PackedSaturatedSubU8, a, b);
}
Value IREmitter::PackedSaturatedSubS8(const Value& a, const Value& b) {
return Inst(Opcode::PackedSaturatedSubS8, {a, b});
U32 IREmitter::PackedSaturatedSubS8(const U32& a, const U32& b) {
return Inst<U32>(Opcode::PackedSaturatedSubS8, a, b);
}
Value IREmitter::PackedSaturatedAddU16(const Value& a, const Value& b) {
return Inst(Opcode::PackedSaturatedAddU16, {a, b});
U32 IREmitter::PackedSaturatedAddU16(const U32& a, const U32& b) {
return Inst<U32>(Opcode::PackedSaturatedAddU16, a, b);
}
Value IREmitter::PackedSaturatedAddS16(const Value& a, const Value& b) {
return Inst(Opcode::PackedSaturatedAddS16, {a, b});
U32 IREmitter::PackedSaturatedAddS16(const U32& a, const U32& b) {
return Inst<U32>(Opcode::PackedSaturatedAddS16, a, b);
}
Value IREmitter::PackedSaturatedSubU16(const Value& a, const Value& b) {
return Inst(Opcode::PackedSaturatedSubU16, {a, b});
U32 IREmitter::PackedSaturatedSubU16(const U32& a, const U32& b) {
return Inst<U32>(Opcode::PackedSaturatedSubU16, a, b);
}
Value IREmitter::PackedSaturatedSubS16(const Value& a, const Value& b) {
return Inst(Opcode::PackedSaturatedSubS16, {a, b});
U32 IREmitter::PackedSaturatedSubS16(const U32& a, const U32& b) {
return Inst<U32>(Opcode::PackedSaturatedSubS16, a, b);
}
Value IREmitter::PackedAbsDiffSumS8(const Value& a, const Value& b) {
return Inst(Opcode::PackedAbsDiffSumS8, {a, b});
U32 IREmitter::PackedAbsDiffSumS8(const U32& a, const U32& b) {
return Inst<U32>(Opcode::PackedAbsDiffSumS8, a, b);
}
Value IREmitter::PackedSelect(const Value& ge, const Value& a, const Value& b) {
return Inst(Opcode::PackedSelect, {ge, a, b});
U32 IREmitter::PackedSelect(const U32& ge, const U32& a, const U32& b) {
return Inst<U32>(Opcode::PackedSelect, ge, a, b);
}
Value IREmitter::TransferToFP32(const Value& a) {
return Inst(Opcode::TransferToFP32, {a});
F32 IREmitter::TransferToFP32(const U32& a) {
return Inst<F32>(Opcode::TransferToFP32, a);
}
Value IREmitter::TransferToFP64(const Value& a) {
return Inst(Opcode::TransferToFP64, {a});
F64 IREmitter::TransferToFP64(const U64& a) {
return Inst<F64>(Opcode::TransferToFP64, a);
}
Value IREmitter::TransferFromFP32(const Value& a) {
return Inst(Opcode::TransferFromFP32, {a});
U32 IREmitter::TransferFromFP32(const F32& a) {
return Inst<U32>(Opcode::TransferFromFP32, a);
}
Value IREmitter::TransferFromFP64(const Value& a) {
return Inst(Opcode::TransferFromFP64, {a});
U64 IREmitter::TransferFromFP64(const F64& a) {
return Inst<U64>(Opcode::TransferFromFP64, a);
}
Value IREmitter::FPAbs32(const Value& a) {
return Inst(Opcode::FPAbs32, {a});
F32 IREmitter::FPAbs32(const F32& a) {
return Inst<F32>(Opcode::FPAbs32, a);
}
Value IREmitter::FPAbs64(const Value& a) {
return Inst(Opcode::FPAbs64, {a});
F64 IREmitter::FPAbs64(const F64& a) {
return Inst<F64>(Opcode::FPAbs64, a);
}
Value IREmitter::FPAdd32(const Value& a, const Value& b, bool fpscr_controlled) {
F32 IREmitter::FPAdd32(const F32& a, const F32& b, bool fpscr_controlled) {
ASSERT(fpscr_controlled);
return Inst(Opcode::FPAdd32, {a, b});
return Inst<F32>(Opcode::FPAdd32, a, b);
}
Value IREmitter::FPAdd64(const Value& a, const Value& b, bool fpscr_controlled) {
F64 IREmitter::FPAdd64(const F64& a, const F64& b, bool fpscr_controlled) {
ASSERT(fpscr_controlled);
return Inst(Opcode::FPAdd64, {a, b});
return Inst<F64>(Opcode::FPAdd64, a, b);
}
void IREmitter::FPCompare32(const Value& a, const Value& b, bool exc_on_qnan, bool fpscr_controlled) {
void IREmitter::FPCompare32(const F32& a, const F32& b, bool exc_on_qnan, bool fpscr_controlled) {
ASSERT(fpscr_controlled);
Inst(Opcode::FPCompare32, {a, b, Imm1(exc_on_qnan)});
Inst(Opcode::FPCompare32, a, b, Imm1(exc_on_qnan));
}
void IREmitter::FPCompare64(const Value& a, const Value& b, bool exc_on_qnan, bool fpscr_controlled) {
void IREmitter::FPCompare64(const F64& a, const F64& b, bool exc_on_qnan, bool fpscr_controlled) {
ASSERT(fpscr_controlled);
Inst(Opcode::FPCompare64, {a, b, Imm1(exc_on_qnan)});
Inst(Opcode::FPCompare64, a, b, Imm1(exc_on_qnan));
}
Value IREmitter::FPDiv32(const Value& a, const Value& b, bool fpscr_controlled) {
F32 IREmitter::FPDiv32(const F32& a, const F32& b, bool fpscr_controlled) {
ASSERT(fpscr_controlled);
return Inst(Opcode::FPDiv32, {a, b});
return Inst<F32>(Opcode::FPDiv32, a, b);
}
Value IREmitter::FPDiv64(const Value& a, const Value& b, bool fpscr_controlled) {
F64 IREmitter::FPDiv64(const F64& a, const F64& b, bool fpscr_controlled) {
ASSERT(fpscr_controlled);
return Inst(Opcode::FPDiv64, {a, b});
return Inst<F64>(Opcode::FPDiv64, a, b);
}
Value IREmitter::FPMul32(const Value& a, const Value& b, bool fpscr_controlled) {
F32 IREmitter::FPMul32(const F32& a, const F32& b, bool fpscr_controlled) {
ASSERT(fpscr_controlled);
return Inst(Opcode::FPMul32, {a, b});
return Inst<F32>(Opcode::FPMul32, a, b);
}
Value IREmitter::FPMul64(const Value& a, const Value& b, bool fpscr_controlled) {
F64 IREmitter::FPMul64(const F64& a, const F64& b, bool fpscr_controlled) {
ASSERT(fpscr_controlled);
return Inst(Opcode::FPMul64, {a, b});
return Inst<F64>(Opcode::FPMul64, a, b);
}
Value IREmitter::FPNeg32(const Value& a) {
return Inst(Opcode::FPNeg32, {a});
F32 IREmitter::FPNeg32(const F32& a) {
return Inst<F32>(Opcode::FPNeg32, a);
}
Value IREmitter::FPNeg64(const Value& a) {
return Inst(Opcode::FPNeg64, {a});
F64 IREmitter::FPNeg64(const F64& a) {
return Inst<F64>(Opcode::FPNeg64, a);
}
Value IREmitter::FPSqrt32(const Value& a) {
return Inst(Opcode::FPSqrt32, {a});
F32 IREmitter::FPSqrt32(const F32& a) {
return Inst<F32>(Opcode::FPSqrt32, a);
}
Value IREmitter::FPSqrt64(const Value& a) {
return Inst(Opcode::FPSqrt64, {a});
F64 IREmitter::FPSqrt64(const F64& a) {
return Inst<F64>(Opcode::FPSqrt64, a);
}
Value IREmitter::FPSub32(const Value& a, const Value& b, bool fpscr_controlled) {
F32 IREmitter::FPSub32(const F32& a, const F32& b, bool fpscr_controlled) {
ASSERT(fpscr_controlled);
return Inst(Opcode::FPSub32, {a, b});
return Inst<F32>(Opcode::FPSub32, a, b);
}
Value IREmitter::FPSub64(const Value& a, const Value& b, bool fpscr_controlled) {
F64 IREmitter::FPSub64(const F64& a, const F64& b, bool fpscr_controlled) {
ASSERT(fpscr_controlled);
return Inst(Opcode::FPSub64, {a, b});
return Inst<F64>(Opcode::FPSub64, a, b);
}
Value IREmitter::FPDoubleToSingle(const Value& a, bool fpscr_controlled) {
F32 IREmitter::FPDoubleToSingle(const F64& a, bool fpscr_controlled) {
ASSERT(fpscr_controlled);
return Inst(Opcode::FPDoubleToSingle, {a});
return Inst<F32>(Opcode::FPDoubleToSingle, a);
}
Value IREmitter::FPSingleToDouble(const Value& a, bool fpscr_controlled) {
F64 IREmitter::FPSingleToDouble(const F32& a, bool fpscr_controlled) {
ASSERT(fpscr_controlled);
return Inst(Opcode::FPSingleToDouble, {a});
return Inst<F64>(Opcode::FPSingleToDouble, a);
}
Value IREmitter::FPSingleToS32(const Value& a, bool round_towards_zero, bool fpscr_controlled) {
F32 IREmitter::FPSingleToS32(const F32& a, bool round_towards_zero, bool fpscr_controlled) {
ASSERT(fpscr_controlled);
return Inst(Opcode::FPSingleToS32, {a, Imm1(round_towards_zero)});
return Inst<F32>(Opcode::FPSingleToS32, a, Imm1(round_towards_zero));
}
Value IREmitter::FPSingleToU32(const Value& a, bool round_towards_zero, bool fpscr_controlled) {
F32 IREmitter::FPSingleToU32(const F32& a, bool round_towards_zero, bool fpscr_controlled) {
ASSERT(fpscr_controlled);
return Inst(Opcode::FPSingleToU32, {a, Imm1(round_towards_zero)});
return Inst<F32>(Opcode::FPSingleToU32, a, Imm1(round_towards_zero));
}
Value IREmitter::FPDoubleToS32(const Value& a, bool round_towards_zero, bool fpscr_controlled) {
F32 IREmitter::FPDoubleToS32(const F32& a, bool round_towards_zero, bool fpscr_controlled) {
ASSERT(fpscr_controlled);
return Inst(Opcode::FPDoubleToS32, {a, Imm1(round_towards_zero)});
return Inst<F32>(Opcode::FPDoubleToS32, a, Imm1(round_towards_zero));
}
Value IREmitter::FPDoubleToU32(const Value& a, bool round_towards_zero, bool fpscr_controlled) {
F32 IREmitter::FPDoubleToU32(const F32& a, bool round_towards_zero, bool fpscr_controlled) {
ASSERT(fpscr_controlled);
return Inst(Opcode::FPDoubleToU32, {a, Imm1(round_towards_zero)});
return Inst<F32>(Opcode::FPDoubleToU32, a, Imm1(round_towards_zero));
}
Value IREmitter::FPS32ToSingle(const Value& a, bool round_to_nearest, bool fpscr_controlled) {
F32 IREmitter::FPS32ToSingle(const F32& a, bool round_to_nearest, bool fpscr_controlled) {
ASSERT(fpscr_controlled);
return Inst(Opcode::FPS32ToSingle, {a, Imm1(round_to_nearest)});
return Inst<F32>(Opcode::FPS32ToSingle, a, Imm1(round_to_nearest));
}
Value IREmitter::FPU32ToSingle(const Value& a, bool round_to_nearest, bool fpscr_controlled) {
F32 IREmitter::FPU32ToSingle(const F32& a, bool round_to_nearest, bool fpscr_controlled) {
ASSERT(fpscr_controlled);
return Inst(Opcode::FPU32ToSingle, {a, Imm1(round_to_nearest)});
return Inst<F32>(Opcode::FPU32ToSingle, a, Imm1(round_to_nearest));
}
Value IREmitter::FPS32ToDouble(const Value& a, bool round_to_nearest, bool fpscr_controlled) {
F64 IREmitter::FPS32ToDouble(const F32& a, bool round_to_nearest, bool fpscr_controlled) {
ASSERT(fpscr_controlled);
return Inst(Opcode::FPS32ToDouble, {a, Imm1(round_to_nearest)});
return Inst<F64>(Opcode::FPS32ToDouble, a, Imm1(round_to_nearest));
}
Value IREmitter::FPU32ToDouble(const Value& a, bool round_to_nearest, bool fpscr_controlled) {
F64 IREmitter::FPU32ToDouble(const F32& a, bool round_to_nearest, bool fpscr_controlled) {
ASSERT(fpscr_controlled);
return Inst(Opcode::FPU32ToDouble, {a, Imm1(round_to_nearest)});
return Inst<F64>(Opcode::FPU32ToDouble, a, Imm1(round_to_nearest));
}
void IREmitter::Breakpoint() {
Inst(Opcode::Breakpoint, {});
Inst(Opcode::Breakpoint);
}
void IREmitter::SetTerm(const Terminal& terminal) {
block.SetTerminal(terminal);
}
Value IREmitter::Inst(Opcode op, std::initializer_list<Value> args) {
block.AppendNewInst(op, args);
return Value(&block.back());
}
} // namespace IR
} // namespace Dynarmic

View file

@ -28,6 +28,31 @@ namespace IR {
enum class Opcode;
template <typename T>
struct ResultAndCarry {
T result;
U1 carry;
};
template <typename T>
struct ResultAndOverflow {
T result;
U1 overflow;
};
template <typename T>
struct ResultAndCarryAndOverflow {
T result;
U1 carry;
U1 overflow;
};
template <typename T>
struct ResultAndGE {
T result;
U32 ge;
};
/**
* Convenience class to construct a basic block of the intermediate representation.
* `block` is the resulting block.
@ -39,151 +64,134 @@ public:
Block block;
struct ResultAndCarry {
Value result;
Value carry;
};
struct ResultAndOverflow {
Value result;
Value overflow;
};
struct ResultAndCarryAndOverflow {
Value result;
Value carry;
Value overflow;
};
struct ResultAndGE {
Value result;
Value ge;
};
void Unimplemented();
Value Imm1(bool value);
Value Imm8(u8 value);
Value Imm32(u32 value);
Value Imm64(u64 value);
U1 Imm1(bool value);
U8 Imm8(u8 value);
U32 Imm32(u32 value);
U64 Imm64(u64 value);
void PushRSB(const LocationDescriptor& return_location);
Value Pack2x32To1x64(const Value& lo, const Value& hi);
Value LeastSignificantWord(const Value& value);
ResultAndCarry MostSignificantWord(const Value& value);
Value LeastSignificantHalf(const Value& value);
Value LeastSignificantByte(const Value& value);
Value MostSignificantBit(const Value& value);
Value IsZero(const Value& value);
Value IsZero64(const Value& value);
U64 Pack2x32To1x64(const U32& lo, const U32& hi);
U32 LeastSignificantWord(const U64& value);
ResultAndCarry<U32> MostSignificantWord(const U64& value);
U16 LeastSignificantHalf(const U32& value);
U8 LeastSignificantByte(const U32& value);
U1 MostSignificantBit(const U32& value);
U1 IsZero(const U32& value);
U1 IsZero64(const U64& value);
ResultAndCarry LogicalShiftLeft(const Value& value_in, const Value& shift_amount, const Value& carry_in);
ResultAndCarry LogicalShiftRight(const Value& value_in, const Value& shift_amount, const Value& carry_in);
Value LogicalShiftRight64(const Value& value_in, const Value& shift_amount);
ResultAndCarry ArithmeticShiftRight(const Value& value_in, const Value& shift_amount, const Value& carry_in);
ResultAndCarry RotateRight(const Value& value_in, const Value& shift_amount, const Value& carry_in);
ResultAndCarry RotateRightExtended(const Value& value_in, const Value& carry_in);
ResultAndCarryAndOverflow AddWithCarry(const Value& a, const Value& b, const Value& carry_in);
Value Add(const Value& a, const Value& b);
Value Add64(const Value& a, const Value& b);
ResultAndCarryAndOverflow SubWithCarry(const Value& a, const Value& b, const Value& carry_in);
Value Sub(const Value& a, const Value& b);
Value Sub64(const Value& a, const Value& b);
Value Mul(const Value& a, const Value& b);
Value Mul64(const Value& a, const Value& b);
Value And(const Value& a, const Value& b);
Value Eor(const Value& a, const Value& b);
Value Or(const Value& a, const Value& b);
Value Not(const Value& a);
Value SignExtendWordToLong(const Value& a);
Value SignExtendHalfToWord(const Value& a);
Value SignExtendByteToWord(const Value& a);
Value ZeroExtendWordToLong(const Value& a);
Value ZeroExtendHalfToWord(const Value& a);
Value ZeroExtendByteToWord(const Value& a);
Value ByteReverseWord(const Value& a);
Value ByteReverseHalf(const Value& a);
Value ByteReverseDual(const Value& a);
Value CountLeadingZeros(const Value& a);
ResultAndCarry<U32> LogicalShiftLeft(const U32& value_in, const U8& shift_amount, const U1& carry_in);
ResultAndCarry<U32> LogicalShiftRight(const U32& value_in, const U8& shift_amount, const U1& carry_in);
U64 LogicalShiftRight64(const U64& value_in, const U8& shift_amount);
ResultAndCarry<U32> ArithmeticShiftRight(const U32& value_in, const U8& shift_amount, const U1& carry_in);
ResultAndCarry<U32> RotateRight(const U32& value_in, const U8& shift_amount, const U1& carry_in);
ResultAndCarry<U32> RotateRightExtended(const U32& value_in, const U1& carry_in);
ResultAndCarryAndOverflow<U32> AddWithCarry(const Value& a, const Value& b, const U1& carry_in);
U32 Add(const U32& a, const U32& b);
U64 Add64(const U64& a, const U64& b);
ResultAndCarryAndOverflow<U32> SubWithCarry(const U32& a, const U32& b, const U1& carry_in);
U32 Sub(const U32& a, const U32& b);
U64 Sub64(const U64& a, const U64& b);
U32 Mul(const U32& a, const U32& b);
U64 Mul64(const U64& a, const U64& b);
U32 And(const U32& a, const U32& b);
U32 Eor(const U32& a, const U32& b);
U32 Or(const U32& a, const U32& b);
U32 Not(const U32& a);
U64 SignExtendWordToLong(const U32& a);
U32 SignExtendHalfToWord(const U16& a);
U32 SignExtendByteToWord(const U8& a);
U64 ZeroExtendWordToLong(const U32& a);
U32 ZeroExtendHalfToWord(const U16& a);
U32 ZeroExtendByteToWord(const U8& a);
U32 ByteReverseWord(const U32& a);
U16 ByteReverseHalf(const U16& a);
U64 ByteReverseDual(const U64& a);
U32 CountLeadingZeros(const U32& a);
ResultAndOverflow SignedSaturatedAdd(const Value& a, const Value& b);
ResultAndOverflow SignedSaturatedSub(const Value& a, const Value& b);
ResultAndOverflow UnsignedSaturation(const Value& a, size_t bit_size_to_saturate_to);
ResultAndOverflow SignedSaturation(const Value& a, size_t bit_size_to_saturate_to);
ResultAndOverflow<U32> SignedSaturatedAdd(const U32& a, const U32& b);
ResultAndOverflow<U32> SignedSaturatedSub(const U32& a, const U32& b);
ResultAndOverflow<U32> UnsignedSaturation(const U32& a, size_t bit_size_to_saturate_to);
ResultAndOverflow<U32> SignedSaturation(const U32& a, size_t bit_size_to_saturate_to);
ResultAndGE PackedAddU8(const Value& a, const Value& b);
ResultAndGE PackedAddS8(const Value& a, const Value& b);
ResultAndGE PackedAddU16(const Value& a, const Value& b);
ResultAndGE PackedAddS16(const Value& a, const Value& b);
ResultAndGE PackedSubU8(const Value& a, const Value& b);
ResultAndGE PackedSubS8(const Value& a, const Value& b);
ResultAndGE PackedSubU16(const Value& a, const Value& b);
ResultAndGE PackedSubS16(const Value& a, const Value& b);
ResultAndGE PackedAddSubU16(const Value& a, const Value& b);
ResultAndGE PackedAddSubS16(const Value& a, const Value& b);
ResultAndGE PackedSubAddU16(const Value& a, const Value& b);
ResultAndGE PackedSubAddS16(const Value& a, const Value& b);
Value PackedHalvingAddU8(const Value& a, const Value& b);
Value PackedHalvingAddS8(const Value& a, const Value& b);
Value PackedHalvingSubU8(const Value& a, const Value& b);
Value PackedHalvingSubS8(const Value& a, const Value& b);
Value PackedHalvingAddU16(const Value& a, const Value& b);
Value PackedHalvingAddS16(const Value& a, const Value& b);
Value PackedHalvingSubU16(const Value& a, const Value& b);
Value PackedHalvingSubS16(const Value& a, const Value& b);
Value PackedHalvingAddSubU16(const Value& a, const Value& b);
Value PackedHalvingAddSubS16(const Value& a, const Value& b);
Value PackedHalvingSubAddU16(const Value& a, const Value& b);
Value PackedHalvingSubAddS16(const Value& a, const Value& b);
Value PackedSaturatedAddU8(const Value& a, const Value& b);
Value PackedSaturatedAddS8(const Value& a, const Value& b);
Value PackedSaturatedSubU8(const Value& a, const Value& b);
Value PackedSaturatedSubS8(const Value& a, const Value& b);
Value PackedSaturatedAddU16(const Value& a, const Value& b);
Value PackedSaturatedAddS16(const Value& a, const Value& b);
Value PackedSaturatedSubU16(const Value& a, const Value& b);
Value PackedSaturatedSubS16(const Value& a, const Value& b);
Value PackedAbsDiffSumS8(const Value& a, const Value& b);
Value PackedSelect(const Value& ge, const Value& a, const Value& b);
ResultAndGE<U32> PackedAddU8(const U32& a, const U32& b);
ResultAndGE<U32> PackedAddS8(const U32& a, const U32& b);
ResultAndGE<U32> PackedAddU16(const U32& a, const U32& b);
ResultAndGE<U32> PackedAddS16(const U32& a, const U32& b);
ResultAndGE<U32> PackedSubU8(const U32& a, const U32& b);
ResultAndGE<U32> PackedSubS8(const U32& a, const U32& b);
ResultAndGE<U32> PackedSubU16(const U32& a, const U32& b);
ResultAndGE<U32> PackedSubS16(const U32& a, const U32& b);
ResultAndGE<U32> PackedAddSubU16(const U32& a, const U32& b);
ResultAndGE<U32> PackedAddSubS16(const U32& a, const U32& b);
ResultAndGE<U32> PackedSubAddU16(const U32& a, const U32& b);
ResultAndGE<U32> PackedSubAddS16(const U32& a, const U32& b);
U32 PackedHalvingAddU8(const U32& a, const U32& b);
U32 PackedHalvingAddS8(const U32& a, const U32& b);
U32 PackedHalvingSubU8(const U32& a, const U32& b);
U32 PackedHalvingSubS8(const U32& a, const U32& b);
U32 PackedHalvingAddU16(const U32& a, const U32& b);
U32 PackedHalvingAddS16(const U32& a, const U32& b);
U32 PackedHalvingSubU16(const U32& a, const U32& b);
U32 PackedHalvingSubS16(const U32& a, const U32& b);
U32 PackedHalvingAddSubU16(const U32& a, const U32& b);
U32 PackedHalvingAddSubS16(const U32& a, const U32& b);
U32 PackedHalvingSubAddU16(const U32& a, const U32& b);
U32 PackedHalvingSubAddS16(const U32& a, const U32& b);
U32 PackedSaturatedAddU8(const U32& a, const U32& b);
U32 PackedSaturatedAddS8(const U32& a, const U32& b);
U32 PackedSaturatedSubU8(const U32& a, const U32& b);
U32 PackedSaturatedSubS8(const U32& a, const U32& b);
U32 PackedSaturatedAddU16(const U32& a, const U32& b);
U32 PackedSaturatedAddS16(const U32& a, const U32& b);
U32 PackedSaturatedSubU16(const U32& a, const U32& b);
U32 PackedSaturatedSubS16(const U32& a, const U32& b);
U32 PackedAbsDiffSumS8(const U32& a, const U32& b);
U32 PackedSelect(const U32& ge, const U32& a, const U32& b);
Value TransferToFP32(const Value& a);
Value TransferToFP64(const Value& a);
Value TransferFromFP32(const Value& a);
Value TransferFromFP64(const Value& a);
Value FPAbs32(const Value& a);
Value FPAbs64(const Value& a);
Value FPAdd32(const Value& a, const Value& b, bool fpscr_controlled);
Value FPAdd64(const Value& a, const Value& b, bool fpscr_controlled);
void FPCompare32(const Value& a, const Value& b, bool exc_on_qnan, bool fpscr_controlled);
void FPCompare64(const Value& a, const Value& b, bool exc_on_qnan, bool fpscr_controlled);
Value FPDiv32(const Value& a, const Value& b, bool fpscr_controlled);
Value FPDiv64(const Value& a, const Value& b, bool fpscr_controlled);
Value FPMul32(const Value& a, const Value& b, bool fpscr_controlled);
Value FPMul64(const Value& a, const Value& b, bool fpscr_controlled);
Value FPNeg32(const Value& a);
Value FPNeg64(const Value& a);
Value FPSqrt32(const Value& a);
Value FPSqrt64(const Value& a);
Value FPSub32(const Value& a, const Value& b, bool fpscr_controlled);
Value FPSub64(const Value& a, const Value& b, bool fpscr_controlled);
Value FPDoubleToSingle(const Value& a, bool fpscr_controlled);
Value FPSingleToDouble(const Value& a, bool fpscr_controlled);
Value FPSingleToS32(const Value& a, bool round_towards_zero, bool fpscr_controlled);
Value FPSingleToU32(const Value& a, bool round_towards_zero, bool fpscr_controlled);
Value FPDoubleToS32(const Value& a, bool round_towards_zero, bool fpscr_controlled);
Value FPDoubleToU32(const Value& a, bool round_towards_zero, bool fpscr_controlled);
Value FPS32ToSingle(const Value& a, bool round_to_nearest, bool fpscr_controlled);
Value FPU32ToSingle(const Value& a, bool round_to_nearest, bool fpscr_controlled);
Value FPS32ToDouble(const Value& a, bool round_to_nearest, bool fpscr_controlled);
Value FPU32ToDouble(const Value& a, bool round_to_nearest, bool fpscr_controlled);
F32 TransferToFP32(const U32& a);
F64 TransferToFP64(const U64& a);
U32 TransferFromFP32(const F32& a);
U64 TransferFromFP64(const F64& a);
F32 FPAbs32(const F32& a);
F64 FPAbs64(const F64& a);
F32 FPAdd32(const F32& a, const F32& b, bool fpscr_controlled);
F64 FPAdd64(const F64& a, const F64& b, bool fpscr_controlled);
void FPCompare32(const F32& a, const F32& b, bool exc_on_qnan, bool fpscr_controlled);
void FPCompare64(const F64& a, const F64& b, bool exc_on_qnan, bool fpscr_controlled);
F32 FPDiv32(const F32& a, const F32& b, bool fpscr_controlled);
F64 FPDiv64(const F64& a, const F64& b, bool fpscr_controlled);
F32 FPMul32(const F32& a, const F32& b, bool fpscr_controlled);
F64 FPMul64(const F64& a, const F64& b, bool fpscr_controlled);
F32 FPNeg32(const F32& a);
F64 FPNeg64(const F64& a);
F32 FPSqrt32(const F32& a);
F64 FPSqrt64(const F64& a);
F32 FPSub32(const F32& a, const F32& b, bool fpscr_controlled);
F64 FPSub64(const F64& a, const F64& b, bool fpscr_controlled);
F32 FPDoubleToSingle(const F64& a, bool fpscr_controlled);
F64 FPSingleToDouble(const F32& a, bool fpscr_controlled);
F32 FPSingleToS32(const F32& a, bool round_towards_zero, bool fpscr_controlled);
F32 FPSingleToU32(const F32& a, bool round_towards_zero, bool fpscr_controlled);
F32 FPDoubleToS32(const F32& a, bool round_towards_zero, bool fpscr_controlled);
F32 FPDoubleToU32(const F32& a, bool round_towards_zero, bool fpscr_controlled);
F32 FPS32ToSingle(const F32& a, bool round_to_nearest, bool fpscr_controlled);
F32 FPU32ToSingle(const F32& a, bool round_to_nearest, bool fpscr_controlled);
F64 FPS32ToDouble(const F32& a, bool round_to_nearest, bool fpscr_controlled);
F64 FPU32ToDouble(const F32& a, bool round_to_nearest, bool fpscr_controlled);
void Breakpoint();
void SetTerm(const Terminal& terminal);
protected:
Value Inst(Opcode op, std::initializer_list<Value> args);
template<typename T = Value, typename ...Args>
T Inst(Opcode op, Args ...args) {
block.AppendNewInst(op, {Value(args)...});
return T(Value(&block.back()));
}
};
} // namespace IR

View file

@ -30,22 +30,30 @@ constexpr size_t OpcodeCount = static_cast<size_t>(Opcode::NUM_OPCODE);
* The intermediate representation is typed. These are the used by our IR.
*/
enum class Type {
Void,
A32Reg,
A32ExtReg,
A64Reg,
A64Vec,
Opaque,
U1,
U8,
U16,
U32,
U64,
F32,
F64,
CoprocInfo,
Void = 0,
A32Reg = 1 << 0,
A32ExtReg = 1 << 1,
A64Reg = 1 << 2,
A64Vec = 1 << 3,
Opaque = 1 << 4,
U1 = 1 << 5,
U8 = 1 << 6,
U16 = 1 << 7,
U32 = 1 << 8,
U64 = 1 << 9,
F32 = 1 << 10,
F64 = 1 << 11,
CoprocInfo = 1 << 12,
};
constexpr Type operator|(Type a, Type b) {
return static_cast<Type>(static_cast<size_t>(a) | static_cast<size_t>(b));
}
constexpr Type operator&(Type a, Type b) {
return static_cast<Type>(static_cast<size_t>(a) & static_cast<size_t>(b));
}
/// Get return type of an opcode
Type GetTypeOf(Opcode op);

View file

@ -6,6 +6,7 @@
#pragma once
#include "common/assert.h"
#include "common/common_types.h"
#include "frontend/A32/types.h"
@ -18,7 +19,7 @@ class Inst;
* A representation of a value in the IR.
* A value may either be an immediate or the result of a microinstruction.
*/
class Value final {
class Value {
public:
Value() : type(Type::Void) {}
explicit Value(Inst* value);
@ -62,5 +63,30 @@ private:
};
static_assert(sizeof(Value) <= 2 * sizeof(u64), "IR::Value should be kept small in size");
template <Type type_>
class TypedValue final : public Value {
public:
TypedValue() : Value() {}
template <Type other_type>
/* implicit */ TypedValue(const TypedValue<other_type>& value) : Value(value) {
static_assert((other_type & type_) != Type::Void);
ASSERT((value.GetType() & type_) != Type::Void);
}
explicit TypedValue(const Value& value) : Value(value) {
ASSERT((value.GetType() & type_) != Type::Void);
}
};
using U1 = TypedValue<Type::U1>;
using U8 = TypedValue<Type::U8>;
using U16 = TypedValue<Type::U16>;
using U32 = TypedValue<Type::U32>;
using U64 = TypedValue<Type::U64>;
using F32 = TypedValue<Type::F32>;
using F64 = TypedValue<Type::F64>;
using F32F64 = TypedValue<Type::F32 | Type::F64>;
} // namespace IR
} // namespace Dynarmic