dynarmic/src/backend/x64/block_of_code.cpp
2020-04-22 20:53:46 +01:00

307 lines
9.7 KiB
C++

/* This file is part of the dynarmic project.
* Copyright (c) 2016 MerryMage
* This software may be used and distributed according to the terms of the GNU
* General Public License version 2 or any later version.
*/
#include <array>
#include <cstring>
#include <limits>
#include <xbyak.h>
#include "backend/x64/a32_jitstate.h"
#include "backend/x64/abi.h"
#include "backend/x64/block_of_code.h"
#include "common/assert.h"
#ifdef _WIN32
#include <windows.h>
#else
#include <sys/mman.h>
#endif
namespace Dynarmic::BackendX64 {
#ifdef _WIN32
const Xbyak::Reg64 BlockOfCode::ABI_RETURN = Xbyak::util::rax;
const Xbyak::Reg64 BlockOfCode::ABI_PARAM1 = Xbyak::util::rcx;
const Xbyak::Reg64 BlockOfCode::ABI_PARAM2 = Xbyak::util::rdx;
const Xbyak::Reg64 BlockOfCode::ABI_PARAM3 = Xbyak::util::r8;
const Xbyak::Reg64 BlockOfCode::ABI_PARAM4 = Xbyak::util::r9;
const std::array<Xbyak::Reg64, 4> BlockOfCode::ABI_PARAMS = {BlockOfCode::ABI_PARAM1, BlockOfCode::ABI_PARAM2, BlockOfCode::ABI_PARAM3, BlockOfCode::ABI_PARAM4};
#else
const Xbyak::Reg64 BlockOfCode::ABI_RETURN = Xbyak::util::rax;
const Xbyak::Reg64 BlockOfCode::ABI_RETURN2 = Xbyak::util::rdx;
const Xbyak::Reg64 BlockOfCode::ABI_PARAM1 = Xbyak::util::rdi;
const Xbyak::Reg64 BlockOfCode::ABI_PARAM2 = Xbyak::util::rsi;
const Xbyak::Reg64 BlockOfCode::ABI_PARAM3 = Xbyak::util::rdx;
const Xbyak::Reg64 BlockOfCode::ABI_PARAM4 = Xbyak::util::rcx;
const Xbyak::Reg64 BlockOfCode::ABI_PARAM5 = Xbyak::util::r8;
const Xbyak::Reg64 BlockOfCode::ABI_PARAM6 = Xbyak::util::r9;
const std::array<Xbyak::Reg64, 6> BlockOfCode::ABI_PARAMS = {BlockOfCode::ABI_PARAM1, BlockOfCode::ABI_PARAM2, BlockOfCode::ABI_PARAM3, BlockOfCode::ABI_PARAM4, BlockOfCode::ABI_PARAM5, BlockOfCode::ABI_PARAM6};
#endif
namespace {
constexpr size_t TOTAL_CODE_SIZE = 128 * 1024 * 1024;
constexpr size_t FAR_CODE_OFFSET = 100 * 1024 * 1024;
constexpr size_t CONSTANT_POOL_SIZE = 2 * 1024 * 1024;
class CustomXbyakAllocator : public Xbyak::Allocator {
public:
bool useProtect() const override { return false; }
};
// This is threadsafe as Xbyak::Allocator does not contain any state; it is a pure interface.
CustomXbyakAllocator s_allocator;
void ProtectMemory(const void* base, size_t size, bool is_executable) {
#ifdef _WIN32
DWORD oldProtect = 0;
VirtualProtect(const_cast<void*>(base), size, is_executable ? PAGE_EXECUTE_READ : PAGE_READWRITE, &oldProtect);
#else
static const size_t pageSize = sysconf(_SC_PAGESIZE);
const size_t iaddr = reinterpret_cast<size_t>(base);
const size_t roundAddr = iaddr & ~(pageSize - static_cast<size_t>(1));
const int mode = is_executable ? (PROT_READ | PROT_EXEC) : (PROT_READ | PROT_WRITE);
mprotect(reinterpret_cast<void*>(roundAddr), size + (iaddr - roundAddr), mode);
#endif
}
} // anonymous namespace
BlockOfCode::BlockOfCode(RunCodeCallbacks cb, JitStateInfo jsi)
: Xbyak::CodeGenerator(TOTAL_CODE_SIZE, nullptr, &s_allocator)
, cb(std::move(cb))
, jsi(jsi)
, constant_pool(*this, CONSTANT_POOL_SIZE)
{
EnableWriting();
GenRunCode();
exception_handler.Register(*this);
}
void BlockOfCode::PreludeComplete() {
prelude_complete = true;
near_code_begin = getCurr();
far_code_begin = getCurr() + FAR_CODE_OFFSET;
ClearCache();
DisableWriting();
}
void BlockOfCode::EnableWriting() {
ProtectMemory(getCode(), maxSize_, false);
}
void BlockOfCode::DisableWriting() {
ProtectMemory(getCode(), maxSize_, true);
}
void BlockOfCode::ClearCache() {
ASSERT(prelude_complete);
in_far_code = false;
near_code_ptr = near_code_begin;
far_code_ptr = far_code_begin;
SetCodePtr(near_code_begin);
}
size_t BlockOfCode::SpaceRemaining() const {
ASSERT(prelude_complete);
// This function provides an underestimate of near-code-size but that's okay.
// (Why? The maximum size of near code should be measured from near_code_begin, not top_.)
// These are offsets from Xbyak::CodeArray::top_.
std::size_t far_code_offset, near_code_offset;
if (in_far_code) {
near_code_offset = static_cast<const u8*>(near_code_ptr) - getCode();
far_code_offset = getCurr() - getCode();
} else {
near_code_offset = getCurr() - getCode();
far_code_offset = static_cast<const u8*>(far_code_ptr) - getCode();
}
if (far_code_offset > TOTAL_CODE_SIZE)
return 0;
if (near_code_offset > FAR_CODE_OFFSET)
return 0;
return std::min(TOTAL_CODE_SIZE - far_code_offset, FAR_CODE_OFFSET - near_code_offset);
}
void BlockOfCode::RunCode(void* jit_state) const {
run_code(jit_state);
}
void BlockOfCode::RunCodeFrom(void* jit_state, CodePtr code_ptr) const {
run_code_from(jit_state, code_ptr);
}
void BlockOfCode::ReturnFromRunCode(bool mxcsr_already_exited) {
size_t index = 0;
if (mxcsr_already_exited)
index |= MXCSR_ALREADY_EXITED;
jmp(return_from_run_code[index]);
}
void BlockOfCode::ForceReturnFromRunCode(bool mxcsr_already_exited) {
size_t index = FORCE_RETURN;
if (mxcsr_already_exited)
index |= MXCSR_ALREADY_EXITED;
jmp(return_from_run_code[index]);
}
void BlockOfCode::GenRunCode() {
Xbyak::Label loop, enter_mxcsr_then_loop;
align();
run_code_from = getCurr<RunCodeFromFuncType>();
ABI_PushCalleeSaveRegistersAndAdjustStack(*this);
mov(r15, ABI_PARAM1);
mov(r14, ABI_PARAM2); // save temporarily in non-volatile register
cb.GetTicksRemaining->EmitCall(*this);
mov(qword[r15 + jsi.offsetof_cycles_to_run], ABI_RETURN);
mov(qword[r15 + jsi.offsetof_cycles_remaining], ABI_RETURN);
SwitchMxcsrOnEntry();
jmp(r14);
align();
run_code = getCurr<RunCodeFuncType>();
// This serves two purposes:
// 1. It saves all the registers we as a callee need to save.
// 2. It aligns the stack so that the code the JIT emits can assume
// that the stack is appropriately aligned for CALLs.
ABI_PushCalleeSaveRegistersAndAdjustStack(*this);
mov(r15, ABI_PARAM1);
cb.GetTicksRemaining->EmitCall(*this);
mov(qword[r15 + jsi.offsetof_cycles_to_run], ABI_RETURN);
mov(qword[r15 + jsi.offsetof_cycles_remaining], ABI_RETURN);
L(enter_mxcsr_then_loop);
SwitchMxcsrOnEntry();
L(loop);
cb.LookupBlock->EmitCall(*this);
jmp(ABI_RETURN);
// Return from run code variants
const auto emit_return_from_run_code = [this, &loop, &enter_mxcsr_then_loop](bool mxcsr_already_exited, bool force_return){
if (!force_return) {
cmp(qword[r15 + jsi.offsetof_cycles_remaining], 0);
jg(mxcsr_already_exited ? enter_mxcsr_then_loop : loop);
}
if (!mxcsr_already_exited) {
SwitchMxcsrOnExit();
}
cb.AddTicks->EmitCall(*this, [this](RegList param) {
mov(param[0], qword[r15 + jsi.offsetof_cycles_to_run]);
sub(param[0], qword[r15 + jsi.offsetof_cycles_remaining]);
});
ABI_PopCalleeSaveRegistersAndAdjustStack(*this);
ret();
};
align();
return_from_run_code[0] = getCurr<const void*>();
emit_return_from_run_code(false, false);
align();
return_from_run_code[MXCSR_ALREADY_EXITED] = getCurr<const void*>();
emit_return_from_run_code(true, false);
align();
return_from_run_code[FORCE_RETURN] = getCurr<const void*>();
emit_return_from_run_code(false, true);
align();
return_from_run_code[MXCSR_ALREADY_EXITED | FORCE_RETURN] = getCurr<const void*>();
emit_return_from_run_code(true, true);
}
void BlockOfCode::SwitchMxcsrOnEntry() {
stmxcsr(dword[r15 + jsi.offsetof_save_host_MXCSR]);
ldmxcsr(dword[r15 + jsi.offsetof_guest_MXCSR]);
}
void BlockOfCode::SwitchMxcsrOnExit() {
stmxcsr(dword[r15 + jsi.offsetof_guest_MXCSR]);
ldmxcsr(dword[r15 + jsi.offsetof_save_host_MXCSR]);
}
void BlockOfCode::UpdateTicks() {
cb.AddTicks->EmitCall(*this, [this](RegList param) {
mov(param[0], qword[r15 + jsi.offsetof_cycles_to_run]);
sub(param[0], qword[r15 + jsi.offsetof_cycles_remaining]);
});
cb.GetTicksRemaining->EmitCall(*this);
mov(qword[r15 + jsi.offsetof_cycles_to_run], ABI_RETURN);
mov(qword[r15 + jsi.offsetof_cycles_remaining], ABI_RETURN);
}
Xbyak::Address BlockOfCode::MConst(const Xbyak::AddressFrame& frame, u64 lower, u64 upper) {
return constant_pool.GetConstant(frame, lower, upper);
}
void BlockOfCode::SwitchToFarCode() {
ASSERT(prelude_complete);
ASSERT(!in_far_code);
in_far_code = true;
near_code_ptr = getCurr();
SetCodePtr(far_code_ptr);
ASSERT_MSG(near_code_ptr < far_code_begin, "Near code has overwritten far code!");
}
void BlockOfCode::SwitchToNearCode() {
ASSERT(prelude_complete);
ASSERT(in_far_code);
in_far_code = false;
far_code_ptr = getCurr();
SetCodePtr(near_code_ptr);
}
CodePtr BlockOfCode::GetCodeBegin() const {
return near_code_begin;
}
void* BlockOfCode::AllocateFromCodeSpace(size_t alloc_size) {
if (size_ + alloc_size >= maxSize_) {
throw Xbyak::Error(Xbyak::ERR_CODE_IS_TOO_BIG);
}
void* ret = getCurr<void*>();
size_ += alloc_size;
memset(ret, 0, alloc_size);
return ret;
}
void BlockOfCode::SetCodePtr(CodePtr code_ptr) {
// The "size" defines where top_, the insertion point, is.
size_t required_size = reinterpret_cast<const u8*>(code_ptr) - getCode();
setSize(required_size);
}
void BlockOfCode::EnsurePatchLocationSize(CodePtr begin, size_t size) {
size_t current_size = getCurr<const u8*>() - reinterpret_cast<const u8*>(begin);
ASSERT(current_size <= size);
nop(size - current_size);
}
bool BlockOfCode::DoesCpuSupport(Xbyak::util::Cpu::Type type) const {
#ifdef DYNARMIC_ENABLE_CPU_FEATURE_DETECTION
return cpu_info.has(type);
#else
(void)type;
return false;
#endif
}
} // namespace Dynarmic::BackendX64